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Physics. — “Plaitpoints and corresponding plaits in the neighbour-
hood of the sides of the Ww-surface of vax pEr Waars.,” By
Prof. D. J. KorruwEe.
(Communicated in the Mecting of December 27, 1902).

First DescripTivE PART.

1. As in my “Zhéorie géndrale des plis”*) 1 wish to precede in
this paper the demonstrating part by a short summary of the
obtained results.

As we know a plaitpoint may occur on the side & =0 of the
w-surface of van pR Waars, *) which is represented by the equation :

Y= — MRT log( u—bz)——% + MRT {wlog a+(1—a) log (1—a)} . (1)

where :
a=a,(1-¢)*+2 ,a, o(1-2)+ a; *=a, +2(,a,~a, )¢+ (¢, +a,-2 ,a,)2%, . . (2)
by=b,(1-4)*+2 b, a(1-c)+b, *=b,+2(,b,~b )+ (b, 45,2 ,b,)2% . . (3)

This occurs only in the case that the temperature 7' corresponds
with the critical 7% of the principal component; but in that case it
occurs always. This plaitpoint coincides with the critical point of the
principal component for which v =3 6, and which in our figures we
shall always represent by the symbol K; the plaitpoint itself will
be represented by P.

If the temperature varies, the plaitpoint and the corresponding
plait can in general behave in two quite different ways. It will
namely either, as is indicated by the first four cases on fig. I of the
plate, on which the (v, z) projections of the sides of the y-surface are
represented, at increase of temperature leave the v-axis and move
to the inner side, therefore entering the surface, and disappear
from the surface at decrease of temperature, or it will as in the
last four cases of that figure, enter the surface at decrease and leave
it at increase of temperature.

) Archives Neérlandaises, T. 24 (1891) p. 295—368: La’théorie générale des
plis et la surface ¢ de van per WaaLs dans le cas de symétrie. See there
p. 320—368.

%) We take here the equation of the {-surface as it has been originally derived
by van per Waats, so without the empiric corrections which seem to be requived
to make the results agree quantitatively better with the experimental data. So is,
for instance, @r considered to be independent of the temperature, and all the results
and formulae mentioned are founded on this supposition. It would not have been
difficult to take such empiric corrections into account, as has really been done by
Verscrarrert and Keesom in their papers, to which we shall presently refer; but
then the results were of course not so casily surveyed. Therefore I have preferred
to leave them out of account, at least for the present.

\
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And this different behaviour of the plaitpoint will necessarily be
accompanied by a different behaviour of the connodal and spinodal
curves. For they must always cut the v-axis at decrease of temper-
ature, the connodal in the points of contact of the double tangent
of the w,u-curve of the principal component, the spinodal in its two
points of inflection; at increase of temperature above the critical
temperature of the principal component, however, they get quite
detached from the v-axis. In connection with this they turn in the
first four cases of fig. 1 their convex sides, in the last four cases_
their concave sides towards the side # =0 of the w-surface as is
also indicated in the figure, where the connodal curves are traced,
the spinodal curves dotted.

Y. At decrease of temperature a figure originates in the first
four cases as is schematically given here in Fig. a. At
/ increase of temperature, on the contrary, in the last four
o cases, the spinodal and connodal curves disappear from the
'ﬂ surface at the same time with the plaitpoint itself.

p Besides to this different behaviour it appeared however
\' desirable, to pay attention to two other circumstances. First
to the direction of the tangent in the plaitpoint, whether
if prolonged towards the side of the large volumes, it
inclines to the énner side of the y-surface, as in cases 1, 2, 5 and
6 of fig. 1, or whether it inclines to the ouier side, as in the
remaining four cases. For on this it will depend which of the two
kinds of retrograde condensation will eventually appear !). But besides
we have to pay attention to the question whether the plaitpoint,
entering the wy-surface, either at decrease or increase of temperature,
will move towards the side of the larger volumes as in cases 1, 3, 5
and 7, or whether it will move towards that of the smaller volumes
as in the other cases. In connection with this question we may point
out here that the line X in fig 1 of the plate may everywhere be
considered as a small chord of the plaitpoint curve of the »,¢-diagram
and accordingly indicates the iniral direction of that curve, which it
has when starting from point X, :

The three different alternatives, which we have distinguished in
this way, give rise to the eight cases represented in fig. 1, and we
may now raise the question on what it will depend which of these
eight cases will occur at a given principal component with a given

1) See on these two kinds of retrograde condensation inter alia, the paper of van ner
Waats: “Slatique des fluides (Mélanges)”': in Tome I of the “Rapports présentés
au congrés international de physique, réuni & Paris en 1900”, page 606—609.
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admixture; of course only in so far as with sufficient approximation the
conditions are satisfied on which the derivation of the equation (1)
of vAN DER WAALS rests.

9. The answer to this question is given in the graphical repre-
sentation of fig. 2. 1t appears, namely, that the case which will occur,

is exclusively determined by the quantities % :.—..:czmd}bEE
1 1

have already played a prominent part in my above mentioned

“Théorie ginérale des plis.”’

In accordance with this a »- and a y-axis are assumed in fig. 2
of the plate and the regions where the points are situated whose »-
and y-values give rise to the appearance of each of these cases, are
distinguished by different numbers and colours.

For instance the white region 1 indicates the »- and y-values for
which the plaitpoint cunters the -surface at rising temperature, moving
from K to the side of the large volumes, while in the well-known
way we can derive from its situation on the connodal curve on the
right above the ecritical point of contact R (for which the tangent
to the connodal curve runs parallel with the v-axis) that the retrograde
condensation will, be cventually of the second kind (i. e. with tem-
porary formation of vapour) and also that the temporary vapour
phase will have a larger amount of admixture than the permanent
denser phase.

In the same way the blue field 5 indicates the x- and the y-values
for which the plaitpoint enters the w-surface at decrease of temperature,
moving towards the side of the lavge volumes; whilst the retrograde
condensation will be of the first kind and the temporary denser phase
will show a smaller proportion of admixture than the permanent

vapour phase.

=y, which

3. When examining this graphical representation we see at once
that one of the eight regions which were & priori to be expected, region 8,
faills. From this follows that for normal substances the combination
of retrograde condensation of the second kind and of a plaitpoint
which enters the surface at decreasing temperature and moves towards
the side of the small volumes, is not to be expected.

All the other seven regions, however, are represented in the graphical
representation.

4. Further the point x =1, y = 1, is remarkable, where no less
than six regions meet. This point represents really a very particular
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case, namely that in which the molecules of the admixture, both
with regard {o voluie and fo atiraction, behave towards the mole-
cules of the principal component exactly as if they were identical
with these latter molecules. '

It at the same time a,=n,, b, =10,, which is of course not
involved in the ahove suppositions, it is easy to sce that at decrease
of temperaturc below the critical temperature the plait would suddenly
appear all over the whole breadth of the w-surface.

Now it is true that every deviation from these equalities a, =a,,_
b,=20b, will prevent such a way of appearance, hut it is evident
that then the behaviour of plaitpoint and corresponding plait will
depend on a, and b,, ie. the first approximation for. which the
knowledge of % and 7y is sufficient and which everywhere else
suffices to make this behaviour known to us up to a certain distance
from the side of the -surface, fails here.

And also already in the neighbourhood of the combination of the
values x=1,y=1, this first approximatlion will be restricted, to
the immediate neighbourhood of the point A and of the critical
temperature 7% of the principal component. When we are not in
that immediate neighbourhood the influence of a, and b,, — of the
former of these quantities specially, — will soon be felt. On the
contrary for values of % or y sufficiently differing from wnity the
considerations derived from the first approximation will probably be
of force within pretty wide limits, at least in a qualitative sense.

5. Before proceeding to a discussion of the border curves between
the different regions, we will shortly point out that we cannot
attach an equally great importance to all the parts of the graphical
representation. So all points lying left of the y-axis relate to negative
values of ,a,, ie. to the case that the molecules of principal com-
ponent and admixture should repel each other, which is not likely
to occur.

In the same way the negative values of y, so of ,b,, of the points
below the x-axis, should be considered as having exclusively mathe-

1 ;
matical signification. If the relation, ,b,= E(bl—H),), should still be
applied also for very unequal values of the &’s, then y would even remain

1
always larger than 5 and so the part below the line y = -
would lose its physical signification.

6. With regard to the border curves between the different parts,

we have first to deal with the parabolic border curve separating the
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regions containing blue (blue, green, purple) from the others. It
1 o
touches the y-axis in the point =20, y:-~2«. Its cquation is:

Qy—38z-+1p—8(y—n=0
or if we {ransfer the origin to the point y==1, #==1 and therefore
introduce the new variables: #’ == xz—1; y/ = y—1I, which hrings
about a simplification also for {he other border curves, we get:

@y—8#) —8(y—x)=0.. . . . . . (4

Then we have everywhere inside that parabola, so in the regions
5, 6, 7:

(@7 —3%)" —8(yY—x) <0
and outside it m the regions 1, 2, 3, 4:
@7 —4 %) — 8 (y—=)>0.

In consequence of this it depends on the situation inside or
outside the parabola, swhether on the corresponding y-surface the
plaitpoint will enter the surface at decrease of temperature or at
wmerease of temperature and whether the spinodal curves turn their
convex or their concave sides to the side 2 =0.

g 0. For points on the parabolic border curve the plaitpoint
occurring in the point A at the critical temperature of
the principal component, is to be considered as an homo-
geneous double plaitpoint at that moment. The projection
on the r, w-surface appears then as is indicated in fig. b,

How the iransition to this condition takes place may
be made clear by the subjoined fig. ¢, which represents
the same projection for a femperature slightly below that
of the critical temperature of the principal component
for the case that the z- and y-values indicate a Fig. c.
point, which is still situated in the green region
6, but on the verge of the howder c¢nrve of the
vellow region 2.

Very near the plaitpoint /”we find here already
a second plaitpoint 72/, which at further deercase
of temperature soon coincides with /2

If now the point in the green region approaches
the horder curve of the vellow region, the (wo
points /2 coincide nearver and nearer to the eritical
temperature of the prineipal component and (o the point K. On
the border curve it takes place in the point A itself.  Beyond the
limit, in the yellow region, the plait of [ does not develop any
more and /7 takes the place of /.

. " 30
Proceedings Royal dead. Amsterdum. Vol V.
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7. As second border we get in the graphical representz;tion the
straight line: -
29 —38+'=0. . . . . . . . .79

It separates the regions containing red 3, 4 and 7, — for which
2 y'—3%'<C0, and where the tangent in the plaitpoint, continued in
the direction of the large volumes, inclines towards the side 2==0—
from the others, where it inclines {o the inner side of the w-surface.

As we saw before, this inclination determincs the nature of the
retrograde condensation. Not exclusively, however. Ifor in the first ~
four cases of figure 2 the result of the same way of inclination is
in this regard exactly the opposite of that in the last four cases;
hence the parabolic border curve acts here also as a separating curve;
so that retrograde condensation of the first kind (i.e. with temporary
formation of the denser phase) ocenrs in the regions 3, 4, 5 and 6,
in the two first with greater proportion of the admixture in the
temporary phase, in the two last the reverse, and on the contrary
retrograde condensation of the second kind in the regions 1 and 2,
(with a larger proportion in the temporary less dense phase) and 7
(with a smaller proportion in that same phase). -

8. The third border curve is a cubic curve with the equation:
@y —8x)Y —4(4y—-3%)Q2y—8x%)+16y=0. . . (6)

It consists of two branches, which possess both on one side the

common asymptote:
2y —8%—2=0 . . . . . . . (7
and which run at the other side parvabolically to infinity.

The right-side branch, whose shape resembles more or less a para-
bola, touches the curve 9/ = 0 in the point 2’ =0, y' =0 (x=1, y==1).

Between the two branches, so in the regions 2, 4 and 6:

@y —38x%) —4(4y —3%) (27 —8#)+ 167 < 0;
in all the other regions of course > 0. -

In the former case the tangent KP to the plaitpoint-curve of the
(v, a)-diagram is directed to the side of the small volumes, in the
second to that of the large volumes.

If we, however, examine, whether e.g. at decrease’ of temperature v
the plaitpoint moves towards the large or towards the small'volumes,
the parabolic border curve acts again as separating curve.

It appears then that the plaitpoint moves towards the large volumes
at decrease of temperature in the regions 2, 4, 5 and 7, al increase
of temperature in the others. -
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9. The following table gives the characteristics for the diffe-
rent regions.

N

Region -
1 (gy'—3x')’—8(y'—x')>0; 27'-8%>0; (2y'-32')'-4(4y'- 8%)(2y'-82") + 16¢y">0
2 " >0, >0 » <0
3 ” >0; ,, <0; " >0
4 " >0; ”" <0; 1 <0
5 " L0; ,, >0 " . >0
6 " L0 o, <0; ” <0
7. " L0, <0; " >0
where : ‘
x':x——l:ﬂ;y':y—l—_:lb’—_-b—l. 8)
<4 bl

A similar tabular survey of the physical properties of the regions
seems superfluous, as these properties may be immediately read from
the illustrations of fig. 1 of the unfolding plate.

10. It seems not devoid of interest to know how the breadths of the
regions change with regard to each other, when continually increasing
values of y’ are considered. An inquiry into this shows at once that
the blue region 5, measured along a line parallel to the x-axis, has

2
a limiting value for the breadth of 3 All the other regions mentioned,

however, continue to increase indefinitely, and do this proportional
with /" and in such a way that the yellow and the red region get
gradually the same breadth and in the same way the green and the
purple one, but that the breadth of the two first mentioned regions
will amount to 0,732 of that of the two last mentioned.

If we also take the white region (reckoned e.g. from the y-axis)
into consideration then we find its breadth at first approximation to
be proportional with y', so that it exceeds in the long run the other
mentioned ; the orange region keeps of course an infinite breadth.

The limiting values of the ratios may therefore be represented
as follows: )

white _ yellow _ green _ blue _ purple  red  orange 9
© 07827 1 7 0 T 1 70782 e 0)

We may see that if we keep x constant and make y to increase
we always reach the white region, while reversively increase of x
with constant y leads finally to the orange region. Strong attraction;
between the molecules of the admixture and those of the principal

¢ 30%
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component promotes thereforc in the long run the relations of case
4, large volume of the molecules of the admixture promotes those
of case 1. -

11. We may conclude this descriptive part with mentioning some
formulae which we have obtained in the conrse of our investigation,
and which will be derived in the second part. We do not, however,
give them as new, as they must essentially agree with similar
equations obtained by Kuusom') and Vurscmarrerr?), if the simplifying
hypotheses are introduced on which the original equation of the
p-surface, used by us, rests. Nor does the way in which they are
derived, in which the method of the systematic development into
series is followed, differ considerably from that of VERSCHAFFELT.

In these formulae we have restricted the mumnber of notations as
much as possible. They only hold at approximation in the neigh-
bourhood of point K and of the critical temperature 7% of the
principal component.

We shall first give expressions for the radii of curvature R’y, and
R’ om,” of the projections on the (v, x)-surface of the spinodal and
connodal curves in the plaitpoint; from which nppcars' that the radius
of curvature of the connodal curve in the neighbourhood of the point
K is at first approximation three times as great as that of the spinodal.

3
Ryp.=5 b [@r—8%y =8¢'—x)] . . . . . (10)

-R'cann.z'z“l)x2 [(2}”—"3?‘1)2—-8(}"— x')].:3R’sp, . . (11)

These radii of curvature are here considered as being positive
when Dboth curves turn their convex sides to the v-axis as in the
cases 1—4 of fig. 1 and negative in the cases 5—7.

We may shortly point out here that the corresponding radii of
curvature on the w-surface itself, on account of the strong inclination
of the tangential planc in the neighbourhood of the v-axis, are quite
different and much smaller, though the velation 1:3, of course

1) W, H. Keoson. “Contributions to the knowledge of vay per Waaus's 4-surface.
V. The dependence of the plaitpoint constants on the composition in binary mixtures
with small proportions of one of the components”. Proc. Royal Acad. IV, p. 203—307.
Leiden, Comm. phys. Lab. NO. 75.

2) J. E. Verscuarrert, “Contributions to the knowledge of van per Waars, ¢-surface.
VII. The equation of state and the ?-surface in the immediate neighbourhood of
the critical stale for binary mixtares with a small proportion of one of the com-
ponents”, Proc. Royal Acad. V, p. 321—330, Leiden, Comm. Phys. Lab. NO. 81,
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continues {o exist. They even become zero when the plaitpoint
coincides with the critical point X, so that both curves have then a cusp.

12. The knowiedge of the radius of curvature F,,p,, i of importance
specially because it may be uséd in connection with the formula:

Tig. d.

1
’5.9'#:{‘:@_(27"-3”’)'2"13" e e . (19
1

through which we know the small angle which
the tangent of the plaitpoint forms with the v-axis,
to calculate in a very simple way the differences
in density and volume between the phases of the
plaitpoint /> and the citical point of contact R
at first approximation *).

According to fig. d we have, within the indicated
limit of accuracy:

9% . L
vP ""”R =PQ=PR= V'R'cwm.: _8'1’(27"37") [(27"‘3”)’_8(‘7 ~% )]'”P . (13)

1 9
&= =RQ= 3 w? Rlepnn. = 7 (2\/’—3%')’[(2}"—37:')’—8(7’—2:’)].7;’P .(14)

13. We proceed now to give the formulae relating to the plait-
points phase at a temperature 7, which does not differ much from
the critical temperature 77 of the principal component.

They arve:

4 T—1},

wl’ = (27,—‘ 39:')’-——8(7'-—7{') . Tk (15)

3
v,—8b,= 8—1)1 § (2y'—82")'—4(4y'—3%") (2y'—38x) - 16y' } a, - (16)

Pp7 P {(2y'— 8% —dy'+-2¢' } an
o oy, o . .
By means of (15) we may {ransform (13) and (14), so that they

become:

9 T—1,
Vp —vkz—z—‘ (2y'—3x") ot (18)
and
9 1 ' 11"_'1‘1?
u’l}P—— .’UR: 1_6- (27 ——33‘)2-’0PT e e s » (19)

1) A similar method is given by Kercom at the conctusion of the before-mentioned
paper of VERSCHAFFELT. -



to which we add:

Pp—Pp 1 9 o T—Ty
7 = — E (2y'-3%') (vP-vR) By =g (2y'-3%)? 7, ¢ (20)

14. We shall conclude with giving_some formulae relating to
coexisting phases, where the index one refers to the liquid-,-the index
two to the gas phase. Where the index fails, we may arbitrarily
take the value for the one or for the other coexisting phase; either
because it is indifferent at the degree of approximation used, or
because the formula will equally hold for either state.

T—1,
v, =3b,—3b, [/ —4Tk+[(27'——3x')’—8(7’—%’)]:1: . @)

Ir—1;
0, =80, +80, [/ — 4 (=8 8~ - (22)

\ p_pk T—'Tk
=4 202y -8z . . . . (23
o T + 22y ) (23)

1 .
w,——wl:E—(Zy’—Sn')(v,——vl)a:. e e . (29)

1

1 b4 T—T% 7 , o
5 ) —8h == 5, 3@3; [2y'— 8- 8(y'— )]+
k

1 -
-+ 5 [(Qy'—8x%')>—24 (y'— o) (8y'—38%) + 16 By'—2x¢)]} « . . . (25)

in which formula (23) holds also for non-coexisting phases.

~

SECOND DEMONSTRATING PART.

Transformation of the -surface and preliminary development
mto series

15. We begin with a transformation of the y-surface -by intro-
ducing the following variables:
—3b :
= Y ! H ! = — M ! = ——l—p';'—; . . . (26)
3b, T MRTYy,
which means that we henceforth measure the volume »’ from the
critical volume and with that volume as unit, the temperature in
Ba,
276, MR

T

+

the same way with regard to the critical temperafure 77 =

and the free energy ¢ with MRT} as unit.



If we morcover put:

.’Z.(.l:_’.:_a'_]":x'; }1)2____-___1:7'; kd 1:2,’; _-—Zd’; - (27)

a, - b, a, b,

we find easily from (1), (2) and (3) for the equation of the new
surface: ):

Y =~ (14¢) log 3D, (b4 ) - -1—%:7 + -+t falog & - (1~2) log (1-2)}, (28)

“where

9 9 9
u,,':—8—+Zx'.v~—8—(2x'—).')a:’ e s (29

2 2 1
b=s— ey etz @Y=, . . . . (60)

further : ]
oy MRT}, oy 8 v

= — = — = — P, —. 31
4 ov 3b, O 3Pk 3y 61

16. For investigations in the neighbourhood of the sides it is
desirable to develop the expression for ¢’ so far as possible according
to the powers of x. We write therefore:

¢ =) alged g F e+ na ... .. (32)

where in finite form ?)

, 9
fo = — (1) og b, @430 — g - (33)
g =ty [ 20 _1> L (34)
A = 5180 i) e e e e
o a[et Y=g 17 9@
% = (144 [(2—{-30’)"’ 518y 2] §(I+v) 32)

1) If we wanted to consider @, as funclion of the temperature, the simplest way
of doing this would be by wriling the second term of the second member:
[ ! ¢
Gltett E,"t * - ) The formula T;= Sa__
14w 270, MR
Lold unmodified for the eritical lemperature of the principal component. provided
we take for @) the value it has at that critical temperature. With Craustus’ hypothesis
that a. is inversely proportionate to I, we should get e =—1; s:n=-}1. Also
(29) continues to hold and the modificalions in the developments into series and
in the formulae derived from them would be easy to apply.

%) In this form they may be used for investigations concerning the conditions
at the side of the ¢-surface at temperatures greatly differing from the critical tem-
perature of the principal component, as are made by Keesom: Contribulions to the
knowledge of the ¢-swface of van per Waals. VI The increase of pressure at
condensation of a subslance with small admixtures. Proc. Royal Acad. 1V, p, 659—
668; Leiden, Comm. phys. Lab. NO. 79.

~

would continue to



or, after development into series with respect to the powers of v’:

, 9 33,,9,,:'9”3
xoz—(1+t)lolg2bl—§_ §+§t U—I—-é't'l) —’-8~t'U + B

9 , 63
i Yot ——— 0. ... (36
+ 5 (L0 — v+ (36)

9 3
R+ =D — g — 3| Gr—su)+27¢ [t
9
—|—%[(y’—x’)—}-y't’]v”-g(3y’-—2x’)v"-{—... @Y
9 3
=g (7O T4 @' —2) (b 47+ 20+ 64320+ .(39)

for which last expression we write:

2Ww=06+06t+ov+... . . . . . (39)

Determination of the plaitpoint and classification of the
different possible cases.

17. For caleulating the coordinates v, and z,, of the plaitpoint
we have the following relations: )
0%y 0%
—+t——=0 . . . . . ..
" T 3w 0w (40)
a)lp’ a’lp'
Masa T 5o (41)

3aalpr \ aalpr aal”,n . a,lp, _
S +3m 0v' 0a? + 3mav" O +-Bv_"— 0. . (42

where m represenis ) the tangent of the angle formed by the (v/, @)-
projection of the common tangent of spinodal and connodal curve in
the plaitpoint with the »’'-axis.

If by means of (32), (36) and (37) we introduce in these equations
everywhere the values of the differential quotients at first approxi-
malion, in which, as appears, m, % p and v’ p may be treated as
small quantities of the same order, we find:

m

3
——7@r=8x)=0 . . . . . . (9
P

) D. J. Konrrewes. Ueber Faltenpunkte. Wiener Silzungsherichte, Bd. 98,
Abt. If, (1889), p. 1171,
?) See L. ¢. p. 1163.
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—I(Q}"——Sx')1ll,+Zt'—}-——(y’—x’).ul)_—_o N ]
3 a7 27 27 27

SRy —w)m— gl vy ——-(37'—-27:').’01):0, (45)

a:’P 2 4

from which it is easy to deduce:

3

:Z(27'—3x’)wP B (- 1))

4
p — t,. . . . (47
PT @y —8x)y— 8(y—x) 7

vy :—;— [2y'—8x)*—4(4y'—3x) (2y'—3x)+16yJe,, . . (48)

The formulae (12), (15) and (16) of the first descriptive part of this
paper may be derived from these formulae by means of the reverse
transformation into the original y-surface with the aid of the formulae
(26). Applying equation (31) we may also derive formula @7). In
the course of this we get first at formula (23), which 1s given at the
end of the descriptive part as serving also for the calculation for
coexisting phases. The last statement might be objected to, hecause
for those phases not »’ but v’ is a quantity of the same order as

!

C o 0
2z and ¢’; but this objection loses its force when we observe that in 63,
no term occurs with »’? alone.

18. From these formulae (46), (47) and (48) follows now imme-
diately the classification of the plaitpoinis according to the eight cases
and all the particularities of the corresponding graphical representation,
as described in § 2—9. It is only necessary to say a few words
‘about the construction of the cubic border curve.

27 —3%) — 4(4y—3x%) 2y —38%) - 16y =0. . . (49)

A closer examination of this equation shows, namely, that the
curve possesses a double point, i.e. the point at infinity of the straight
line 2y —3»'=0. A simple parameier representation is therefore
possible and it is really obtained by putting

2y—8x'=s . . . . . . . . (50)
from which follows: )
s—4s(s+2y)+ 16y =0 . . . . . (5]
hence: .
_$(s—4)  ,  —Bs'+8s
TBe—2 ' T 12(6—9

(52)
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The points of the left-side branch are then given by the values
of s, between --o and 2, those of the right-side hranch by the
others. -

For s=2 we get the two infinite branches belonging to the

asymptote : -
2¢—84=2 . . . . . . . . (39
19. Nor do we meet with any difficulties in the calculation of
the breadth-relations of the regions for very large values of ¥ men-
tioned in § 10.
For the cubic curve.we may put:
Su' =2y +kyY . . . . . . (54
through which its equation passes into:
(—B +8R VY +16—4B =0 . . . . (55
from which appears that for very large values of y’ we find
—212, 0 and 42y 2 for k. We get therefore for the lefiside
branch of the cubic curve approximately:
2

2 t
x':; '——3—V2.Vy - e o .. (56)

and for that on the right-side:
2 2
x’:?y’-}-—?—,— va.vy . . . o o L (87)

while of course the middle branch with asymptote corresponds
with £=0. For this branch we have:
2 2

! '—'_ ,_—'—' - . - . . - . .

In a similar way we find for the parabolic border curve:
2 2
n’:—g—-y’:l: Y Ve.vy. . . . . . . (89

Taking this into consideralion we may equate the breadth of the

L

2 §
yellow region at infinity to r B—V'3)V'2.vy’, that of the green
2 2 '
one to -51/6.1/ Y/, that of the bluc ome to 3 that of the purple

2 2
one again to ?VG.Vy’ and that of the red one to —5—(3——V3)V2.\/‘y’

from which the relafions of equation (9) easily follow, while
3 —1=0.732.
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The spinodal curre.

20. The equation of the spinodal curve is found by‘elimination
of m from (40) and (41). We must, however, take into account,
when writing these two equations, that »” along the spinodal curve
must be considered to be of the order V/a, so that the terms with
v’* must also be taken into consideration.

We get then: >

1___(2«/_3;;)——0 N (1)
Tsp.
and

3 ., . 9 27, 9 ,
_I(Zy—Sx)m—}-—Zt—}—Evsp.-{—-é-(y——x)msp,::0 . (61)

from which follows for the cquation of the spinodal curve:
2 1 ! ' ' i 4 '
Uy T g [((2Y'—3%)* — 8 (y'—=)] wsp. + —3—t =0 . . (69

This is, however, its equation on the ’-surface. In order to
know it on the original ¢-surface, we must {ransform it with the
aid of (26) into
(vsp. — 8b,)* — 8b* [(2y' — 8x'y* — 8 (' — %) @y + 120, ¢ = 0. . (63)

For that of the circle:

(v—38b,)* + (w—R—0)* = R, (d small)
we may wrile with the same approximation:
(v—3b) — 2Re + 2RG =10, '
from which we may immediafely derive the expression (10) for the
radius of curvature of the (v, &) projection of the spinodal curve.

The two first conmodal relations. Lyuation of the connodal curve.

21. We shall now take 2, (#,v)) and P, (e,",), for which
v, >, as denoting two Loncspondmg connodes.
We put then:

V=" — Y, ="y e, =" — 8y e, Sy L (U4)
hence:

" 1 1, 1 . &y

v T_,"' ( ‘1‘” ) n= E (v 2"'”'1); @l = T?:- ('"1+"”'2); 5= o , ; (6‘))

'

where therefore (@7, »") indicates a point halfway between tlxc {wo
connodes and § denoles the tangent of the angle which the projection
on the (2, @)-surtace of the join of the connodes forms with the
v'-axis.
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It is then easy to anticipale, and it is confirmed by the caleula-
f1ons, ‘that all these quantilies v, 2" and § with the exception of 7,
are of the same order with each other and with #/; on the contrary
not n but %* is of this same order.

22. Taking this into consideration the first connodal relation:

oy, Oy,
3T - (86)

yields at first approximation:

2 1

hod 3 ! ! 1t "o 3 ! [} 1
log (&"-+81) = - (2/~8x) (o"-) = log (o"~&0) - (@4'=8+) (") . (67)

or also, subtracting on either side log &":

log ( )— — 2y —8%) 1 = log ( §1’1) . . (68)
§

or, as > is a small quantity of the order of 7, we get after deve-

lopment info series and division by 7
3
§= I(Zy'—&c’) Y (119}

in which we shortly point out that this formula passes into formula
(46) in the plaitpoint, and further that it leads immediaiely to for-
mula (24) of the descriptive part.

In the same way the second ) connodal relation:

. _ L

d,  Ov, ' i
yields at approximation:
3 38 B (o
et ) ) — @Y —3) ()
9 ! ! " [/ G 3 3 4 9 ! " 9 4 3
o (=) @) o = — e fp =) 1 ) —

3 9
v (2y'—3x') (.'v"———§11)—|——é— (Y—x) @"—9") 2", . . . . . . (1))
or, after reduction and division by %:

1) We must here have recourse to the terms of the order £ or %, as all those of
lower order cancel each other. For the sake of clearness we have kept (o 1)
and also (#"' — 7)) together, though it is evident, that we may write e.g. for (2" - )3
at once 73 on account of the difference in order of #" and 1.
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9 9 3
Sl g =g @) EL ) ' =0, . . (1)

from which follows in connection with (69):
7»— 2y —3x) =8 (y'—x)]&"+ 4¢'=0. . . . (78)

23. This formula yields al once the radins of cuvrvature of the
(v, #)-projection of the connodal curve. We need only observe that
according to definition:

Voonn, = v" = Ny Feomm, = a' £ §71; L (74)
so at first approaimation:

Vionn, — 3[’1

30

Substitution of these last relations in (73) now yields immediately the
equation of {the connodal curve and in exactly the same way as for
the spinodal curve we find from it the value of the radius of cur-
vatire Roonn given in formula (11). A further explanation of the way
in which the knowledge of this value leads to the formulae (13) and
and (14) need not be given here, nor need we explain the derivation
of the formulae (18) and (19), (21) and (22).

But the derivation of formula (20) will detain us for a moment:
we requive, namely, for 1t a more accurate expression for p than
that given in formula (23). If we thercfore develop (31) as far as
needful for the purpose, we find ):

' "
nN= £ Veom. = = Yy ¥ = Feonne e 2 0 (75)

1

— 8 3 3 ! 9 U 3 ) ' 3 t 9 ! N, (v
p=—gp|—g 3¢ +ptY — G- #) o (y=x)v'e ), (76)
or:

p—p,
—— =4t — 6y + 22y 8% — 12 (Y=Y e, . (TT)
Py
thence:
Pp—lp e Lo ot VT
o —=-06(, - vR) +22y-3%) (), - ) 12 (y'-%') (v'p - 1'R).v1,,(78)

for, with regard to the last term, the difference of wp and &y, is
slight compared to that between »'f, and »'p.

9
1) It might appear as if {¢'® ought also to he mserled in the followmng ex-

pression, but it is easy to sce (hat this lerm leads to a small quantily of higher
order than those that will occur m the final 1esult.



2462)

It is now easy to find:.

f

-

1 ! 3 I
Ty Bp= o m ¢, — v’R)::—S— 2y —3)w, (v'P — v'R) y - (79)

either by paying attention to the fact that we have in Fig. d, § 12
(see the first descriptive part), if applied to the (v’, z)-diagram, with a
sufficient degree of approximation: -

1 1 1 -
RQ:PQ.thPQ:PQ.tg?uz—2—.PQ.tg;L=—2~.PQ.m,

or by application of the formulae (13) and (14), observing that-
uP—'vR=3b1 (', —

v'R).
This yields by substitution in (78):

p]’—pR_/_ e 3 ' N ' ] | y
(= St @' =812, [, =) (80)
k

or finally substituting for ¢’ its value from (47)
p_’) - pR
Py

~

———<2v—3v Ya, (81)

8 , .
= (2y'-3x)a, (' )—v ) 2, =)

from which we immediately derive formula (20), applying (18).

The third connodal relation.

24, We have now obtained the principal formulae. For the sake
of completeness, however, we shall treat here also the third connodal
relation, the more so as this leads to a new determination of the
formulae (47) and (48), which puts the former to the test.

This third relation reads:

awz ! aq"i — alp,l ! al”'l
Y, — S —”zat—lpl—ml-az—vla—v,:- (82)
oy’ qu’ ) e -
We first transform ¢'—e¢ — — o' — | with the aid of (32). It proves

o
to be necessary to lkeep all terms up to the order # or 5. So we
find :

L AL O, O 0,
e R T T .. B (,(,+v a-) . (83)
From this follows: .
l’ al’ 3 __. r " r 9 9 1 1t
Y-z, =— 0.1,' vas 3 == (1) (" )~ (1) log2b,- -2 ¢ (n’+2v n) +
9

+Itn“———(u +4v”71‘)+ 11 +— (@7 —38%) 27"t J(n+ ") (¢ "+s’1) —

—-~(/ o +2v”n)('”+§7z)+-~(3}'-2/)'1° (4207 0)-20,” (84
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If we equate this to the corresponding expression for
alp'] Btp
e 0w, s o',

which is obfained bv changing % into —-n, we get, dividing by #:

!
Pv,—

95U S e o g o (BB Bl
+§<27'—3x')r"§—9(~/—u')gnﬂ—ls (=)o +
v
-{—-4—(37’——2;:)71’ W —4dg"§—4do, =0, . . . . . (89)
At first approximation this, yields:
§= 2 @r—s0)a,

This relation is, however, identical with the relation (69) which is
derived from the first connodal relation. So we cannot draw any
further conclusion from equation (85) without bringing it into con-
nection with the first connodal relation; but for this it is required
to introduce a further approximation for the latter.

Second approzimation of the first connodal relation.
25. TFrom the first connodal relation in connection with the equation

oy’ . . .

—aip‘; = 14+¢'+Q ) bog e+, 4+ 232+ ... . . . (86)
the following relation may casily be dervived, if we take into account
the terms up to the order ¥ or %*:

] +§:1 .
o
(L+2) loy ——- — 5 (@' — B P— By (¢ =)oy — - (By' —2ut) 0" +
L
1= j :
+ 40,8y + 4o, =0 . . . . . 0 L L L 0 L. L (8]
Within the same order of approximation we have liowever:
tn
1 )
\ T 2§n gy
log ——— = =
1_ §_7_] B
a"

In the sceond term of the second member of this equation, however,
we may safely make use of the fivst approximation furnished by
equation (69). Taking this into account (87) passes afler multiplication
with & and division by % wmto.
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hed 9 ” 3 AN/ 1 atl 3! ! 1" ”
2§ - 2§t 4+ ~( 2y — 3y — ?(27'~3x Yo" ~— 8yl - 9(y' —a' W'

—————(37 Qe + 4o S Ao =0.. . . . . . . . (89

Further veduction of the third connodal relation.

Derivation of equation (25) of the first duscriptive panrt.
26. By addition of (85) and (88) we find:?)

9 27 63
U -t — o o o 0 — ) P — Oy — )"

8
3
+_2—(2y'—3x)u"=+ [(2y'—3x)' 4 16 By —2)ofa” = 0. . . (89)

When we add to this relation (72), which is deduced from the
second connodal relation, after having multiplied it with ¢", we can
divide by %' and we get:

9 9 63 9
T S 2.9 —[(2y'-3x)* L 16(8v'-2:\ " =0 . (90
5 ¢ 1 v 201] (Y'-2)5 4+ 32[( Y'-8%')* + 16(3y'-2x) ] 0 (90)

Making use of (69) we may solve the guantity v" from this equation :

7 1
v =2 o o - [@y'-8x)-24(2y -8x) () + 16 (B7'-22)] ", (O,

or finally with the aid of (73):

18 7
vim— ot o (2 — ) — 8 (Y—)] +

5 [RF — 34 — 2427 — 3¥) (f — ) + 16 By — 20| . (99)

from which equation (25) follows immediately with the aid of (65)
and (26).

-

In this way we have found the starting-point of the curve in the
(v, x)-diagram described by the point halfway between ithe points
which represent coexisting phases. The tangent in that starling point
also is now known. -

) Remarkable is the disappearance of the terms derived from s, x2, which makes

()] b,
also » and ¢, 1. e. &—" and f disappear from the result. We have tested the truth
1 1

of this in different ways.
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A new determination of the plaitpoint, independent
of the preceding one.

27. It is now casy to obtain such a determination with the aid
of (73) and (91). For in the plaitpoint we have:
=0 ; a"=uap ; V' =1'p.

From (73) follows immediately (47); from (91):
1
vp =2t 4 3 [(2y'—82)* —24 (29'—38x') (Y —=')+16 By —2x)]ap; . (93)

from which in connection with (47) we find again (48).

Physics. — “Some remarkable phenomena, concerning the eleciric
circuit i electrolytes”. By Mr. A. H. Sirks. (Communicated
by Prof. H. A. LogrenTz).

On etching of metal-alloys by means of the electric current, as
communicated in the proceedings of the meeting of September 27,
1902, I met with a great difficulty. In some cases the hydrogen
developed at the kathode was very troublesome, namely when, instead
of escaping mmmediately it divided itself in small bubbles through the
liquid and stuck to the object to be etched used as anode. This
obstacle was overcome by surrounding the kathode with fine brass-gauze,
so that the gasbubbles were compelled to escape directly in this case.
The gauze was hung up apart, consequently there was no contact,
whatever, with one of the electrodes. The etching being finished,
copper proved to have been precipitated on the wires of the gauze,
which deposit was almost conform to the shape of the electrodes.

This was still more visible at a second etching-experiment with the
same copper-alloy: a small cup was placed under the anode, which
partly hung in it. Again on the gauze a copper-deposit was perceptible,
which showed at the lower side a distinctly designed horizontal
margin, nearly as high as the brim of the cup.

It was to be expected, that copper should precipitate on the gauze,
placed between the electrodes, as the whole apparatus can be con-
sidered as two voltameters, connected in series'). But, why is by this
clectrolysis not the whole side of the gauze, facing the anode, cop-
pered, as is the case with the kathode by any ordinary electrolysis?

To answer this question the experiments were allered somewhat.

1) The anode and the side of the gauze facing it, are the electrodes of one,
the other side of it and the kathode, those of the other voltameter.
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