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1. IL. I11.
Fe 69,94 69,13 69,50
0 29,97 29,60 30,46 -
accompanying mineral 1,2

99,91 99,93 99,96- 1)

Reckoned for :
Hematite DMagnetite

Fe 70 72,41 -
0 30 27,59.
So that my conclusion is that we have not to do with Magnetite but
with Hematite.
The results of my researches are in consequence the following:
Ist. That T have had lo do with Hematite with very obvious
magnetism and a black streak, which in rubbing along the outlines
shows a brown tint (which generally every black sireak does) and
not with a pseudomorphosis from Magnetite to Hematdite.
2rd- That where in literature of this occurrence of Hematile has
been spoken, no analysis has been added, though the magnetism and
the black streak have been observed more than once.
39, Thai it is desirable to convince oneself of the chemical com-
position with cvery “Eisenrose”, whiclh shows these characteristics.

Physics. — “Contributions to the theory of electrons.” 1. By Prof.
H. A. Lorentz.

Simplification of the fundumental equations by the introduction
of mew units.

1. If all quantities are expressed in electromagnetic units, as I
{ I g

have done in former papers, the relations between the volume-density

o of the charge of an electron, the velocity v of its points, the

1) I here by have to mention that first the figure for the oxygen was determined
by reduction in a hydrogen-current und weighing of the water absorbed by CaCl;;
that after that the figure for the iron was determined by dissolving the reduced
mineral in dilute H,SO, and making a titra'ion ot this solution (after reduction,
in a HyS-current and after removing the HyS by boiling in a GO, atmosphere)
with a KMnO,-solution, of which 1 ¢M* corresponded with 8,9 m.G. Fe.

The presence of Ti was shown as follows: the mineral was melted together
with KHSO,, the fused mass’ dissolved in cold waler. This solution together with
H,0, gave the well-known orange colour of TiQ;. Moreover after adding a
little HNQ,, the Ti after having heen hoiled precipitated as white TO,. The
accompanying mineral, which in microscopic examination proved to be adularia,
was removed as much as possible,
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dielectric displacement d» in the aether, the current [ and the magnetic
force h are as follows'):

9'06[):4::[:471’(6—}-91\),
4:10“7'otb—_:-—f), r
where ¢ is the velocity of light in the aether. To these equations we
must add the formula
fo=dacd+4 [v.h]
for the cleciric force, i.e. the force, reckoned per unif charge, which
the aether exerts on a charged element of volume.

The equations take a somewhal more regular form if we express
0, b 1 and f in electrostatic units (preserving the electromagnetic unit
for b) and a further simplification is obtained, if, instead of the units
for charge and magnetic pole that are usually taken as the basis of
the electrostatic and electromagnetic systems, we choose new ones,
V4x times smaller®). Introducing both modifications, we have to
replace -9, d, 1 by :‘/94—_‘ ; 517%1_;’ cﬁl}i;’ f by ev/dm.f, because this
letter must now represent the force acting on the new unit of charge,
and likewise ) by Vix.b.

This leads to the eguations

divd=¢,. . . . . . . . (1)

%%—}—div(gu):(),. e an
f=d40b,. +» + = « « . .. (U

divh=0, . . . . . . .. v
! - 1 1.
rotf=—Il=—@04+0ov), . . . . . V)
6 ¢

1) See my Versuch einer Theorie der electiischen und optischen Erscheinungen
in beweglen Korpern. I shall again suppose that all quantities are continuous
functions of the coordinales, so thal e.g. ihe density p will be regarded as passing
gradually to the value 0, which il has outside an electron. Wilk the exception of the
lellers, the nolations are the same as in Lhe just mentioned trealise. The scalar
product of lwo veclors a and b will be denoled by (a.1), the veclor product by
[r.b]. The axes of coordinates ave supposed to remain ut resl, relatively to
the aether.

%) This change has been warmly advocated by Heavisie. The units I shall
now use aie lhose thal have hoen adopled for e Mathematische Encyclopddie.

41*
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In connexion with the last formula it may be vemarked that b is
the electric force that would act on an immovable charge.
The electric energy per unit-volume is given by
1 -
Wa:?bﬂ, e g a0y

the magnetic energy per unit-volume by
1
IVm:—z—'r)a, e s e e e e e e a (IX)

and Poynmine’s flux of energy by
S=c[0.f]. . .« v v .. (%)

We shall further write U for the total electric and 7' for the
total magnetic energy of a system.

The equations (IV) and (V) suffice for the determination of the
magnetic force 0, as soon as the current [ is given in every point.
W, is then known by (IX) and 7’ follows by integration. In this
sense, every motion of electricity may be said {o be accompanied
by a definite amount of magnetic energy.

I3

Sealar potential and vector-potential.

§ 2. The equations of § 1 apply to every system in which
charged maiter moves through the aether, whether the charge be
confined 1o certam extremely small parts of space (elecirons) or
otherwise distributed. Moreover, the motions may be of any kind ;
the electrons may have a pure translatory motion, or a rotation
at the same time, and we may even suppose their form {o change
in the course of time. For the validity of the formulae il is however
required that cach element of volume whose points move with the
charged matler should preseme its charge, though its form and
dimensions may change. This is expressed by the equation (II) and
it is on this ground that the electric current [, as defined by (III),
(the resultant of the displacemeni-current d and the convection-cur-
rent or) may always be said {o be solenoidally distvibuted, so that

div{=0. i

If now the motion of the charged matler is given, the eleciro-

magnetic field in the aether, within and without that matier, has
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to be determined by means of (I)—(VI), a problem that may be
reduced to equations of the form
1 0%y
) Ay — =3
in which « is a known, and ¥ an unknown function of z,y,2,¢.
Let 6 Dbe any closed surface and » the normal to it, drawn out-
wards.
Then, if the equation (1) holds in the whole space .S, enclosed
by o, we shall have for the/value of ¥ in a point P of this space,
at the time ¢,

1 1 1 1[0y g /1
1];:5 TLa]dS-l— i f ;T’:—a;:l—— [1])]51(7)

Here the first integral extends over the space .S and the second
over the boundary surface 6; » is the distance to P, and the square
brackets serve to indicate the values of the enclosed quantities for

=— . ..o ... ()

do. . . (2)

~

.
the time ¢ — —.
[

Let us now conceive the surface ¢ to recede on all sides to infinite
distance and let the circnmstances be such that the surface-integral
in (2) has the limit 0. Then, ultimately:

1 1 )
1’7 = E f_r— [a] (IS, L (3)

where the infegration must be extended over infinile space.

§ 3. Equations of the form (1) may be deduced from the formulae
O—(VI) in many different ways; they may e.g. be established for
each of the components of » and *.') The solution is however ob-
tained in a simpler form *), if one introduces four auxiliary quantities,
a scalar potential ¢ and the three componenis a,, a,, a. of a vector-
potential a. These” quantities satisfy the equations

1 0%
' - BT
1 *a, 1 1 0%y
By ==ty Aoy~ — L= — g, do,

so that, with the restrictions that are required if (3) is to be true,

we may wrile
1 [l

1) Lomrunrz, La lhéorie dlectromagnétique de Maxwinn et son application aux
corps mouvanls, Arch, néerl. T, 25, p. 476 1892. i

%) See Lnvt Civira, Nuovo Cimento, (4), vol. 6, p. 93 , 1897 ; WincHERT,
Arch, néerl,, (2), T. 5, p. 549, 1900.
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1 1 1 1
My == mf;- I_Q ba,] as Oy = mf-’;- [Q ”?/] (lS, ete.
After having found ¢ and a, we may determine the dielectric

displacement d and the magnetic force § by means of the relations *)
1.
d=——a—gradgp, . - . . . . . @
4
f=rotaZ . . . . « . . . . (5

It is to be remarked that the two potentials are not mutually
independent; they are connected by the equation

1.
diva=—-—e¢. . . . .". . . . (6
¢

/
Theorems corresponding to the principle of p’ALEMBERT
and that of least action.

§ 4. The physicists who have endeavoured, by means of certain
hypotheses on the mecanism of electromagnetic phenomena, to deduce
the fundamental equations from the principles of dynamics, have
encountered considerable difficnlties, and it is best, perhaps, to leave
this cowse, and to adopt the equations (I)—(VII) — or others,
eyuivalent to them as the simplest expression we may find for
the laws of electromagnetism. Nevertheless, even if we prefer this
point of view, it deserves notice that the fundamental equations may
be transformed in such a way that we arrive at theorems of {he
same mathematical form as the general principles of dynamics. This
has Dbeen done cspecially by Asramam in his imporlant paper
“Principien der Dynamik des Elekirons” *). The considerations in
this and the fwo next paragraphs agree with those of Asranay, though
presented in a form differing from his.

We shall consider a system of electrons moving in the infinitely
extended aether, and we shall fix our attention on the different
states of this syvstem, the acther included, that succeed each otherin
the course of time in any electromagnetic phenomenon. From every
one of ihese states we shall pass {o another, differing infinitely little
from it, and which we shall call the »aried state. The. variation
or “virtual change” will consist in infinitely small displacements q of

1) 1 shall write grad » (,gvadient of ") for the veclor whose components
09 0p Op -

e Se e
") Drnupe's Amnalen, 10, p. 105, 1903.




( 613 )

the points of the electrons, accompanied by infinitesimal changes in
the dielectric displacement.

We shall write dd for the difference, in a fixed point of the
aether, between the dielectric displacement before and after the
virtual change, the sign of variation ¢ having a similar meaning
when it precedes other symbols representing the value of some
quantity in a definite point. If il is affixed to a letter representing
a quantity belonging to the system as a whole, such as the total
electric emergy (7, it will simply serve to indicate the difference
beiween these values in the original or real and the varied states.

The variations to be considered are not wholly arbitrary. We
shall limit our choice by supposing in the first place that each
element of volume of an electron preserves its charge during the
displacements q; this is expressed by the relation

do+-dw(@a)=0, . . . . . . . (D
which may be compared to (II).

In the second place we shall suppose the variations of d not to
violate the condition (1).

In virtue of these restvictions the vector

v+ o4
will present a solenoidal distribution. Indeed, we see from (I) that
divdd=do,

and lere we may, according to (7), replace the right-hand member
by — div (¢ 9).

Let us now conceive ¢ and 4> to be chosen for every instant ¢
so that they vary continuously with the time. Then, in order com-
pletely to define the succession of varied states, or what we may
call the yvaried motion” of the system, we shall suppose the varied
positions of the “points of each electron to be reached at the same
instants al which these points oceupy the corresponding original
p'osilions in the real motion; we assume likewise that, in every
point of space, the varied dielectric displacement exists at the same
moments as the original one in the succession of real staies.

By this the varied motion of electricity is entirely determined ;
indeed, since we know the velocity of matter and the rate at which
o changes, we are able to state what has become of the convection-
current, the displacement-curvent, and also of ihe total current .
The first thing we have to do will be {o express ¢l in § and do.
Of course we may be sure beforehand that the distribution of both
the new I and the variation d will be solenoidal. This must neces-
sarily be the case, because we know 1°t. (hat, in the states that
succeed one another in the varied motion, each volume-element of
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an electron relains its charge, and 2vd. that the condition (I) is cou-
tinnally fulfilled.

§ 5. Let us begin by considering oo, This is the variation in
a fixed point of space. Thervefore, if (dv,) is the variaiion for a
definite point of an electron, we Sh’t]l have

O, Oy
(61 = s -0 22 4 g 22 R

As to (dv,), it is easily shown to have the value

d]x
dv,) = -
() = 3
if we understand by q: the rate at which q, changes for a definite
0y

point of an electron. Comparing this io —a?x or qz, the velocity of

change in a fixed point of space, we get
. 0s
(dvz) = Gz + ta 3}; + 9 J \'[:L + Pz a‘lm
These equations, combined with (7), lead us to

dly = d (®, -+ Qs:a):zdm—{—gdv +ndo=
Ox 0:
—J\a‘{’QQa'{‘le“—“{“ 5)1/ ] Ob~ h

S T
a).‘z al‘.z al‘x .
'—9%“5';"—9*17/@"‘9\1:‘6-3‘-bzdw(QQL
or, if we add to the second member the first member of (IT), multi-
plied by qz, afler some fm-lher {ransformation,

02 aq . \
(”:L——a (JDL+Qq1)+O"‘$a + o vy a] + o v- ‘é‘f‘—‘-‘l‘lw(ﬁ)q)"“

0p 0p
—qu‘af—(”h/ aJ‘ Q‘L O~ +<ladw( v) =

d 9
:a—t(dbﬁroqa)—l—-@[@(qu ay8:)] = 5-19 (9 0 — qa 0:)T-

Here we may remark thai the two lasi terms talken {ogether vepre-
seni the first component of the “rotation” of the vector whose com-
ponenis are

o (CI// Bz — Oz l‘z/)v 9 (9: o — Qa z)y @ (% Py — qy )
and that this veclor is precisely the vector-product, muliiplied by
o, of ¢ and v. After having calculaied dfy and dl; in the same way
as dlz, we may combine the resulls in the formula
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0
dl==(d+oq)+roifola-vlf - . . . . ()

What has already been said about ihe solenoidal distribution of
dy is confirmed by this eqnation. The two vecrors represented on the
right hand side both have this property, the first by whal we know
of the vector d> 4+ ¢4, and the second on account of the mathema-
tical form in which it appears.

§ 6. We may next proceed to determine the variation o7 of the
magnetic energy. In doing so we shall start from the assumption
thai the varied motion of electricity involves a definite magnefic
energy '), to be determined as stated at the end of § 1.

The™ formula
P=_ f‘f‘ as
2
leads immediately {o

d‘r-lr :ﬁ[)l (f‘r)x + [)‘7/ d‘"?/ "“— l’): d[):) dS :‘ﬁ[) . dr)) (ZS,

where the integration covers all space. The same will be the case
with the other volume-integrals appearing in the following transform-
alions. If an integration is performed, or if the process of inie-
gration by parts is applied, one obtains integrals over the infinite
surface which we may conceive as the boundary of the field of inte-
gration. These surface-integrals however will he supposed to vanish.

We begin by writing 7o « instead of £, as may be done in virtue
of (5); and we shall next integrate by parvis, keeping in mind fhat,
on account of (V),’

~

1

rot dfy = — dL.
[

/ The resultl s -

d'f’_._f‘(rota dh) (lS——ﬁa rot df)) dS = ﬁa Jgnds, . (9)

or, if we subsltitnic for [ its value (8),

.1 0
(fT-:.T;f(a.—a?;dD-!-Qq )Cls+7f(ﬂ 705)9“ \‘]Dds (10)

Using (4), we may put for the firsi fcrm

1) This assumption only meaus to define the value of 7' we <hall assign to the
wholly fictitious varicd state.

/
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-

14 1.
— o @ {0+ eq)) dS — —[(a . {dd + gq}) dS =

= = fia-tovonas-+ [0 fov-+eaast f(madw {65-+oads. (11)
Now it appears from (9) that

7f(“-§d'°+9f!¥lds- . B ¢ )

is the change the magnetic energy of the system would undergo, if
we gave to the current the change dbd - oq. We shall write d'l for
this variation of the current, and d¢'h, ¢'T for the corresponding-
variations of j and 7' As to d’f, it may be defined as the current
that would exist if the changes represented by q and dd were accom-
plished in unit of time. '

On the other hand, f(b .00)dS is the vaviation of the electric

7

energy U and the last integral in (11) is O, because the vector
6b + o3 is solenoidally distributed. Thus, the first term in (10) becomes

d'
g —}—dU—}—ﬁD eq) dS.

For the last term in that equation we find, integrating by parts,

1 1 1
Tﬁmta.{Q[q.b]})dS:—c—fQ(f).[q.b])clS:: —a—-fg(q [v. 6D dS,
so that finally
)as.

dT_C—lﬂ+dU+f< ib—l——-[u h]

Now, the equation (VII) shows that the last term is precisely ihe
work done, during the displacements q, by the electric forces exerted
by the aether on the clectrons.

Writing dF for this work, we have

dd'T
JE = d (I'— U)—T N (&)
an equation closely corresponding to b’ ALEMBERT’S prineiple in common

dynamics.

§ 7. The motion of the electrons themselves may be determined
by ordinary methods; it will be governed by the electric forces
whose work has been denoted by dfi, together with forces of any
other kind that may come into play. We shall confine ourselves
to those cases in which these latter forces dspend on a potential
energy U,; then the total virtual work of all forces acting on the
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electrons will be dlf— dU,. Morcover we shall ascribe {o the
electrons a cerlain kinetie cnergy 7%, which they have by virtue ot
their mass in the ordinary sense of the word. Should there be no
such “true” mass, we have only {o put 7, =0.

One of the forms that may be given o the variational equation
of motion for a system of material particles is
dd'T,

A —
‘ dt

Jr

11

d7, being the change of 7, if we pass from the real motion to
some varied motion in which the varied positions are reached at
the same moments as the original positions in the real motion, 4.4
the virtual work of the forces, and ¢'7, the increment that would
be acquired by the kinetic energy 7', if variations, eyual lo the
virtual changes of the coordinates, were imparted to the corresponding
velocities (the coordinates themselves being kept constant). For our
system of elecirons
04 = dJE — dU;
hence, if we use for ¢4/ the formula (13),
dd'(r+7r
o+ 1) — U+ vy — LD
We shall finally wmultiply this by «¢ and integrate from ¢, to ¢,.
In case both the displacements 3 and the varialions db vanish at
the limifs, we find
fo

d f (T4 T)— (U-F U dt=0

0.

1] .
This is analogous to the principle of least action.

§ 8. In what precedes there has been question of the vaviations
of the energies 7" and U, taken for the system of electrons together
with the swrrounding aether, which extends to infinite distance.
similar though somewhat less simple results arc oblained, if one
understands by 7" and {7 the magnetic and the eleetric energies, in
so far only as they belong to the space within an immovable closed
surface 0. In what follows it is to be understood that this surface
may have, velatively to the system of clectrons, any position we
like; for simplicity’s sake however we shall suppose that it culs
none of them, so that, in every point of o, the density 9 = 0. As
o the virtnal variations, determined by a4 and do, they need not
at all be confined to the part of the system within the surface. We
shall denote by = the normal io the-surface, drawn towards the
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ontside, and hy 2, p, » {he angles between {his normal and the
positive axes of coordinafes.

If now we vepeat the above calenlations, we have to do with
volume-infegrals confined to the space within g, and every mteommon
by parts will give rise o a surface-integral.

Thus, to the last member of (9) we shall have {o add the term
COS 2y COS , CO% D

Ary Qg Oz do :fla.d‘b],, de

dbm d‘)yy dh-

and the value of (12) will no longer be 4T, hui -
¢S Ay COS {ty COS DV

J7 — 0, Ay 0 do=4d'T ——f[a d'do. (14)
d'{)l? d’()y, (f’f):

The last integral of (11) becomes
cf(grad ¢ frot d'bY) d .S = cﬂrot grad ¢ . d'h) d.S— (:f[gra(l(p .d'h]udo (15)

Herc the first term on the right-hand side is 0, since 7ot grad ¢=0.
The {iransformation of the last part of (10) remaining as it was, as
we have supposed ¢ =0 in all points of the surface, we finally find
for the second member of (1'3) the additional term

J

But, on account of (4),

t

de.

— fa. db], ~{- [a d'0ln 4 ¢ [grad ¢ . d'],

0
- [a.dvln 4 efgrad @ . 0’0}, =
[¢

:[a adt)g:l_{_ la. 9w 4+ e [grad ¢ . ¢'h], =

0
0d'h
- [a . “62"”,[’ c[d. d'l,
We get therefore, instead of (13);
ad'r 0d'h
e DA TN 1
JE=0(T-T) 7 —I—f [a 5 dgl Hn e[, d'b)y
§ 9. The following are some examples of the applications that
may be made of the formulae (13) and (16).
a. Let the virlual changes in the posilion of the elecirons and
in the dielectric displacement be proportional to the rates of change
in the real motion, i.e. let

do (16)

.

qg=sv, dd>=¢Vp,
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¢ Dbeing a constanl infinitely small facior. From these assumptions
it follows at once that
J=¢l, d'h=¢bh.

Now the magnelic energy may be considered as a homogeneous
quadratic function of the components of the current; it will therefore
change in ratio of 1to L - 2¢, if the current becomes (1 - &) '. Thus:
dT'=2¢171.

We may also infer from our assummptions.that the position of the
electrons and the values of d are, in the varied molion at the time
t, what they ave in the real motion at the time ¢ &, so that the
only difference between the two motions is that the one is in advance
of the other by an interval s.

In this way it is seen that

ar au ol 0d'h

d1' —¢ — JU — & —, gy — & —, — — =0,
7R v V=S 0t 4

Substituting these values in the equation (16), we get, after division
by & and multiplication by d¢, denoting by 7 the work done by
the electric forces in the real motion, during the time ¢,

~

dE= —d(T+ U)—cdt | [>.bluds. . . . (17)

This is the equation of energy. The last termn represents the flow
of energy through the surface.

b. Applying (L7) to a single electron, whose motion is a translation
with variable velocity along a straight line, one may calculate the
force with which 1t is acted on by the aether, and which, under
certain simplifying assumptlions, is found to be proportional to the
acceleration and directed oppositely to it. The (uotient of this force,
divided by the acceleration, may appropriately be called the electro-
magnetic mass of the electron.

¢. There will likewise be a force proportional and opposed to
the acceleration,. if the latter is perpendicular to the direction of
motion. In this case however, of which the uniform motion of an
electron in a circle furnishes the simplest example, we must recur
to the equation (16), in order o determine the force. The surface 6 may
be supposed to lic at infinile distance and the virtual displacement
must be taken in the direction of the acceleration. The ratio of the
force and the acceleration may again be called the electromagynetic
mass, though, except for small velocifies, its value is not equal to
that of the corresponding ratio in the case 0.

In both cases the result agrees with whal has been found hy
ABRALAM,
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Ponderomotive action on a system of electrons.

§ 10. A virtual change of & very simple kind is an infinitely
small translation of all the clecirons, combined with what we may
call an equal translation in the same direction of the whole electric
field. Applying to these variations — which we give as well to the
part of the system oulside the surface ¢ as to the part enclosed by
it — the equation (16), one may caleulate the resulting force exerted
by the aether on the electrons within the surface. This force may
be shown {o consist of two parts, the first of which is the force with
which we should have to do, if the surface o were subjected to the
stresses in the aether, whose components have been already determined
by Maxwerrn, whereas the second part is determined by the rate
of change of a certain integral, relating to the space ,S within o.
The latter part will therefore vanish if the state is stationary, and may
be left out of account if, for periodic states, we wish only to know
the mean value of the resulting force, taken for a full period. I
need not here work out the formulae, having formerly deduced the
result in a more direct way. The components of MAXWELL’s stress are

X _——(b - — b0 + ——(‘ P — by — D2?), ete.
(18)
Xy =Y, =10, 4 Db Ty, ete.

and the just mentioned volume-integral is

—l?fe,‘ds,
¢

S, being the flux of energy in the direction %, for which we seek
the resulting force. -
Thus, the resulting force in the direction of @ is given by

d
;,_f da———?’l— €&dS. . . . . . (19

1
The vector —- f €d S is called by Asranan the clectromagnetic
A

momentum.

§ 11. Similar results would be obtained if we chose for the virtual
variation, instead of a translation, an infinilely small rotation about
an axis passing through the origin of coordinates; the equation (16)
would then serve to detcrmine the resulling couple, arising from
all the forces exerted by the aether on the clectvons within the
surface ¢, The moment of this couple may however be calculated
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sn a shorter way, if we start from what we know already about
the forces.

Indeed, in virtue of the formmula (19) and the iwo corresponding
to it, the components of the force acting on an element of volmne
d S may be represenied as follows :

XdaS= ?-‘)-(f-}- a}”’+ aX’)dS - des
o0y ' Oz
0¥, Y, ¥ 1
YdS= ?ﬂ“’_ 5 + = 5 dS — de, - (20)
ZdS = (M‘ 0%y + aad‘) ds - -1— 8. ds
.b z ¢

and these formulae give innnediately for the components of the
couple

f(y/———’Y)dS—‘V[‘(‘/Z,p—&Y,, da-~-«f( y&.—2&,)dS. . (21)

§ 12. Another consequence of the eguations (20), analogous {o
the well known virial-theorem in ordinary kinetic theory, will perhaps
be thought of some interest. In order to find it, we have only to
add the three equations, multiplied by =, y, 2, and to integrate the
result over the space S, within the surface 6. Transforming such

0X . .
terms as f 1vd—* dS by means of partial integration, we find
&

ﬁXa: + Yy + Zz) dS =ﬁX,,.v + I:',,y + Zyz) do —
— f(X_Q 4 Y, + Z)dS — oia ?Z? f(@,z + €y + S:2)dS. . (22)

For stationary states the last term will vanish, so that, if we
s/ubstitute in the term preceding it the values (18),

f(xw + Yy + %) dS = J Koo+ Yo g+ Zo ) do+ T + U,

Particular cases of ponderomotive action.

§ 13. In a large variety of cases, in which the system of electrons
is confined to a space of finile dimensions, the electric and magnetic
intensities in the surrounding field hecome so feeble at great distances
that the surface-integrals in 19) and (21) approach the limit 0, if
the surface # moves lo infinite distance. Moveover, the volume-
integrals will vanish if the stale is sialionary. We then come lo
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the conclusion that the resulting force and the resulting couple are
0 for the whole system. If the system consisis of two paris 4 and 23,
we may express the same thing by saying ihat the total pondero-
motive action on one of these is equal and opposite io the iotal
action on the other. B

Of course this will De equally true if, for a system whose slate
changes periodically, we have only in view the mean ponderomotive
action during a full period. B .

These theorems are useful whenever the phenomena in one of the
parts, say in A, are not well enongh known to permit a direct cal-
culation of the force acting on this part of the system. If the pheno=
mena in B are less complicated, so that we encounter no difficulty
in determining the force or the couple acting on this part, the action
on A will be found at the same time.

We may apply this in the first place to well-known experimeits
on electromagnetic rotations. ‘

Let us consider a cyvlindrical magnet, touched in two points
of its surface by the ends of a conducting wire IV, Let this wire
be the seat of an electromotive force, producing a current that
flows through TV and through pari of the magnet. The ponderomotive
forces acting on the wire are known with certainty and may easily
be deduced from the formula (VII); they produce a couple, tending
to turn-the wire about the axis of the magnet. Without entering into
any speculations concerning the motion of the elecirons in its inlerior,
we may infer that the magnet will be acted on Dy an equal couple
in the opposite direction.

Of comrse this reasoning must be justified by showing that the
surface-integral in (21) is really 0, if it is taken for a surface at
infinite distance. This is veadily seen to Le the case, if we keep in
mind that, at great distances, the magnetic force produced by the
system varies inversely as the third power of the distance, and that
the intensity of the electric field, if it exist at all, will certainly contain
no terms diminishing more slowly than the square of the distance.

§ 14. 1 shall choose as a second example some experiments, lately
made by Wrrenran?') for the purpose of lesting a consequence of
Maxwzrr’s theory that has been admitted by many physicists and is
unavoidable in the theory of electrons, viz. that a ponderable dielec-
tric, which is the seal of a variable dielectric displacement, and
therefore of a displacement-cirrent, when placed in o magnetic

1) Wartenean, Ucher die magnelische Wirkung clektrischer Verschiebung, Physi-
kalische Zeitschr., 4, p. 229, 1903,

\
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field, will be acted on by a similar force as a body carrying a con-
duction-current. In WHITEHEAD’S apparatus two ecylindric metallic
plates, having the same vertical axis P (), formed a condenser,
in which a rapidly alternating electric field was maintained; at
the same time alternating currents were passed through the horizontal
windings of a cirenlar coil, smrounding the condenser; the axis of
the coil, which is at the same time the axis of its magnetic field,
coincided with P @. A sepsitive torsion-balance was suspended by a
wire passing along the axis of the instrument; the ends of the beam
earried each a piece of some solid dielectric, so that these two equal
pieces ‘hung, diametrically opposite each other, in the air-space
between the condenser-plates. The two fields, the electric and the
magnetic, had exactly the same period, being produced by the same
alternate current-machine; besides, the arrangements were such that
there was a phase-difference of a quarter period between the two
fields. Thus, at the instants at which the magnetic force had its
maximum values, the rate of change of the electric field and conse-
quently the intensity of the displacement-current was likewise at its
maximum. Under these circumstances a sensible couple acting on the
dielectric was expected, but no deviation of the beam, attributable
to such a couple, could with certainty be observed.

We may remark in the first place that in WritkHEAD’S formula
for the expected effect, the specific inductive capacity K appears in
the numerator. If this were right, a couple would act on the acther
between the plates itself. According to the theory of electrons, as here
presented, ponderomolive force acts only on the electrons contained
in ponderable bodies, but in no case on the aether. The theory
therefore regards every ponderomotive action as due to the difference
between the properties of the body acted upon and the aether; it
can lead to a formula containing in the numerator K—1, but never
to' one, containing, instead of this factor, the coefficient K itself.

In the second place Wimremsap las overlooked a circumstance by
which the effect he sought for must have been, at least for the greater
part, compensated. The compensation may be shown to be complete
if the properties of the dielectric used differ from those of the aether
to so small exicnt, that quantities which are in this respect of {he
second order of magnitude, i. e. of the ovder (K—1)*, may be neglected.

If this may be done, the ponderomotive action on a ponderable
dielectric, placed between the condenser-plates, may be considered not
io be altered by the presence in the field of a second or third piece
of the same diclectric. Now, the two bodies suspended at the ends of
WarreneaD’s torsion-balance may be laken to have been parts of a

42
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complete dielectric ring, bounded by a surface of revolution with the
axis PQ. Moreover it will be safe to assume that the action on the
two bodies which it was sought to observe, did not depend on their
relative positions with respect to the wires leading to the condenser-
plates, and remained therefore the same, in whatever position the
torsion-balance was turned. If this was the case, the action on
a body that is the n'h part of the ring (being cut out of it by two
planes passing through the axis) must have been the n part of the
couple, acting on the complete ring. Consequently, it will suffice to
show that the effect is O, if the experiment is made with a complete

dielectric ring.

§ 15. For simplicity’s sake we shall suppose the condenser-plates
to be united by a wire W and their alternating electric charges to
be produced by a periodic electromotive force in this wire. As to the
currents in the coil, they may be regarded as due to electromotive
forces of the same period, acting in the windings themselves; indeed,
the action on the dielectrics can only depend on the magnetic field
and not on the way in which it is produced. For this same reason
it is allowable to ascribe to the windings so small a resistance that
they do not carry any appreciable charges.

Then no other but electromagnetic forces will act on the windings
of the coil and these cannot give rise to any couple about the axis
PQ, because such forces arve perpendicular to the elemenis of the
windings. By the theorem of § 13 the couple acting on the torsion-
balance must therefore have been equal and opposite to the moment
of rotation, acting on the condenser-plates and the wire W. It remains
to show that this last moment has been 0.

I shall denote by I the electromotive forces acting in the connecting
wire W, by II those existing in the windings of the coil, and I
shall distinguish by the suffixes 1 and 2 the states arising from these
two causes. Let us indicate by A, the charges of the plates and
the cwrrents in these and the wire W, in so far as they are due to .
I, and let 4, have the same meaning with respect to II; also, let
F, and F, be the electromagnetic fields excited by the two causes.
In each of these fields there will be an electric force d (acting on
charges that are in rest), as well as a magnetic force §j; in virtue of
the first, the field will exert a ponderomotive force on the charges
of the plates and in virtue of the second on the currents, one of
these actions being determined by the first, and the other by the last
term in the general equation (VII). If we denote by the symbol (#, 4)
the couple acting on the plates and the wire, in so_far as it is due
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to a field F and a state A of these bodies, the two actions we shall
have to consider may be represented by
(#1y 4,) and (F,, 4,).

The fivst of these is readily seen to be 0. Indeed, the magnetic
field, produced by the forces II, though modified by the presence of
the dielectric ring, is symmetrical around the axis PQ. Therefore,
if the periphery of the condenser-plates is nowhere interrupted, the
state 4, will consist in circular currents in these plates, without any
electric charge. It is impossible that the field F, should, by its
action on these currents, give rise to a couple, since, whatever be
the nature of this field, each element of the stream-tubes will only
be acted on by a force perpendicular to its length.

In reality the case was somewhat different, each condenser-plate
being cut by a vertical slit. There must have been equal and
opposite charges at the edges of each slit and the field 7, must
Have acted on these charges, in virtue of the electric force existing
in it. These forces may however be supposed to have annulled
each other, because the distance between the charges on the two
edges was very small,

§ 16. The action (F,, 4,) is therefore the only one that remains
to be considered. Now, in the state 4,, the plates of the condenser
were the seat of charges, whose amount was modified by the
influence of the dielectric ring, and whose alternations were accom-
panied by currents in the wire W and in part of the plates them-
selves. In so far as they are currents of conduction, i. e. in so
far as they consist in a motion of electrons, these currents are evi-
dently unclosed. We may decompose the whole system of them into
infinitely thin stream-tubes, the tubes being all thronged together in
the connecting wire, and widening out in the plates, at whose sur-
faces each stream-tube ends in two elements of surface.

Let S be one of the stream-tubes, G the end of it on the outer,
and A that on the inner plate, ¢ the charge in G, — ¢ that in H,

de

1=

dt

the current in the tube in the direction from H towards @, and let

us consider the action (#, 4,) only in so far as it depends on this
current ¢ and on the charges ¢ and —e.

In the first place there will be an electromagnetic force on the
tube S, owing to the current 7. The couple arising from it depends
on the course of the magnetic lines of force in the field F,; it is
most easily found by remarking that its work during a complete

42%
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revolution of .S about the axis P(Q is numerically equal to the product of
= by the number of lines of force that are cut by ,S. These lines
c

are precisely those that are intersected by the surface described by
S in its revolution, a surface which may have different forms, accor-
ding to the form of the wire W, but has at all events for its boun-
daries the circles described by the points G' and H. Let IV be thé
number of these lines, taken positive if the middle one of them passes
upwards along PQ, and let us take as positive directions for the
rotation and for the couple the direction corresponding to the upward
direction. Then, for a full revolution in the positive direction, the

1
work of the couple will be —-—c-z'_N, whence we find for the couple

itself
1

— '2—7—;0- ZN s s & e s+ e e e . (24:)

If this were all, we should indeed come to an effect such as was
expected by WrmirerEAD. We must however keep in mind that there
can never be a variable magnetic field without electric forces. Such
forces, represented in direction and intensity by the vector b, will
exist in the field #,, the lines of electric force being circles around
the axis PQ.

We must therefore add to (24) the couple arising from the action
of the field on™ the charges ¢ and — ¢; its moment may agan be
found by considering the work done in a complete revolution in the
positive direction.

The force on the charge ¢ being ebd, its work is equal to the
product of ¢ by the line-integral of b along the circle described by
(. Similarly, the work of the force acting on the charge — ¢ in H
is the product of — ¢ by the line-integral of d along the circle
described by H, or, what amounts to the same thing, the product
of, 4+ e by the line-integral for this cirele, if it is taken in the
negative direction. Now, if we follow the circle G in the positive
and the circle A in the negative dirvection, we shall have gone along
the whole contour of the surface described by the stream-tube S,
in a direction corresponding {o the positive direction of the magnetic
force. Hence, by a well known theorem, of which the fundamental
equation (V1) is the expression, the sum of the two line-integrals by
which ¢ must be multiplied, will be

e dN

¢ dt'
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and the couple to be added to (24) will be given by

1 , dN
ome  dt
Taking into account (23), we find for the total couple
1 N 1 d(eN)
— N —_— = ——
Swe (‘ T Se  di

Since this is the rate of change.of a periodic guantity, the mean
value will be 0, as aboive asserted.

The above somewhat complicated reasoning has been wused in
order to avoid the difficulties arising in a closer examination of
the phenomena going on in the ponderable dielectrics. The result
may however be verified by making suitable assumptions concerning
these phenomena. It will suffice for our purpose to replace ome of
the dielectric bodies by a single pair of electrons 4 and B, the
first of which is immovable, whereas the second may be displaced
over an infinitely small distance, in a radial direction, by the electric
forces of the field F,. We shall denote by — ¢ and -}- ¢ the charges
of A and B, by r the distance of A to the axis, by s the infinitely
small distance 4 B, and we shall write f, for the vertical component
of the magnetic force in the field F, and D for the value of the
delectric displacement in this field at a distance » from the axis.
We shall take the positive directions as follows: for s outwards, for
b, upwards, and for D along the circular line of electric force in
a direction corresponding to the positive direction of b, i.e. in the
direction of a positive rotation about the axis.

d;
Now, owing to the velocity ESE of the electron B, there will be,

according to the formula (VII), a force
e ds
- T e
acting on this electron along a circle about the axis, and producing

a moment

¢ ds
-—;? bz'&; . . . . . . . . . (24)

This is the couple of which WmteHEAD has sought to prove the
existence. It is however annulled by the moment arising from the
action of the field F, in virtue of its electric force D. For the
particle A this moment is

—erD
and for the particle B it is obtained if we replace —e¢ by ¢,
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taking at the same time the value of »D at the distance r4-s from
the axis.
The algebraic sum of the two moments will therefore e

a -
es E. (’)' D) i
and for this we may write
14 ab; _ "
'—"—; 89 —5;—’ . . . . N . . . (24: )
since, by the equation (VI)
0 1 06, .
-a—;'—(? D)l-—— —;7_6_3_'
For the sum of (24’) and (24’/) we may write
e d(sh)
¢ di

whenee it is immediately seen that its mean value is O for a full
period.

Physics. — Methods and apparatus used in the cryogenic laboratory.
III. Baths of very uniform and constant temperature in the
eryostat (continued). A cryostat of modified form for appa-
ratus of small dimensions. IV. A permanent bath of liquid
nitrogen at ordinary and ot veduced pressure. V. Arvrange-
ment of a BURCKHARDT-WEISS wvacuum-pump for use in the
circulations for low temperatures. Communication N°. 83 (con-
tinued) from the Laboratory at Leiden. By Prof. H. KaMERLINGH
Onngs. (Read February 28, 1903).

III § 6. A cryostat of modified form for apparatus of small
dimensions. If the cross sections of the apparatus that is to be immersed
into the bath are small, vacuum glasses may be profitably used in
the construction of the eryostat. For, vacuum glasses of comparatively
small diameter can then accommodate the stirrer and the temperature
indicator in addition to the measuring apparatus. Plate IV shows a
cryostat of the kind, viz. the one used in the determinations by
Hynpman and myself on the critical state of oxygen.

Obviously the arrangement could be much simpler, as it was not
necessary to waich the liquefied gas streaming from the jet or to use
the generated cold vapour for the cooling and as no particles of dust
from the leads had to be feared, a filter was not required. (Comp. Comm,
51, Sept. ’99 § 2. ¥, p. 12). The principles for obtaining a uniform con-



