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Physics. — Drv. J. E. Verscuarrerr: 4 Contributions to the knowledge
0f vaN DER WaaLs' w-surface. VIL. The equation of state and
the p-surface in the tmmediate neighbourhood of the critical
state for binary miztures with a small proportion of one of
the components.” (Continued). Communication n°. 81 from the
physical Laboratory at Leiden, by Prof. H. KamerLiver Oxngs. ?)

(Communicaled in the meeting of Sept. 27, 1902).

10. The border curve and the connodal line in special cases.

1. When m,, = 0, i.e. pp 8 = k,; Tk e, all isotherms intersect one
another nearly at the critical pomnt (pri, v7%) as we have seenin § 3;
according to the equations (26), (27) and (28) the plaitpoint coincides
in that case with this critical point. Besides from (31) it follows that

d’p . ’p
P i 0; this value however belongs to i only to the first approx-

imation (i.e. at the critical point itself), or the border curve is a
parabola of a higher degree than the second. In fact we find in
this case:

1 2 4m,,m . m
@:———(—m“————u)ﬁ', @*'=——2F and
2m30 3 5 mﬂﬂ 30
1m,m
Pi—PTE == f My — o —— |E;
3  my,

and therefore the border curve to the first approximation becomes a
parabola of the fourth degree; the equation of that parabola is:
mis, Lm,, my, 4
P—PTk —"m“u(m” T3 (v—v ).
The connodal line, however, remains a parabola of the second

2
degree, on which gv—f = Zi];::a.

2. A second remarkable case is that where RTym,,+m*;,=0; for
then the term p,—pp disappears from the expression for ¢? (equation
23), so that ¢ becomes of the first order with respect to p,—p7i.
We then find :

b= — 1 (m(u L m \P1—PTk Moy [1 2"”01 'm-to)%“:

Sme\ RTp ) my,  RTamp\B Mgy
and
932-"-'-721—1112T __l_ imolmua _ 1_ miym?y,
Mg, my\2 RIT; 3 R’Tk’mu

2mo1 nm‘ﬂ 1m P —DPTk !
M, 8 RTum,, 3 m30 my, )

1) Comp. Proceedings Royal Acad. of Sciences Sept. 1902.
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in the last term T shall express the co-efficient of (p,—pn)* for con-
venience by XK.

Substituting this in equation (30) we obtain to the first approxi-
mation an equation of the second degree, which now no longoer
represents a parabola but an ellipse or a hyperbola. The coordinates
of the centre are-

pe=pTk and ve = v7} — ___"Itﬁl_.(_l_ m _gwﬂ)mm
RTm,\8 " 5 m '
while the straight lines N
—=pm and v—vwy + P
arc conjugate axes. With respect to these axes the coordinates of
the border curve are ¢ and p,—pz, so that the equation of the
border curve with respect to those axes is:

m k
¢ — K(p—pn) = ;1—1 T = — ]1—1—1 (T—T).

30 30
In the same case the equation of the connodal line is:

k
¢, — Kmiy, (o—wm) = — 2 (T —T),

30
with respect to the conjugate axes:
g=a7: and v —=o+ D}
) . . el e Pr—PTE
where @' is obtained through substituting x—aqy, for ——=—in P.
01
We must now distinguish two cases.

a. K<0; the equations of the border curve and the connodal
line represent ecllipses. Provided £,, < 0and Z,, < 0 these ellipses are
real when 7'<7}; they lie only partially — to the first approxi-
mation half — in the real part (¢ > 0) of the -surface. We find
two plaitpoints of which only one is in the real y-surface and two
critical points of contact co-inciding with the plaitpoints (at least to
the degrec of approximation considered here, i. e. to the order
V/(T—-T}); the coordinates of these points are:

== ems B
RTYI= BT = Tk Klw( 1)

= = =+ Ir—-rT
PTul = PTr = PTh I/cw( k)

1 m,, m
VIl = O = Ve R (T oy,

T—1T%).
3 my, my\ R I(A (=T

If T= T, the border curve and the connodal hne shrink to
one point, the critical point of the pure substance; and if 7> 7%,
there is no longer a border curve nor a connodal line.
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b. K>0; the border curve and the connodal line are hyper-
bolae; the asymptotes are: -
p===(p—pr)/ K(bordercurveandg'==Lm,,(z—2 1)} K(connodal line).

If 7> 1T, ¢ (or ¢) is the real axis; only that branch of the
hyperbola which lies above the axis p = p can be observed as
border curve; in the case of the connodal line 1t is only the branch
lying above the axis x—a7; which can be observed; again two
plaitpoints are found of which only one can be observed, and the
coordinates of which can be expressed by the same terms as used
for the ellipse. If 7'=17}, the border curve and the connodal line
consist of two straight branches meeting at the critical point of the
pure substance, which is therefore a double plaitpoint. Lastly, if
T < T there is no longer a plaitpoint; we observe two branches
of the border curve and the connodal line lying to the right and
the left of the point prx, vrx; each phase on one branch co-exists
with a phase on the other.

11, The border curve in the p, v, T diagram for a miziure
of composition .

In equation (36) of the projection of the connodal line on the
x, v-plane, if we consider z as constant and 7" as variable, that
equation will express how the volumes of the phases, where the
condensation begins and ends depend for the same mixture on the
temperature. It therefore may be considered as the projection on the
v, T-plane of the border curve on the p, v, T-surface for the mixture
of composition 2.

This projection, can be written in the following form, corresponds
to (36)

0 = (v—um)’ — 2 D" (v—rvuz) + P"*—¢", . . . (44)
where

1 N
D' = 5 (v',+7") — v = D'+ vyp—uy = (to a first approximation)

. 1 myy (Mm% 2 'm'sox 4‘mm mly,
——me[RTk(RTk_l_m“ 5 BT Gm. RT: T

— 1
+”k(a B)(T-—Txk mu(m 01+ >+__m
aly 2 20 L7
_i’ﬂ&]ﬂ...............@s)
5 my, aly
and
1 m? my, T—T
" —_' ) = ) = o — 01 T TR (46
gl = W) =" Rlgmy, " T my,, Tk (49)

7
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To this can be added

1
= ’é* (p,2+p'1) — pak =Ky, (T—Tl‘k) L (47)
and

a' = —

Ta) e . . . (48)

To the first approximation equation (44) represents a parabola, of
which the apex determines the elements of the critical point of contact
for the mixture 2. For we know that in the case of the critical
point of contact v',=v'=wv,, so that ¢"=10 and @" = vHy—vy.
Hence it follows that?):

2

mﬂl
C e 9
RTpk, © (“49)

2
kolm 01

er:“—pxk—mﬂ?

my,m &
— vzk—]—I: o1 ( ZO%IT]:I _I..mﬂ)]RTkm . (51)
11

In order to derive from this the equation of the border curve in
the p,v, T-diagram, we must express 7' in terms of p and » by means
of equation (13).

Then we find:

0= (v—ova)’ — 2 D" (= vsz) - D" — " . . . (52)

Txr = d gk —

(50)

where
P — 1 ""‘01( + )______i’in_m @
2m,, | BT \RT% 3 R*T}? 5 my, BRI}
'Uk(a B) 1 mu m(u 2 4‘m11m40
ol S o BT, T ) TR T T
!
kyymyy | p—pak
k,, all (58)
and
([)""Z— m?y 2 My, P—Pzk C .. (Y

RTym,, ' kym,, aTp
To a first approximation (52) is a parabola on which

d’p— 2"01 30 T —_ 2k01k30

dv? My, kyy
as in the case of the border curve of the pure substance.
The apex of the border curve is the point of the maximum co-existence

1) We obtain the same formulae if we replace in equation (26) zz by its value
(17), put T'= T4 and sr,=2, solve Tb and substitute it in (39) and (40).
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pressure ). Let pau, Vem, Tams be its coordinates, then we find by
putting ¢" =0 and " = vy, —var -
kyym® ),

P.z:m-——'pxk—-RT Fe v 00 e e (55)

1 4 3 k l'
Vum = Vi __I_ [mzolvlc(a—ﬂ)—lr m 01[ | ’mo1mu__ 11m11)_| v (56)

8mg,\ 7 RT, 2 k, ) |RTm,
m? )
T:rm —- T.'Lk _ ‘jg_]‘,kuTlu & (57)
Hence to the first approximation p,n = p, and T, = T, but
1 m201k11 (58)

Vam — Vgr — — _Z_.RTkk“]cM

for real mixtures, that is to say >0, the latter expression is neces-
sarily negative, so that the critical point of contact is always situated
on the descending (right) branch of the border curve. We cannot
call it the vapour branch, because here the apex of the border curve
is not the plaitpoint as in the p,v,a-diagram. The ecritical point
of contact is situated thus, because the critical isothermal touches the
border curve at that point, and because on that isothermal and hence
also at the critical point of contact 7%, > Ty (at least for real mixtures),

0 .
therefore 6§<0 for the border curve. This corresponds to a diagram-

matical representation of a p, v, T-diagram for a mixture given by
Kuenen ?) and also with the experimental diagram for the mixture:
0.95 carbon dioxide, 0.05 hydrogen which I have given in my thesis
for the doctorate. In spite of the small value of @, terms of higher
order appear to have such a great influence in the case of this mixture
that the apex of the border curve lies far outside the area investigated,
and the border curve at the critical point of contact is no longer
concave towards the »-axis but convex.

The plaitpoint elements for the mixture of composition x are found
by substituting T3, for 7" and z for x7, in equation (26), by
solving 7% and substiluting that value in (27) and (28). Then
we find

m? -+ R pm m? )
T ,—T 1+__°}___.__E 2l=T7—— 2. . (59
Ipl k[ ijkmll (4 ’b—l ) Rr 1kk11 v ( )
kﬂlmﬁol ko1 L ’01
—_ : 0 = pg————z . . (60
pxpz—pk+[m{3 + R, ©|* =P pr " (69)

1) Comp. Hartman, Journ. Phys. Chem., b, 437, 1901, Comrunications Leiden
Suppl. N° 3 p. L4.
%) Zeilschr. f. physik. Chem., XXIV, 672, 1897.
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2 I1m2,,m
Vel == Vsk v;(a—ﬁ)—}— ( m — 2 ):I —,(61)
Lp g1 [ 01 50 3 01917~ 3 .RT] RTk 11

which formulae, after some reductions, can be put in the form in
which Kgrsom has given them (Comm., n°. 75). Also the following
well known equation ') resnlts directly from equations (59) and (60)

Papl—Pab =kyy (LTopt— L) » . . . - . (62)
which also according to equations (49), (50), (55) and (57) holds for
the coordinates of the critical point of contact and for the apex of the
border curve.

From the coordinates of the plaitpoint of mixtures of carbon
dioxide with a small proportion of hydrogen *) (z =0, 0,05 and 0,1)
I derive the following formulae .

Tou="Ty (1 — 0,30 & + 2?)
Papl =pi(1 4 444 1127) N (1))
vgpr=vg (1L — 0,40 2 — 8 &%)

In connection with the formulae (16) I obtain directly from these:

Pz/)l —Pak k1,66 (1 I“ 2‘%),

rpl_ -’1 ak
in good harmony with equation (62)(4,, = 1,61) ®). Using the value
k=—2513"*, I moreover find that the formulae (59) and (60)

applied to mixtures of carbon dioxide and hydrogen become:
Topy="Tr(1+4+0,082) and ppi=pr(l+4642); . (63"

hence the agreement with the formulae (63) is decidedly bad, as has
also been remarked by Kmesom (loc.cit,, p. 13). We cannot,
however, draw: any conclusions from this; it is imiprobable
that the inaccuracy of the data should cause this great deviation;
but from the fact that terms of higher order produce such a great
influence in the mixture @ = 0,05, we see that quadratic formulae
are very unfit for this comparison °), the more so as it appears from

1y Comp. v. . Waats, Versl. Kon. Akad., Nov. 1897. It also follows directly
from the equation of state (18) in connection with (15), by expressing that the
elements of the plaitpoint satisfy this equation and by neglecting terms of a higher
order than the first.

%) VerscHarreLt, Thesis for the doctorate, Leiden 1899.

3) Comp. also Keesowm, loc. cit., p. 14.

RT: 03
BIT 32,2 (Keesom, p. 12).
Prvr; 0wl

5) By introducing the values for 2 =0,2 (comp. VemscuArreLt, Arch. Neerl.,
(2), 5, 649 ete.,, 1900, Comm. n® 65, and Keesom, loc. cit. p. 12) they certainly
will not become better. ’

4) Derived from
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Kegsom’s calculations (p. 13) that tolerably small variations in the
- dpa

! and papl.
2 da

values of « and B greatly influence the values of

Accurate observations for mixtures with still smaller compositions are
therefore highly desirable. As the v, and also the coordinates of
the critical plaitpoint, are known with less certainty than the 7%,
and pg, a comparison of the theoretical and the experimental values
for these quantities is practically useless. ~

Again from the preceding equations pyu=7ps, Tyu=1T: to a
first approximation, and

_ 1 My, mn“
”wpl_‘”xr——‘z'RTkm” (R.'Z’[;—*_mu)'” e e s . (64)

Hence the plaitpoint may lie either to the right or to the left of

the critical point of contact; for positive 2 we have

Mgy >0 My, <0

RT% by a >y | Vgpt < Vpr; T.C 1 | i > 05 1o 1T

Rk, a < m?y, | Vgl > Vgr; T.CIL | vy <l wpp; v 1
» »

If the plaitpoint lies to the left of the critical point of contact, it
may still lie either to the right or to the left of the apex, that isto
say either on the descending or on the ascending branch of the

border curve. In fact, according to (58) and (64) it lies:
2

Mg,
. m
-R[k + 11

1. to the right of the critical point of contact when m,, and

have the same signs,
2. between the critical point of contact and the apex when
k m

01 01 . ]c ot
7 (ﬁ‘ {' 11) > My, > 0 or 0 >m01 > (ij + mll)’ and

3. to the left of the apex when
m'y,

Mgy > o (Rznvl 11) >0 or 0 > o (RT mu) > my,.

In the p, v, T-diagram the plaitpoint has no geometrical meaning.
The expression that the coordinates of the critical point of contact
and the plaitpoint salisfy the equation (44) gives, to the second

approximation :
1 m® m? 2
Topt — Topp = — — L o1 2. . . (65
apl ™ S 4 RTk, (RTk+m“) ¢ (65)
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The right side is necessarily negative and therefore we always have

er > T, which also necessarily follows from the meaning of the
critical point of contact. In the same way we find by means of
equation (52):

1 kﬂl mzﬂl l’nzol nzﬂllcll 1 m’ol g
— Py = — — = . (66
Ppl — Pur 9 kll RTk]cso \ -RTIC + myy ]G“ 9 .RT]c + My & ( )

12. The condensation.

The line which indicates the relation between the pressure and
the volume during the condensation, the so-called experimental isother-
mal, extends between the two points p’,, v’, and p’,, v’, (the points
where the condensation begins and ends) but we can also imagine it
to extend beyond those two points, although there it has only a mathe-
matical meaning; for beyond those two points the quantity of one
of the phases would be negalive. In order to find the equation of
the experimental isothermal we must seek at each volume for the
pressure at which the two phases into which the mixture splits, can
co-exist. For this purpose I return to the projection on the @, v-plane
$ 8) of the w-surface belonging to the temperature 7' If »,, x, and
v,, @, are the phases into which the mixture 2 splits when the volume
v is reached (v,>v>v,), the point v, & lies on the straight line con-
necting the points v, , #, and v,, 2, and hence we have this relation :

v—ka—¢_¢

s—orp—E &
where @, 5, ¢ and § have the same meaning as in § 5. If p, is the
pressure at which the two phases #, and », co-exist then we obtain
the equation of the experimenial isothermal by expressing the quan-
tities &, 5, ¢ and § of equation (67) in p, by means of the equations
(22), (23), (24) and (25).

That this experimental isothermal passes through the two points
v,, @ and v’ , @ follows directly from the way in which its equation
has been derived; we also obtain it from the substitution of v’, , 2/, —
or »,, a', — for v, #, which involves the substitution of »",, &,
for v,, @, — or of v’,, &', for v,, a,.

By successive approximations (67) is brought to the form:

N (i1 4

m2
P, = PTk + My, (8—a7) — m% (v—vr)e +....5 . . (68)

if we consider only the three first terms, this is the equation of a
straight line, hence of that connecting the two phases where the
condensation begins and ends. In connection with (18) we find,
neglecting terms of higher order,
23
Proceedings Royal Acad. Amsterdam. Vol. V.
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32
My

p—p, =my, (v—oTi) (¢ —2r) + 1_27176 (v—v18) ® + M4 (v—VT%)?,
and according to (33) this may be written
p—p, = kyo (v—v1%) [(v—01%)* — 9"}

We see that in this form the experimental isothermal intersects
the theoretical at three points?), viz. v =ovm 4 ¢, v =vp,— ¢’
and v = vy, (all to the first approximation); the two first points are
the points at which condensation begins and ends (2’ has been
neglected as being of higher order than ¢’), the third lies between
the two first.

When wr, -+ ¢’ >>v > vy, that is to say at the beginning of the
condensation, p > p, and the theoretical isothermal lies above the
experimental ; when o7 >v > vr — ¢, ie. at the end of the con-
densation, p > p, and the experimental isothermal is the higher *); this,
indeed, follows necessarily from the s-shape of the theoretical isother-
mal, and the approximate straightness of the experimental.

According to thermodynamics the two areas enclosed by the
theoretical and the experimental isothermal must be equivalent®),

that is to say:

v'y
f(p—pl) dv = 0.
v

or
.’.?‘
Jo-—rrae—m=o,
—¢

and this actually follows from the form, found just now for p—p,.
This has only been proved for the terms considered here; but obvi-
ously it must also be possible to prove this for terms of higher order.

13. The p, T diagram.

a. The vapour pressure curve of the pure substance. We have

found to a first approximation :
Py == Pk + ko (T—T).
As k,, is positive, this straight line rises and terminates at the

1) Comp. for this Harrman, Comm., n". 56 and Suppl. n% 3 p. 25; Journ. Phys.
Chem., 5, 450, 1901,

2) Here the proof 18 only given for mixtures with small composition. For a gereral
proof comp. Kuenew. Zeitschr. f. Physik. Chem., XLI, 46, 1902.

%) It has escaped Brumcxe's notice, who mentions this theorem in 1890 (Zeitschr.
f. physik. Chem., VI, p. 157) that it occurs already in a treatise of van pEr WaAALS

of 1380 (Verh. Kon. Akad., Bd. 20, p. 23).
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point pz, Tr. T is a maximum temperature, so that this curve
lies in the third quadrant (S'O, fig. 16.)
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b. The plaitpoint curve. According to equation (27)
_ m?y, -1 RTykyymy, N,

pT”’—pk-}_[pkﬁ_m’“—}-RTkm“_] T ——Pk+(km‘m)(l—fk)

This curve may have all possible directions. If we consider only real
mixtwies (z > 0), it extends only on one side of the point px, 7%, namely
that corresponding to such values that 7—7% and m*,, 4+ RT; m,,
have the same signs (according to equation 26).

With regard to the position of the plailpoint curve we distinguish
the following cases :

1. my,=0. pp=pi+ &, (1—1%), hence the beginning of the
plaitpoint curve will lie either in the direction of the vapour pressure

. 23’)*




( 346 )

curve of the pure substance or will co-incide with it as 77> 77 or
T T, that is to say, according to (26'), as « is positive or negative.
In the first case (1a), therefore, the plaitpoint curve will lie in the first
quadrant (OS fig. 16), in the second case (1) in the third quadrant
(OS". We have noted that then the plaitpoint elements of a mixture
co-incide with the critical elements which the mixture would have,

if it remained homogeneous, hence the mixiure behaves like a pure
2

0
—lp-—: 0 alveady discussed by vaN DEr
oz v v

Waars); in this case there is a mixture — here 1t must be the
pure substance itself — for which the vapour tension is a maximum
or a minimum, and indeed it follows from the expression for p,—pn

0
in this case ?) that (p 1) = 0.

substance. This is the case

prl

t,, S0 that the plait-

2a. my, > 0and m?,, + RT}, m,, >0.
point curve lies in the angle SO ¥ because ] T). must be also positive.

d
2b. my, > 0 and m*,, +~ RT} m,, =0, prl = 4 o, and the begin-

ning of the plaitpoint curve co-incides W1th 0rY®.

Thus we have here the second special case of the shape of the
plaitpoint curve investigated by van DER Waals, i e. where there 1s
a maximum or minimum temperature, here the critical temperature
of the pure substance. Really in this case (§10,2), as pr—ps is of
higher order than pr,—pz,

IT—T, =

%
P 2 (pTpi—pr)’
11

hence ( o l) = 0. 7> T, that is to say T} is the minimum plait-
ll

point temperature, when £ >> 0, this is the case where the border curve
and the connodal line are hyperbolae (mixtures of HARTMAN’S third
type). And T < T}, that is so say 7% 15 a maximum, when K < 0;
in this case the border curve and the connodal line ave ellipses
(mixtures of the second type).

2¢. My, >0 and m*, + RT; m,, <O. dpr,,z

< k,,, and because

1) Arch. Néerl., (1), 30, 266, 1896,

%) Comp. preceding communication, p. 267; to the first approximation = = ;.

%) Not with 0Y", for, as in this case pm—ps and s are infinitely small with
respect to Dri—pr and X (§ 10,2), according to (29) prpi—pr = mg x, so that
for £ > 0, pr > P&
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T— T}, must also be negalive the plaitpoint curve lies in the angle SO Y.

dpr,
3a. m,, < Oandm?,, + BRI} m,, >0, ;lp%’[ < kyy, but 7—T%, >0,
and hence in the angle SOT.
3b. m,, < 0 and m?, + BT} m,, =0. The plaitpoint curve

touches OT”*). Compare moreover 2).
3¢. my, < Oandm?, + RT,m,, <O0.
hence in the angle S'OY".

dpry .
From this it appears that %l can take all possible values. Accor-

dp Il
aT

> ky,, but T— T3 >0,

ding to vaN pEr Waars®), however, this is not true and the case
dpr.a  pk . .

gT/ _-—.2;,— for instance could never occur. But it should be borne

I

in mind that this rule of vax DpER WaaLs ‘does not rest on an ex-
clusively thermodynamic reasoning, but also on special suppositions
about the form of the equation of state, which naturally corresponds
to special relations between the co-efficients introduced here, and as
a matter of course it is always possible that the numerical values
of the coefficients are such, that one or more of the cases considered
are excluded.

¢. The critical point of contact curve. To the first approximation
pr=p7u, S0 that the critical point of conlact curve to a first
approximation co-incides with the plaitpoint curve and the conside-
rations in & hold also for this line. Equation (43) shows moreover
that to a second approximation.

1 maﬂlkill

4 RT'kmyo(m* R 1m,,)
from which 1t follows that the critical pomnt of contact curve lies
above the plaitpoint curve when m,, and m?,, + RT,m,, have the
same signs; this occurs in the cases 2a and 3¢ just mentioned, hence
in the angles SOYT and S'OT". In the other cases the point of contact
curve 15 the lower. Moreover the two curves also co-incide to a
second approximation if m,, =0 and even if m?,, + R1ym,, =0.

d, dpT, . .
(_p 04 __ T ::{:m) although in that case pr—p7 is not zero

PTr—PTpl = (T—Tk)av

ar —dar
to the second approximation.
d. The border curves. This position of the critical point of con-

1) pm < p& for £>0; comp. preceding note,
) Arch. Néerl, (2), 2, 79, 1898,

—= e
e a2 =1
T
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tact curve with respect to the plaitpoint curve corresponds to the
position of the critical point of contact with respect to the plaitpoint
on the border curves, represented in an exaggerated way in fig. 16.
To the .second approximation those border curves are parabolae
which touch the plaitpoint curve and have a verlical tangent at the
critical point of contact, but to the first approximation they co-incide
with the axis which is conjugate to the vertical chords and the
equation of which according to (47), is:
P =Dk -+ kot (T—T-Tk) = Papl + kOl (T——szl).

Hence these straight lines are parallel with the vapour pressure
curve of the pure substance and terminate, on the plaitpoint curve,
in the plaitpoint of the mixture to which they belong.

14. Continuation of § 9: the critical point of contact.

Mr. Kresom kindly informs me that the method given by him in
Comm. N°. 75 and which leads very easily to the constants of the
plaitpoint presents difficulties when applied to determine the constants
of the critical point of contact.

He however succeeded, by means of the method used by mein § 9,
in deriving the constants of the critical point of contact from the
formulae '), given by Kortiwre in his paper #Ueber Faltenpunkte”,
Wien. Sitz. Ber. Bd. 98, p. 1154, 1889, and proceeded thus.

It has been shown in Comm. N°. 59%, p. 36*) that instead of
deducing the coexistence-conditions by volling the tangent-plane over
the y-surface, we can also obtain them by rolling the tangent-plane
over a W-surface, the latter being deduced from the w-surface by
making the distance, measured in the direction of the yp-axis, between
this surface and a fixed tangent-plane the third coordinate perpendicalar
to z and ». We can go a step further in this direction by deducing
a ¢"-surface by means of KorTEwEG’s projective transformation 2)

"o ! al”’> ,(64")
lp ——-IP v (avl pl & a{vl ol

=2 —m

=
Here Y=Y — P
g =2 — &Iy

vV =v — o7y
"}y The simplest way of proving that the case ¢, = o in KorTEwEe's formula (4)
does not influence the present deduction, is by notin: that the area over which
the development is applied is irfinitely small in comparison with £T}..
2) Proceedings Sept. 1900, p. 296.
3) See Korrewre I. c. equation 38.
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it is also possible to obtain the coexisting phases by rolling a tangent-
plane over this W"-surface. " as function of 2’ and »" presents
the form

P =c¢, 2" |+ d, 2" 0"? 4 & v"* (KORTEWEG’S equation 4).

~

Hence for the commnodal curve KorTewre’s deduction may be
applied, and we find for ithe equation of that curve

€
o' = —2 d—‘ V" (equation 8 1 ¢.).

3
m is now found from

m i + ?j—lf— =0 (equation 34),
z* )T 0x0v /

where the differential quotients are taken for the plaitpoint, so that
for a substance with a small proportion of one component, to the

first approximation
1 op '
= MRT, 3z Jup "
Further we may put, leaving out terms of higher order, according
to equation (39)
1 op 0%p
= = M
d’ 8MRT (6.7;),,T+ Rk (a 00 )

_ 1 /9%
eﬁ——24 9v? =T

d.,
Using the property that for the point of contact d—” = 0, this
v

yields:

Oy 0T =8 — (a”)”T ;() +JIIRT,:<_6_’£)
) 0z0v /7

(MRT}y. (

BTyl

and
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Bp)

3 0z )y ap\? [0

‘”Tr“‘”ﬂ:g‘*‘v’%—p)(ﬁ .+ MRT, (a a)
(MRT}y. — i

dw’ me"l or Al _ dLapl f1'01;1 which we
T a7’ de - da ’

dpzr P2y . T 3 ~
easily derive that also —g—:%ﬁf-l so that in the p7-diagram the
ol &
point of contact curve and the plaitpoint curve touch at the ends.

We find further that with the same z:

s (2,

So that for a=0:

2
.i

Tz‘r—Txpl:

from which p,, — ps,; can be easily found.
If, as in Communication N°. 75 (Proceedings Nov. 1901), we
introduce the law of corresponding states, we find:

b—a (azz)
— —a—— ) Py 02
or— v1,=3 C, v} —'“—as_,:—‘l:gﬁ”a 5;); — G “(awg,)] ‘
o, _“)
o’

o\ )2

(50 '

3 ; ot o\ )? a7

T, = —o| — —_— :2,

Tor—dau= o 0 c 0% Dﬁ a(&r) ‘“(awar)]‘”
! (aw“) T (Bwbr)

Physiology. — #On the structure of the light-percepting cells in the
spinal cord, on the neurofibrillae in the ganglioncells and on
the immervation of the striped muscles in amphiozus lanceolntus.”
By Dr. J. Borxe. (Communicated by Prof. T. Pracw).

In connection with a former note?) I mean o describe here some
points of the histology of the central and peripheral nervous system
of amphioxus lanceolatus, especially to follow the neuvofibrillae in
their arvangement and distribution in the cells and in the muscle-plates.

This paper is the outcome of observations begun in 1900 in the
Stazione Zeologica at Naples, but then not carried any farther, to
study the structure of the pigmented cells of the spinal cord. During

1) Proccedings of the Royal Academy of Amsterdam. Meeting of Apyit 19, 1902.



