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description of the strongly shaded Fraunhofer lines. Close to the
central absorption Iine fhere was also an unmistakable increase of
luminosity (resembling the supposed cmission lines in the solar spec-
team); but this increase ought, withont doubt, to he atiributed to
the most strongly curved rvays being kept together by the tubular
structure of the flame, and not to direct radiation from the flame.
For, the electric light being intercepied, the emission-lines were
scarcely visible in the dark field. And besides, as soon as the flame
was disturbed by blowing upon it, or when it was partially covered
by a diaphragm, the brigh! band, as well as the shading, becane
unsymmetrical with respect to the absorpiion line. Neither Doprprir’s
principle, nor {he influence of pressure on wave-length can “here
have played an appreciable part.

I moreover observed fringe-like maxima and minima in the shadings,
but they showed irregular and so unsteady, that I could not think
of measuring their distances. Nor can there be any question
of photographing this peculiariiy before means have been devised
to keep a structure of sodinm vapour, as described above, steady
for a reasonable fime. Such means are however being prepared.

Imperfect as our present experiment must be, it still serves to
bear out the assertion, that numerous peculiarities of the solm- speelrum
may be explained from anomalous dispersion.

Physics. — “On the emission wnd ahsorption by metuls of rays of
heat of great wave-lenyths.” By H. A. Loreytz.

§ 1. Haeux and Rusuns have recently shown by their measure-
ments of the reflecting power of metals *) that the behavionr of these
bodies towards rays of great wave-lengths (lavger than 8 ;) may be
accounted for, if one applies to the propagation of electric vibvations
the equations that hold for slowly varving currents, and which con-
fain no other physical constant of the meial hut ifs conduetiviiy. Tt
follows from this result that a theory which can give an adeguate idea
of the mechanism of a current of conduaction will also guffice for the
explanation of the absorption of the rays that have been nsed by these
experimenters. A theory of this kind has heen developed by Rivexn *)
and Drepe ). According to their views a mefal contains an immense
mmber of free electrons moving {o and {ro in much the same way
as the moleenles of a gas or as the ions in an clectrolytic solution,

;) Hagex and Ruskxs, Berliner Sitzangsberielite, 1903, p. 269 B’m'i(:hlo‘d. dent-
schen phys. Gesellseh,, 1903, p. 145, ’

9 Rineke, Wied, Arn, Bd. 66, p. 353, 1898,

3 Drnupg, Drude’s Ann, Bd. 1, p. 566, 1900.
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the 'velocity of agitation increasing with the femperature, It is {o be
assnmed that, in this “heat-motion”, every electron travels along a
straight line, until it strikes against a particle of the metal; the path
will therefore be an irregular zigzag-line and, so long as there is
no cause driving the elecirons in a definite direction, an element
of surface will be traversed by equal numbers of electrons, travelling
to opposite sides. Things will be different if the metal is exposed
fo an eleciric force. The motion of the clecirons will still be an
irregular agitation; yet, motions in a definite direction will predo-
minate, and this will show itself in our observations as an “clecirie
current.”

Now we wmay infer from the relation between absorption and
emission thaf is reyunived by Krrcuror’s law, that the mechanism by
which the emission of a body is produced is the same as that to
which it owes its absorbing power. It is therefore natural o expect
that, if we confine ourselves to the case of great wave-lengths, we
shall be able {o explain the emission of a metal by means of the
heal-motion of ils frec electrons, without vecrring to the hypothesis
of “vibrafors” of some kind, produncing waves of definite periods.

In the following pages this idea has been worked out. After having
caleulated the emissive power we shall find that its vatio to the
absorbing power does not depend on the value of those quantifics
by which one metal differs from another. According (o the law of
Kircuunorr, the result may be considered as representing the ratio
between fhe emission and the absorption fov an arbitrarily chosen
body, or as the cmissive power of a perfccth black substance: it
will be found to contain a certain constant quantity, whose physical
meaning will ‘appear from the theory.

§ 2. The ratio of which 1 have just spoken is intimafely connected
with another important physical ¢nantity, viz. the density of the energy
of radiation in a space enclosed by perfectly black walls, which arve
kept al a uniform absolute temperature 7. It the electromagnetic
molions of which the aether in snch a space is the seat, are decom-
posed into rays travelling in all directions, and each of which has
a definile wave-length, the energy per unit volume, in so far as
it belongs 1o rays with wave-lengths between 2 and 2 - 2, may
be represented by

, 7, T)d,
I being a function which many physicists have tried to determine.
Borwzarany and “Wikex have shown by thermodynamical reasoning
that the above expression may be writien
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where f(2 1) is a function of the product 27 Afterwards Pranck ?)
hivs found for (1) the form
8aeh 1 ) .
T T )
elef— 1

Ilere ¢ is the velocity of light in acther and 4 and X are univer-
sal constants.

In the theory of Praxck every ponderable body is supposed to
contain a great many electromagnetic vibrators, or, as Praxck calls
them, “resonators”, each of which has its own period of frce vibra-
tion, and which exchange encrgy with the aether as well as with
the molecules or atoms of ponderable matter. The conditions of
statistical equilibrinm between the resonators and the aether may be
thoroughly investigated by means of the equations of the electro-
magnefic field. As to the partition of energy between the vibrations
of the resonators and the molecular motions in the body, Praxck has
not endeavoured to give an idea of the processes by which it takes
place. He has used other modes of reasoning, of which I shall only
mention one, which is to be found in his later papers on the subject and
which consists in the determination of that distribution of encrgy that
is to be considered as the most probable. I shall not here discuss the way.
in which the notion of probability is introduced in PLaNck’s theory
and which is not the only one that may be chosen. It will su'fice
to mention an assumption that is made about the quantities of energy
that may be gained or lost by the resonators. These quantities are
supposed to be made up of a ceriain number of finife portions,
whose amount is fixed for every resonator; according to PrLanck, the
energy that is stored up in a resonator cannot increase or diminish
hy gradnal changes, but only by whole “units of energy”, as we may
call the portions we have just spoken of. Besides, Praxck has found
it necessary to ascribe to these units a magnitude depending on the
frequency 7 of the frec vibrations of the resonator, the magnitude

FATYdL. o . . . ... ()

Y/
being represented LY —”—L,,
2

. : , .3,
As to the constant £, it has a very simple physical meaning; —2—1: 7
is the mean kinetic energy of the molecule of a gas at the tempe-
rature 7'
1) Puanck, Drude’s Ann,, Bd, 1, p. 69, 1900; Bd. 4, p.p. 553 and 564, 1904,
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It appears from the above remarks that the hypothesis regarding
the finite “units of enecrgy”, which has led to the introduction of the
constant %, is an essential part of the theory ; also thal the question
as 10 the mechanism by which the heat of a body produces electro-
magnelic vibrations in the aether is still left open. Nevertheless, the
results of PraNck are most remarkable. His formula represents very
exactly the energy of the radiations for all values of the wave-lengihs,
whereas the following considevations are from the outset confined {o
long waves. We may at best expect to deduce from them the
form which the function in (1) takes for this extreme case.

§ 3. Since, if we frust to Kircngorr’s law, the ratio between the
emission and the absorption must bhe regarded as independent of the
dimensions and the position of the body considered, we may simplify
the problem by an appropriate choice of circumstances. 1 shall
iherefore consider a plate with parallel plane surfaces and I shall
suppose its {hickness A to be so small that the absorption may be
reckoned proportional to it and that the energy emiited by the pos-
ferior layers may be supposed to pass through the plate without any
sensible absorption. I shall also confine myself to the absorption of
perpendicularly incident rays and to the emission in directions making
infinitely small angles with the normal.

Let 6 be the conduectivity of the metal, i.e. the constant ratio
between the electric current and the electric force, these latter quan-
lities being expressed in the modified electrostatic units I have lately
introduced. ') Then the absorbing power of the plate, the coefticient
by which we must multiply the energy of normal incident rays, in
order to get the absorbed energy, is given by »

| A:?A.. )

Here we shall substitute for o the value furnished by Drepw’s
lheor) Let the metal contain different kinds of free electrons, which
we may distinguish as the 1st, the 2"d, the 3 kind, ctc., and let
us supposc that all electrons of one and the same kind have equal
charges, eyual velocities of heat-motion, or, as we may say, “molecular”
velocities, and travel over paths of equal mean length between two
successive cncounters with particles of the metal.

We shall write ¢, e,, .... for the charges of the different kinds
of clectrons, u,, u,, ... for the mean molecular velocities, /7, I,

) Lonnyrz, Proceedings Acad. of Science, Amslerdam, Vol. 11, p. GOS8, 1903,

?) See § 12 below. In electromagnetic unils the formula becomes

A =4dnech.
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for the mean lengths of the f{ree paths, .V,, N, ... for the number

of electrons of the several kinds, contained in unit of volume. We

shall finally suppose, as Durpr has done, that for every kind of

clectrons, the mean kinetic energy of one of these particles is egual

fo that of a molecule of a gas at the same temperature; We may

represent it by « 7, if 7" is the absolute temperature, and « a constant.
In these notations Drube's value is?) i

1
o= o O Nl e N e (8

so that (3) becomes

¥

(e N lLiw +e*N,Lu +...)040. . . (5

dacl

It is to be remarked that the formula (4) has been obiained in the
supposition that the electric force remains constani, or at least that
it keeps its direction and magnitude during an interval of time in
which an electron has undergone a large number of collisions against
particles of the metal. The results of Haerx and Ruskns are therefore
favorable to the view that even {he period of vibration of the rays
is very large in comparison with the {ime between two succeeding
impacts. Part of the following calculations are based on this assumption.

§ 4. We have now {o examine the emission by the plate. Tt
follows from the fundamental eynations of the theory of electrons, that
every change, whether in direction or in magnitude, of the velocity
of an eleciron produces an eclectromagnetic disturbance travelling
outwards in the surrounding acther. Hence, il will be af the instants
of the collisions that the clectrons become centres of radiation. We
shall calenlate the amount of energy, radiated in this way, in so far
as it is emitled across a definite part o of the front surface of the
plate: this part of the emission is due to the electrons .confained in
a volume ol of the metal.

Let () be a point within the area w, () the normal in this point,
drawn fowards the side of the aether, and 7 a point on this line,
at a distance 2 from (), which is very large in comparison with the
dimensions of w. In this point /7 we place an element of smrface o',
perpendicular o () omr problem will be to caleulaie the energy
radiated across this clement. T choose () as ovigin of coordinates and
()P as the axis of z. The components of the veloeity of an cleetron
will be denofed by u,, u,, u.. '

1) Druor, Loe., p. 576, This formula does nol change by the introdnetion of our
new unils.
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Now, if an electron with charge e, is in O at the time #, and has

. . du, duy dug .
at that instant the aceelerations 0 76‘-, 0 it will produce at the
- ( { [4

. . 7‘ . . .
point [’, at the time ¢ + —, a dielectric displacement, whose com-
[

ponenis are ')
e du, e duy
T dacy dt T dmetr dt
On account of the great length of OF, these expressions may also
he applied to an electron situated, not in ¢ but in any other point
of the part of the plate corresponding to the area w. The whole
dielectric displacement in 2 in the direction of ¢ (it is only this
component that will be considered in the next paragraphs) at the

0. . . . . ()

"
time ¢ + — will therefore he
¢
1 (lllt
= ——Xe—, . . . . . . (7
b, dacty ¢ dt @)

if the sum is extended to all clectrons present in the volume wh
at the time ¢
There will also he a magnetic force of the same numerical value,
and hy Porsmne’s theorem a flow of energy across the element o,
in the direction from the plate towards /2. The amount of this flow
per unit of time is given by
edt.0 o 0 0 0 o oL (8)

§ 5. 1t will be necessary for our purpose fo (ld(’Olll[)OSGlhO whole
emission into vays of different wave-lengths and to examine the part
of (8) corresponding to the rays that have their wave-lengths within
certain limits. This may be done by means of Rovmne's series.

Let us consider a revy lony time, extending from ¢=0 o ¢ = .
Duving this interval the value of », at the point /7 will continually
‘change in a very jrregular way ; it may however in every case bhe
expanded in the series

m=e gt

W= X apsin—, . . . .« . . (9
m=1 )

whosc coefficients are given by

=

2 st
u,,,:?;Jsinm() bt .o . o o . (10)

K}

U

2184

1) The prool ol this will be found in one of the next parls of my “Conlribu-
lions lo the theory of eleclrons.”
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Now, if the plate is kept at a constant temperature, the radiation
will also be stationary and b,* may be replaced by its mean value

—-

3
—_ 1
bll" == Efbx“ d& B
0

during the time &. Substituting the value (9), we get integrals of
two different kinds, some containing the square' of a sine, and others
the product of two sines. The integrals of the second kind will
disappear, and

g
i’mm i 1 9 -
$in? ——— it = —
e T

[

so that
—_— Im=w
==t . . . . ... 1D
2m=l

As to the frequency of the terms in (9), it is given by

mar 12
= (12)

it will therefore increase hy cqual differences re if we give tom its
1

successive values.
By choosing for & a value sufficiently large, we may make this

14 . .
step 3 as small as we like, so that ultimately, even between two valucs

of the frequency » and n 4 dn, which are in a physical sensc
mfinitely near each other, there will be a certain number of values
of (12) and of corresponding terms m the series (11). The number

of these terms will be ;(Z'l’ henee, if we suppose @, , or

5

2
Gy = ——f&iu wt b dee oo o o0 (1)
&

0
to have the same value for each term of this group, the corresponding
part of (11) will be

<
2
— ® dn.
2

Substituting this for bd,* in (8), we get for the radiation across
o’, due {0 the rays with frequencies bhetween n and n - dn,

9
S R )
-
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§ 6. We have now to calculale the coefficient @, by means of
(13). After having substituted in the integral the value (7), we may
still take for its limits O and ¥, provided we reckon the time from

. ~ . 3 7' i . »
an instant, preceding by the interval — the moment from which it
¢

has becn reckoned till now. Thus:
<

1 < . du,
Wy = — CPRT = efsm nt . T dt |,
0

or, after integration by parts, since sinnf vanishes at the limits,

7 -
Uy == m 2 [efws nt . Uy dt]- . . N . (15)
0

The sum in these expressions relates to all the electrons in the
part oA of the plate and it is by reason of the immense number
of these particles that a definite value may be assigned to a’s.

We shall begin by determining «*, and the amount of the radiation
in the supposition that there are only free electrons of one kind (§ 3).
We shall write ¢ = NwA for their number, e for the charge of
cach of them, and we shall further simplify the problem by supposing
that the molecular velocity w, the same for all the electrons, is not
altered by the collisions and that all the paths between two successive
impacts have exactly the same length /. Then, the time
\ l

T =

u

will also have a definite length.

§ 7. Let ¢,¢,1,... be a series of instants, between O and &, at
intervals * from each other. Then it is clear that, if we fix our
jattention on the positions of a single electron at these instants, we
shall have one point on each of the sides of the zigzag-line described
by this particle.

Now we may in the first place determine the integral in (15) for
the lapse of time during which an electron travels over the side of
the zigzag-line on which it is found at the time #. As the length

. ., 2w
v of this interval is much shorter than the period — of the factor
n

cos nt, we may write for the integral
oSN TUpe + « « v o . . . (16)
It is ‘clear that we shall obtain the sum in (15), for the ¢ electrons,

v
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if, after having multiplied (16) by e, we perform the two summations,
indicated in the formula

~N
ner -
! Sleosnt, w0 . o (A7)

2t 9 —

We have in the first place to {ake the sum of all the values
of w, for the system of elecirons, at a particular instant £, and
then to add together all the results obtained in this way for the
instants ¢, ¢,, etc.

Gy ==

§ 8. If we wish to find = u, for a given time, we must keep_
in mind that the velocities v of the electrons have at that instant
very different divections. We may represent all these velocities by
veclors drawn from a fixed point C. The ends D of all these vectors
will lie on a sphere with radive u, and if we let fall from each of
these points a perpendicular D D' on the diameter of this sphere
that is parallel to O X, the distances of the projections from C will
give the values of wu,. The sum of all these values may therefore
be represented by

2w, =4q§, ;
if & is the positive or negative distance at which the cenire of gravity
of the points I, considered as equal to each other, is situated from
the centre (.

Of course, on account of the large number of the f)oints, this
distance will Dbe _very much smaller than the radius «, and, if we
repeat the construction of the diagram of velocities for each of the
instants ¢, ¢,..., the small value that is found for § will be positive
in one case and negative in another. It is to be remarked in this
respect that there is no connexion at all between the values of §,
which we shall find for two succeeding instants in the sevies ¢,,¢, .. .
Indeed, between any two such instants, every electron will have
undergone a collision, and it may safely be assumed that, whatever
be the direction of motion of an electron before the impact, all
dirvections will be equally probable after the impact*).

Now, in order to determine a®,, we have to take the square of
the sum denoted by }LS‘ in the formula (17). This square consists of

terms of two kinds, some having the form
ol b 2 o A2 anel 2
vos*nt, [ u'L]%__.q os’nt, & . . . . . (18)

) This is easily shown, as has heen done by Maxwril in his fivst paper on the
kinetic theory of gases, if both the elecirons and the particles of the metal are sup-
posed to be perfectly elastic spheres.
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and others the form
2 cosnt, cosnt, [Zu ] " = uz]tk' = 2 ¢* cos nt, cos nt,, §k §k,.. 19

As has already been said, the time 9 contains a very large number
., 2 . - .
of periods — . A certain value of cosnf, once occurring in the series
n

cos nt,, cosni,, cosnty, ... may therefore be supposed to repeat itself
many times. Also, one and the same value of the product cos n t;, cos n tx
may be said to occur for many different values of % and %.
Such a product will therefore bave to be multiplied by very different
expressions of the form & &y, and, since the different values of § are
mutually independent, the number of cases in which §; and § have
“opposite signs will be equal to that in which they have the same
sign. It appears in this way that the terms (19) will cancel each
other in the sum. It is only the terms of the form (18) that remain,
and we shall have
n262t2 2
fn:mg;ﬁf[cosgntk.g‘;c] C .. (20
§ 9. Here we may begin by taking together those terms in which
cosni, has one and the same value. Let the number of these be
Q. Then, we have to repeat @ times the construction of the diagram
of velocities, and it may be asked in how many of these @ cases
§ will lie between given limits § and § + 4§, or, what amounis to
the same thing, what is the probability for § falling between these limits.
This qnestion may be reduced to a simpler problem. A series of
planes, perpendicular to O X and at equal distances from one another,
will divide the spherical surface into equal parts. Thevefore, instead
of distributing the points ) on the surface in an irregular, arbitrarily
chosen manner, we may as well immediately distribute the points
D' at random over the diammeter, without giving any preference
to one part of the line over another. The probability in question is
thus found to be?)

3152

1 g— T2
Pdg= - g
dg u[/gﬂg d& . . . . . . @D

Hence, among the @ terms in the sum, occurring in (20), for
which the factor cos®nf; has equal values, there will be QPd§
terms, which may be said {o have the same &. Together, they will
contribute to the sum the amount

1) See §§ 13—15.

46
Proceedings Royal Acad. Amsterdam. Vol, V.,
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cos® nty, . Q P& d &
and the total sum of all the Q terms is got from this by an inte-
gration which we may extend from §=-—o to § = 4. Conse-

quently, the sum of those @ terms will not be altered, if, in each of
them, we replace §% by

-+
?:ngwg N -2

This expression being the same whatever be the particular value
of cos® nty, the sum in (20) at once becomes -

g’_z;c[cos’ntk]. e e e e e e (28

Again, since the instants £, ¢,,.... are uniformly distributed at
distances that ave very small parts of the period %—Z—r , the sum will
remain the same, if in every term we write & instead of cos?® ni.

I
The number of terms being = We find for (23)

9 —
7S
and for (20)
. nle’rg’ —
“m 8atctIr? 5™
We have by (21) and (22)
wH_ Y
= :9)2,

l
hence, replacing © by —, we find
U -

_ nelglu 2%e’NuA

T Sanie9r . 2dmic9n o

and for the emission (14), in so far as it is due ‘to the one kind of
electrons that has been considered

n*e? Nludl ¥
W wwan.

This value must still be multiplied by 2 because we may apply
to the second of the components (6) the same reasoning as to the
first component, and the total radiation from the plate may obviously

be considered as the sum of all the values corresponding to the

a*n
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different kinds of electrons. The final result is therefore )

2
247 r?

§ 10. If now we divide (24) by (5), all quantities &V, ¢, u and /,
by which one metal differs from another, disappear. This is what
might be expected according to Kimrcruorr’s law and the result

an®T
— o ' dn

Gn®c®rt
may be taken {0 express the emission by a perfectly black body
under the circumstances we have supposed. It represents the amount
of energy which, in the case of such a body, is transmitted per unit
of time across an element «', in the rays whose frequency lies
between n and n -4 dn and whose divections deviale infinitely little
ﬁ*om the normal to the element, being contained within a solid angle

—— (&, Ny Lu, + e, NyLu, + .. )hoo'd . (24)

4dory?

\Iultlplymg by —p We are led {o the following expression for

the density of energy of which I have spoken in § 2:

Zan®T
W dn. . . « . . . . . . (2 5)

Taking for the group of rays those whose wave-lengths are included
between 2 and 2-} da, we get for the corresponding energy per

munit volume
16 mal

——d2 . . . . . . . . . (26
3 14 ( )
1) 1t is easy to free ourselves from the hypothesis that for all electrons of cone
kind there is a single length of path 7 and a single molecular velocity u. Indeed,
the motion of an electron along one of the small shalght lines 7, which it describes
belween the instants 0 and ¥, will furnish for the sum in (15) a quantity

ecosnt . u, T,

if u is the velocily for the particular line 7 we wish to consider, and - the time
required for the motion along it.

Now, among all these rectilinear motions helween two successive encounters, of
one hind of electrons, we may select those for which 2 and ! have certain definite
values and we may begin by caleulaling the cocfficient ¢m and the emnssion, in so
fav as they depend on the part of (15) which corresponds to these particular motions;
in doing so, we may use ihe method shown in §§ 7—9. The total emission
may be regarded as (he sum of all the parlial values (with different I’s and dif-
ferent u's) thus obtained, and after all the expression (24) will still hold, provided
we understand by 1, ... cerlain mear lengths ol palh and by g, u, ... certain
mean molecular velocities. We need not however enter into these detals, because
the conductivity and the coefficient of absorplion have not been calculated with
a corresponding degree of accuracy.

46+
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Qme
This is found from (25) by using the relation n = %J

§ 11. The result of the preceding calculations not 6nly conforms
to the law of KircrrOrr; it has also a form agreeing with those of
Borrzmany and WieN. Indeed, the expression (26) follows from (1),
if we put .

16
S@T) = 3 - AT.

Our last task will be to evaluate the constant e by applying the
formula (26) to experimental determinations of the radiation of black
bodies, and to compare the result with what has been inferred about
the same constant from other classes of phenomena. Combining the
measurements of Lummer and PriNesmem ?), who have gone far into
the infra-red, with the absolute amount of the radiation as determined
by KuriauMm ®), I find

a=1,6.10—16 27
_ degree

On the other hand, we get, starting from vAN prr WaaLs’ evalua-
tion of the mass of an atom of hydrogen,
a=1,2.10-18,

A comparison of my formula with that of PLanck is also interesting.

For very large values of the product 27, the denominator in

8akT
y; d2. This agrees with

ch
(2) becomes Kibl" and the expression itself

3
(26), if ¢ = _Z—k.
Now the mean kinetic energy of a molecule of a gas would be

3

-z—lcT according to Pranck and has been represented in what pre-
" cedes by a7. There appears therefore to be a full agreement between
the two theories in the case of long waves, certainly a remarkable

conclusion, as the fundamental assumptions are widely different.

On the absorption by a thin meiallic plate.

§ 12. Take the origin of coordinates in the front surface, the
axis of z towards the metal, and let there be free aether on both sides.
Writing € for the electric force, I for the current of conduction,

) Lumver and Prinesmemy, Verhandl. d. deutschen phys. Gesellsch., 1900, p. 163.
%) Kurueaum, Wied. Ann., Bd. 65, p. 754, 1898.
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$ for the magnetic force and putting the magnetic permeability =1,
we have for the metal
1, .

1 : =

rot H=—95, 70t = — — B, ¥=0%.
[ [

It is found by these equations thatin electromagnetic waves travel-

ling in"the direction of the positive z, € and H can have the direc-

tions of O X and O ¥, and values equal to the real parts of the

complex quantities
int — « (1 z
@.& —a e"' -+ ,

J:)y:xagintf—z(l-{—i): o (27)

a being the amplitude of the electric force, and the constants e« and
% belug given by

1[/1 .l/—a—
@=- 5 "o 2= 1—1 o

Similarly, waves travelling in the opposite direction may be repre-
sented by

@x:aei"t+“(l+z):, ez‘nt+s<(l+i): o (28)

Hy=—=na
For the aether the corresponding formulae are somewhat simpler;
in the first case
i int—in
€, —ae ¢, Hy=uac N (49)]
and in the second
. " . R l
@‘x.—:(oem_;-lc ) .Dyz—aezllt+z A (:11)]
Now, if rays fall perpendicularly on the front surface of the plate,
we may unite all the systems of waves arising from the repeated
reflexions into the following paris: 1st. a reflected system in the
aether, 2. transmitted waves in the aether behind the plate, 3'4. waves
in the plate, travelling towards the back surface and 4th. raysin the
metal, going in the opposite direction. Representing the incident vays
and the maotions mentioned under these four heads by the equations
(29), (30), (29), 27), (28), with the values a,, a,, @,, &,, @; of the
amplitude, we have, in virtue of the conditions at the two surfaces
(continuity of (S,, and o)
a1+a2:a4+a5’

La, — a, = x(a, — a;),

LN
—s +s~_ —i A,
a,e Fae ==ae
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In these formulae, A is the thickness of the plate, and
el4+)A=s . . . . . . . (31
The solution, in so far as it is necessary to our purpose, is
(1) (= — o) :
%= (x+1)2ets — (x—1)2 e o

{

I

4% i—A
%= (z+1) ets — (x—1)? s £ ~
In these expressions A and consequently s are now to be supposed
infinitely small. Replacing ¢~ and ¢t by 1—s and 1-fs, one finds

1/ 1 ;
CL,:-—'-—Z— ———;— Sy
a7
1/ 1\ i%a
ek

The first of these equations shows that the amplitude of the rays
reflected by the thin plate is infinitely small, so that we may neglect
their energy as a quantity of the second order.

As to the transmitted rays, the amount of energy propagated in
them will be equal to the product of the incident energy by the
square of the modulus of the complex expression

Ty x

This square is

whence we deduce for the coefficient of absorption

A:-(—I-A.
¢

On the probability with which one may expect that the centre of
gravity of a large number of points distributed at random
on a bmited straight line will e within gien Limats.

§ 13. Divide the line into a large nunber p of equal parts, and
call these, beginning at the end 4 of the line, the 15t the 274 the
3@ part, etc. Denote by ¢ the number of -points and let ¢ be very
much larger than p.

We shall imagine the points to be placed on the line one after
another, in such a way thai, whatever be the position of the points
already disiributed, a new point may as well fall on one part of
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the line as on the other. The result will be a certamn distribution
of the whole number, entirely determined by chance. Let us conceive
this operation to be very often repeated, say @ times, and let us
calculate in how many of these @ cases, a desired distribution of
the points over the p parts will oceur. Dividing by @ we shall have
the probability of the distribution.

The probability that there will be a,b,... m points on the 1,
20d . pth part of the line (@ 4+b4...Fm=yg), is given by

P— iq____qi__,
p) aldl...m!

In the case of a very large value i, this probability becomes
p
extremely small, as soon as one of the numbers a, b, ...m is far
below —Z. Neglecting these small probabilities, we shall confine our-
p

selves to those cases, in which each of the numbers a,b,....m is
very large. Then, by the well known formula of StirriNG,

— [ a\®
al! = 2an (—) , ete.
e

and, if we put

, b

= q, - !
q

¢ =b,... 2 m,
q q
we shall find
log P=— % (p—1)log 2wq) — qlogp —
—[@g+Hlogd ... |- (mg+Hlogm] . . . . (32)
It is to be remarked that the numbers @, , ... m can only increase
or diminish by whole units. The numbers a',d'... m’ can change

1

by steps equal to —; this may be made so small that they may be
g

,considered as continuously variable.

§ 14. We shall in the first place determine the values of @', &', . . . 2!’
for which the probability 2 becomes a maximum. We have

1 1
d = — -— ! N | S ! '
oy P=— | (g g+ aloo @ Yot o+ (0 5 +qlogm)dm}
with the condition
dd 4 ...+ dm' =0,
which is a consequence of

a4+ 4m=1. . . . . . . (33)

The maximum will therefore be reached if
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—

o =b=....—=m' — e

1
p
so that the uniform distribution will be the most probable.

We shall next consider the probability for a distribution differing

a litlle from the most probable one. Let us put

1 1 1
d=—4a , I)’:-——{—-ﬂ y eeeem=—-4+pu . (34
» b . p

and let us suppose the numbers «, §.... g, to be so small in'com-
1

parison with —, that in the expansion of the quantities in (32) in
p

ascending powers of «,f....u, wemay neglect all powers surpassing
the second. We have for instance

1 , g 1 1 1 1Y,
aqty Jloga = - FRE) logp+{ gtgp-qlogp Jatsplg-5p jo*,

. . 1 .
where, in the last term, we may omit the term 5 p, because it is

much smaller than ¢. If we put - -
1 1
— 5 (1) log 2 7 q) + 5 plog p =log P

and keep in mind that, in virtue of (33),

e+B8+....+p=0, . . . . . . (389

the equation (32) becomes
1
log P=log Pn— wpgla®+ 8 +....+#)

P P o= FPIEFE )

It is seen from this that P, is the maximum of the probability,
with which we shall have to do, if e=f=....=u=0. The
equation shows also that, conformly to what has been said above,
the probability will only be comparable to P, so long ase,8....u

1 .
are far below —. Indeed, if one of these numbers had this last value,
P, would be multiplied by
i
e 2’
which, by our assumptions, is extremely small.
§ 15. Let 2w« be the length of the line, # the distance along the

k2
line, reckoned from the end A4, and let us take 2 for the value or
p

1
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!
this coordinate for all poinis situated on the first part of the line, 3 -~
P

for all points of the second pari, and so on. Then,in the distribution
that is characterized by &', #',....m', the coordinate of the centre of
gravity of the ¢ points will be

[a'+3b'+5d+....+(2p-1)m'];7”,
or, by (34),
wt fat38+57+ .. -+<2p-1)u];~f-
The positive or negative value of
§=[a+36+5*/+----+(2}>—1)u]%- .. (39)

is thus scen to represent the distance between the middle point of
the Iine and the centre of gravity. We have to caleulaie the proba-
bility ' for this distance lying between § and & -} dS.

The problem is easily solved by means of a change of variables.
Instead of the guantities a«, 8,....u, which serve {o define a mode
of distribution, we shall introduce new ones o, §',.... ¢/, the substi-
tution being linear and orthogonal.

Let us f{ake for {he first of the new variables

N
= Bt

3?‘
= (37)

1
Vp'
and for {he second

—1 3 —1
g=-1 a-—-]—J—y——B-—...—{—Z-’—ry, ... (38)

v

where the numerators form an avithmetical progression, whereas x
means the positive square root of the sum of the squares of the nume-
rators. These expressions (37) and (38) may really be adopted, because
the peculiar conditions for an orthogonal substitution are satisfied :
in botl expressions {he sum of the squares of the coefficients is 1,
and we get O if we add together the coefficients of (37) after having
multiplied them by the corresponding coefficients in (38). As to the
coeflicients in the expressions for y',...w', we may choose them as
we like, provided the whole snbstitution remain orthogonal.

The reason for the above choice of & and B will be clear; the
condition (35) simplifies to

=0 . . « . . . .. . (389

and, in virtue of (35), the value (36) will be equal to

E=12F . . . . . . .. . (40)
' FY
in all cases wilth which we are concerned.

i
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Now, the modes of distribution for which the value of & lies
between & and § -+ d§ are those for which g lies between 8' and

g+dp, if

—

dﬁ':ﬁdé‘.. P 75

Since o =0, every mode of distribution may be defined by the
values of §'...y, these quantities bemg, like a, 8,...u, capable of
very small variations.

We can therefore select, among all the modes of distlcibution those
for which #'...u' lie between B and g' - df, ¥ and v -+ d¥), etc
The number of these may be represented by

hag...dg, . . . . . . .. (42)

where % is a coefficient whose value need not be specified. It suffices
to know that it is independent of the values chosen for g'... g
This is a consequence of the linear form of the relations between
these variables and a, b,...m.

As the just mentioned modes of distribution, whose number is
given by (42), differ infinitely little from one another, the probability
P may be taken to be the same for each of them. Hence, the proba-
bility for the occurrence of one of these modes, no matter which,
must be . -
L A A T (:2:))

From this we may pass to the probability for ' lying between
g and ' d7, whatever be the values of y'...#'; we have only
to integrate with respect to these last variables. Now using the funda-
mental property of an orthogonal substitution

R L R B A 1Y LIS R
and attending to (39), we write for (43)
hPpe ag...du'

If we integrate this expression from — oo to —- 0, as may be done
for obvious- reasons, denoting by % a coefficient that does not depend
on ', we find for the probability in question

ke—?pqﬁlgd‘e'.
On account of (40) and (41) this is equal to
¥

— 2 -

—&
Fe 235 . . . . . . . (49
%' being a new constant.
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It remains to introduce ihe value of »*>. According lo the defini-

' 1
tion of this quantity, it is 3 p(p*—1), instead of which we may take

1 . . .
3 p, because p is a very large number. In this way (44) changes into

CKe M AE. . . . . . . . . (45)
We may finally determine the coefficient X' by remarking that
(45), integraied from ~— o to - o, must necessarily give 1. This
requires that .
p=2{ 3,
% L4
so that our result becomes
1 3¢ _%

5 &
~— = ¢ 227 d8§.
% 2:rb ¢ §

Microbiology. — “The decomposition of cellulose by aérobic micro-
“orgamisms.” By G. vax Irersox Jr. (Communicated by Prof.
M. W. BEIERINCK).

(Communicated at the meeting March 28, 1903).

When we introduce into the soil or into natural waters substances
consisting of cellulose, such as linen, cotton or paper, it will be
seen, that the greater part comparatively soon disappears, whilst
the cellulose derived from the continually falling dead leaves and
other parts of plants is also soon destroyed under natural conditions
either f{otally or partly. It is also a known fact that the layer of
humus in the primeval forests has a limited thickness, the decrease
being just compensated by the increase caused by the falling of
the leaves. Investigation shows that the cellulose, although chemi-
cally so stable, is decomposed by micro-organisms. The observations
by Mirscuprnicn '), Pororr *), van TimeHEM *), TAPPEINER *), VAN
mZusammensetzung der Wand der Pflanzenzelle, Monatsber. d. Berl.
Akad., 1850, p. 102.

2) Ueber Sumpfgasgihrang, Avchiv. f. ges. Physiol,, 1875, Bd. 10, 8. 113,

3) Sur le bacillus amylobacter et son role dans la putréfaction des tissus végétaux,
C. R.t. 88, 1879, p. 88. — Identité du bacillus amylobacter et du vibrion buty-
rique de M. Pasteur, C. R. t. 89, 1879, p. 5.

1y Ueber Celluloseverdanung, Ber. d. d. ch. G. Bd. 15, 1882, S. 999. — Ueber
Cellulosegihrungen, Ber. d. d. ch. G. Bd. 16, 1883, 8. 1784, — Ueber die Sump!-

gasgabrung im Schlamme der Teiche, Siimpfe u. Kloaken, Ber. d. d. ch. G. Bd.
16, 1883, 8. 1740.



