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echelon spectroscope concerning the difference in wave-length betweer
the components of the outer components of the sextet of the blue
(4358) line of mercury. The following table is an extract (013 in A.U.)

H OAg
5000 ...
12100 ...
12,900 0.052
20.000 0.098?
21.300 0.09
23,400 0.098

For a value of the field between 12.100 and 12.900 the splitting
up of the lines becomes sufficient to make them appear as separate
lines on « photograph (upon which the measurements were taken).
Two lines can of course be seen separated at a considerably smaller
distance.

0,052
4458
For the echelons of these observers we have ¢ = 7,5, n= 15,

With these data I calculate ¢;=—5,3.10—C,

Thus it appears from the data given in this paper that it is
possible to manufacture echelons, performing nearly as well as they
are theorelically capable.

Thus now ¢ = = 11,9.10—¢ and ¢, considerably smaller.

Mathematics. — ¢Considerations in reference to a configuration
of Sucre”. By Prof. P. H. ScHouTB. (Second part).

5. We have already remarked that the form of the equations
of the fifteen lines obtained in the first part of this communication
was not yet a quite regular one. If we shorten  — g = r; inio
(1 —8), vy ==a, into 12 and if everywhere we omit the equations
7=0, yg=20,...2; =0, then the following table gives the obtained
result in the form of the determinant repeatedly used
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‘ (1—3) | (2—4) | (3—2) | (4=1)) |(12, 34)

i

'llg 4—2) | 3—) | 1—4) | @—3) (12, 34) )
| N

1!! ‘l}i B—4) | 1—9) |as, 24 ©—3) | (¢—1)

%'i‘ :}l“ iiﬁ @1y | (¢t—3) a3, 24) | a—4) | 3—2)

g; til'li 4, 23) @—3) | a=9) | 6=1 | @9

H ‘:: ! (14, 28)| (2—1) | (3—4) | (4—9) | 1—3)

[l. This table shows that so far there is regularity in the irregularity,
| that each conjugate quintuple as to this irregularity corresponds
4L with the quintuple of the lines a;.

Before we pass to an entirely regular form of the equations of
4 the fifteen lines, we determine, also to show the fitness of the
| system of equations, the locus of the planes cutting the four lines
’ ¢ given originally. For this we search for the conditions, under
which the space

Pr=p1a1 + poy + P33+ Pa s+ ps 5 =0

!‘ contains such a plane. The number of planes cutting four lines
| given arbitrarily in S, being twofold infinite, this investigation must
lead us to a homogeneous equation f(p)==0 n the five spacial
coordinates p:, the tangential equation of the curved space enveloped
by the spaces p, = 0.

The coordinates of the points of intersection of the space pr =0

J
w with the four lines a;, a5 as, a4 are the elements of the four rows
fi} | of the matrix
‘l
\{ 1
;W 1:1 Ps— Ps» 0, —(p1+4ps) 0 , p-Fps
| )
!
}‘“‘ o, Pa = Ps 0 v —(pe+ps) 22+ pa
i ;
fﬂ' 0 v —(ps+ 2 Pe— s 0+ Pyt
i
f‘[’ﬂ — (P4 + psh U o Pr—Ps+ P1L+ Py
i
i
|
l

=
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by putting this matrix equal to naught, we let the space p. =0
satisfy the given condition. Here, however, an obstacle seems to
present itself. For the five equations obtained by putting the deter-
minants comprised in the matrix equal to naught, furnish in general
two respectively indepcndent relations, which cannot be the case
here. However, as is immediately evident after development, each of
those five determinants consists really of the form

(py+ P2+ ps + Pl P} - Pops pa— P1Ps Pa+ P1P2 Py~ P1P2PS

every time multiplied by another linear form, and we find the
wanted equation of the enveloped surface by putting this common
factor equal to naught.

The same obstacle seems to appear when we make use of the
following method to defermine the equation of the enveloped space.
If p=20, gz =0 represent an arbitrary plane, it intersects the
four lines aj, ag, as. a, under the conditions

P1P3Ds P2 P4 Ps P3Pa s P4 0105

noss | =0 92 9495 | = 0, 39295 =0, 74 91 75 =0
—111 — 111 —-111 —111

and by eliminating ¢, ¢ g3 We arrive at the equation

Ps— Ps» 0, —(m+psh (21+ps) g5
0 Pa— D5 0 v —p2t25) s+ (p2tpa) g5 o

0 v —(pstpsh  Pa—Ps; (P2+ps) 95

—(ps-+ps) o, 0 v (or—Pe)eat (P1+pa) g5

which also furnishes two equativns, as it must hold good for all

values of the quotient T We recognise 1n these two equations
75

immediately those which are obtained by omitting from the matrix
found above respectively the last column and the last but one,
By the way we nolice that the second method can prove in a
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simple way how each plane intersecting ay;.ag, a, a, also cuts a

If we introduce for.the determinant prqi— g1 px the notation (lcl)

- the four condltlons can be written in the form , o

89+ (1) + (19) =0
(B4 +(59) + (24 =0
(25) + 08) + @)= 0 |
(18) -+ (48) + (14) =0

So' addition gives |

0$+ﬂ®+@m+@®:¢. 

‘which is the condition that the - plane cuts the’ line af’,r

substituting
"a:1=w9, y F3=ay , a=0
into px=0 and gz = 0.we find’
| (p1 4+ p3) 20 + (ps + po) 24 = 0,

{1+ g + (g5 + qu) 74 = 05

by eliminating -the quotient‘?— we get - |

prtps s pstops
@1t Bt
which can be immédiately developed into

(18)+(14) + @) + (24 = 0.

" For

> 6.. Now .that we have. found the levqtl}a.tion -of the enveloped
space the full investigation of it may be omitted. “We shall confine

ourselves .to some ready observations.
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In the first place it is evident that the ten “spaces throuoh six

lines” with the spacml coordmates ‘
(@ag) ... (=1, =1, 1, 1, 1)
(e ... (0 0, 0 1,0
(@ag -« - (0, 1, -0, 0, 0
(aras) - - . =1, i, 1, —1, 1)
(egag) . ... (C 1, 0, 0, 0, 0)
@) . - - . ( 0, o, 1, 0, 0)
(agasi eoe o (1, =1, —1., 1, 1)
@a) - ( 1, 1, —1, —1, 1)
(a3 a;,).. c e (—1, ‘1;7—‘—‘1, 11 1)  .
g e (1, —1, _'1, 1, 1)

are double spaces of the envelopel space, so that this must be of
order. four and cannot admit of an eleventh double space, because
a space of order two canmot be of class three.

Moreover it is evident, that the fifteen “points in three lines”
are points for which the tangent planes of the curved space, passing
through it, envelope a conic space degenerated into three nets of
planes (all planes through a lme) So the three 11nes ag €5 el cut
each other in. the pomt
C -wlzwgﬁv%:‘w*, 2 =0
with the eguation. e S

IR TP tpytpe=0.
and the combmahon of this with the nqua.tlon of the cubic envelope
causes the latter to be transformed by elimination of P4 into

(Psa + pg) (3 + Pl) (P1 + T’Q,) =0,

Whlch in connectlon w1th the ﬁrst furmshes the planes

P2+p3—0; P3+P1—0; Pl‘f'f’z:o;
ntp=0)  pet+p=9) ptp=0
W1th the axes e}, ¢ a;.
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But the following must be pointed out particularly: the surface
of the third class out of n® 4 is connected in a simple way with
the enveloped space. In the cone by which this surface is projected
from the point P taken there, we have namely before us the envelope
of all the tangent planes of the cubic space, passing through this
point P. This will be clear if we resume in the following form
the dualistically opposite results forming an extension of the theorem
of SEGRE mentioned in n 1:

If we take quite arbitrarily in S, four planes a,
G Oy a3, and if we determine the planes ey, @ oo
@y, forming with the former one a double four

tig , 4 + Gy », Q)
Gy 4 gy o O 4 flgg

~— where two planes have a point or a line in common
according to their symbols having a common index
or not —, then the four points of intersection of the’
opposite elements of the double four — placed here
under each other — lie in a same plane ay.

If we add this plane aj3 to the assumed planes, we
obtain a quintuple of “conjugate planes” with the re-
markable property, that esch of those planes plays
the same part in reference to the double four, of which
the four remaining planes form one of the two qua-
druples, as e;, in reference to the above mentioned
double four.

If we complete all quadruples to be formed out of
this quintuple to double fours, we find fifteen planes
in all, which can be characterised by symbols e in
such a way, that two planes have a line or pointin
common according to their symbols having a common
index or not. We then find that ordering of thosesym-
bols in form of determinants — as the corresponding
ar; in n0% 4 — gives six vows or six columns of conju-
gate quintuples (¢),4=1,2,..6. Bach line intersecting
four planes of aconjugatequintuplealsocutsthefifth.

Each triplet of planes (uy, e ay), cutting each
other two by two in a line, lie in a same space indi-
cated by Sisa,s56; in this space they pass through a
same point Pio, a5 . There are fifteen of such spaces
and points.
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Bach sextuple of points as "(oyg g @og @5 age ),
built up of two triplets (6812, (2410 “23) and {5y 054(;‘1256), with
the property that each plane of one triplet cuts each
plane of the other in a line, pass through a same point
Piog, 456. There are ten such points.

A threedimensional space S; taken arbitrarily cuts
each of the six conjugate quintuples () in five lines,
which admit of two common transversals (&, ¢); these
six pairs of lines (b, &) are opposite elements of a
double six of a surface #3 of order three of which the
27 right lines consist of these twelve lines and the
fifteen lines of intersection of S; with the planes &kl

The locus of the lines intersecting four planes
belonging to a same conjugate quintuple — and so
also the fifth — is always the same curved space S3*
of order three and class four through the fifteen
planes ap; whichever of the six quintuples (¢) are
taken; so this space S3%* contains six different twofold
infinite systems of right lines. It has the ten points
Pio3, 456 as double points, the quadratic conic spaces of
contact of which contain the sextuples of planes
passing through those points;itis cut into three planes
by each of the fifteen spaces 8o 31,5 . Its section
with the above introduced arbitrary space S must
contain the double six of the pairs of lines (b, @) as
well as the fifteen lines of intersection of S; with the
pPlanes ez; and so it must coincide with the surface 73
found there, of which the points lying outside these 27
lines are points of intersection of S; with lines of the
locus 834 not situated in S,.

T. If we apply to the equations

ro—ag=ay; 4 =0 , a,=0¢

o —Ty=uw5; , =0 , rg=20

g —dg—=uw5 , ay=0 , w,=0

ry—r=ax; , =0 , wr3=0
J1 =y y Pyg=—=dy , Tz—= 0 |

-
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of the lines a,, ags . . . . a5 the transformation
—o oyt ta—g=y
@) — &y + g+ 74 — 5=y
21+ By — a3 + 4 — 25 =Yg ),
el my 2y =1y — 15—y,

—2%,=y
which it is possible to write in the reversed form

doy=—mn~+vptyty—1u
boy= H— Yt yst+y—Us
dos= m+Y—Ys+Ys— Y5 }>
day= pntyvetyvs—va—5%

2 a5 = — Y5

these equations pass into

N1=95 » Y2=Ys& » Yy=0
=Yy » H1 =y s Ya=0
Y3 =Ys o+ Y1==Ys » Yp=0
Y=Y +» H2=Y » n=20

N=Ys » Ys=Ys » Y=20

Moreover the equations of all the fifteen lines of the configuration
preseni themselves in the collective formula

Y =VYgr Yr=1Ys» ,’yt=01

where p, ¢, 7, sy ¢ indicate one of the permutations of the five
indices 1,2, ..5.

The regular representation of the lines obtained in this way
allows of a very simple geometrical realization. If we suppose for
simplicity’s sake that the homogeneous system of coordinates y:
with respect to the five-cell of the spaces y, =0 is a system of
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normal distance coordinates, then it is evident that the fifteen lines
of the configuration are the lines connecting the mid-points of
the pairs of edges of that five-cell crossing each other. So, if we
suppose (fig. 4)
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five points 1,2, 3,4,5 not lying in a three-dimensional space to be
the bearers of equal masses and if we determine the barycenties
12, 18, . . . 45 of the ten paiis of these masses, then the lines
(12, 84), . . ., (28, 45) connecting two of these points belonging
to four different masses will form the fifteen lines of a configura-
tion of SmerE. These lines pass through one of the barycentres
1) 2, 8, 4,5 of four of the five masses; moreover the five lines
(1, 1), 2, 2) .., (5, b) pass through the bLarycentre 6 of the
five masses. Qut of this figure we easily find the remaining elements

of the configuration

Cf. (\5,38,15 7|3 18,6352 45,3 7,39, 13).

-10 -
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For we recognize in the ten barycentres 12, 13, . . , 45 of two
masses and the five barycentres 1, 2, . . , 5’ of four of the five
masses the fifteen points, in the thirty planes (12, 34, 35, 4/, 5)
and the fifteen planes (1', 24, 35, 23, 45) the forty-five planes, in
the ten spaces (12, 34, 35, 45, 3',4',5") and the five limiting spaces
of the five-cell the fifteen spaces of the configuration. And if we
assume in the points 1,2,3,4,5 entirely arbitrary different masses
instead of equal ones, then the special case represented in fig. 4
passes into the general ome. If we then also call the barycentre
of those unequal masses the point 6, we arrive at the following
simple representation of the configuration :

If in space S, six points 1, 2,..,6 are taken in such
a way that no five of these points lie in a three-dimen-
sional space, we can find fifteen three-dimensional
spaces Ryl D=(3456), Ry(,3)=(2456), .., Ry(5 0=(1284) each one
of  which contains four of the six points. Of these
spaces S any ihree, the indices 4,4 of which complete
each other to 1,2, .., 6, pass through a same line
furnishing in all fifteen lines. And these same lines
forming with each other the chief part of a confi-
guration of SEGRE are also found if each of the lines
ly9y b - - , g connecting the six points two by two is
cut by the opposite space R(1?, Ry(13),,., B8 by which
operation we obtain fifteen points 12, 13,..,56 charac-
terized by the property that any three points the
indices of which complete each other to 1, 2,..,6 are
lying on a right line. Every five lines containing
together the fifteen points 12,13,..,56 form a quintuple
of conjugate lines.

8. The simple represenfation we have now given of SEGRE's
configuration 18 closely related to results published already in 1858
by Dr. G. CASTELNTOVO in his treatise ,Sulle congruenze del
terzo ordine dello spazio a quattro dimensioni” (4¢
del R. Istituto Veneto, serie 6, vol. 6). If namely we assume the
five points 1, 2, 3, 4, b as vertices p, =0,7=1, 2, 8, 4, 5, of
the five-cell of coordinates and the point 6 as point of unity
ps =(p1 + pa + ps + ps + ps) = 0, then the pair of equations

p1+p:=0, ps+p,=0,

-11 -
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into which the system
)=y, gy &5=20V
passes by means of the relation
Pz=p128+ pyay + ps ¥yt pata+ psas =10

between the coordinates z, of points and the coordinates p,, of spaces,
can be completed by

ps +pre=0

and from this is evident, that each of the fifteen lines of SEGRE’s
configuration is represented by a triplet of equations of the form

PrtFpe=0, ps+ps=0, ps+ps=0

and that the lines are situated six by six in tem spaces with the
coordinates

aQ,1,1,—1,—1,-1), (1,1,—1,1,—1,—1),...(—1, —1,—1,1,1, 1).
So the six lines
(14, 25, 36), (15, 24, 36), (16, 23, 45)
(14, 26, 35), (15, 23, 46), (16, 24, 85)

are situated in the first of those ten spaces, etc.

In the quoted treatise CASTELNUOVO has represented the fifteen
planes of the dualistically opposite figure by the system of the
fifteen corresponding triplets of equations )

2t eg=0, o5+ a=0, o+ a5=0.

Though the connection between the above-mentioned treatise and
these considerations have already hereby been indicated, yet I desire
to acknowledge that not until the existence of that treatise had
been brought to my notice by SeerE did I succeed in deducing
from my considerations founded upon the double four the above-
given simple representation.

-12 -
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Qut of the fifteen triplets of equations

prtre=0, ps+ps=0, ps+ps=0

it directly ensues that the curved space of class three enveloped by
the pencils of planes with one of the lines of the configuration as
axis must have the equation

P+ 2% ps® 4 pd st 2t =0,

the first member disappearing for each of those triplets.
So the six points p; = 0 are for this curved space of class three
what the pentaeder of SYLVESTER is for the surface of order three.

9. In asecond treatise published in 1891 and entitled: ;Ricerche
di geometria delle rette nello spazio & quattro dimen-
sioni” (d4tti del. B. Istituto Veneto, series T, vol. 2) CASTELNUOYO
has represented the curved space

G=ad 4o’ a2 o o Lrf =0

on our space Ss in such a way, that the spacial sections of ¢® =
correspond with quadratic surfaces passing through five fixed points.
In that case the fifteen planes correspond to the five vertices
and to the ten faces of a complete quintangle in S;, whilst the
ten double points of ¢3=0 correspond to the ten edges of this
quintangle. Instead of continuing these researches we put the
question in how far the configuration of fifteen lines is unique in
its kind.

Of course it is not difficult to point out in the poly-dimensional
spaces configurations having characteristics in common with the
configuration of SeGRE. So we find one in each group of n + 2
points taken arbitrarily in S, when » - 2 is not a prime number.
Let us take as an example nine arbitrary points 1, 2, 3, . ., 9
in S; and let us represent the point of intersection of the plane
(1,2,3) with the space §; through the six remaining points by
the symbol Pygg; then cach three points Pygg, Py Pyg9, whose

-13 -
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indices complete each other to 1, 2, 3. .., 9, will be situated
on a right line. Tt may be, that the easiest way of proving this is
by the aid of a system of parallel forces in equilibrium applied to
the points 1, 2, 3, . ., 9. As is known the parallel forces applied
to the points 1,2,8,..,8 may be chosen in such a way that the
resultant acts on point 9; if we add to these eight forces a force
applying in point 9 equal and opposite to this resultant, then such
a system of forces in equilibrium has been obtained. It is now
evident that point Pygg is the point of application of the resultant
of the three forces working at the forces 1, 2, 3 as well as that
of the resultant of the six remaining ones. For, these points
of application must coincide, on account of the equilibrium, in a
point situated in the plane (1,2, 3) as well as in the space S5 through
the six other points. If we reduce the nine forces to three by
compounding those operating in 1, 2, 3 and those operating in
4,5,6 and those operating in 7,8,9, we obtain those parallel forces
applied in Pigg, Py Prgy and these three forces can only then be
in equilibrium when the three points of application lie on a right
line. So the figure of the nine points Sy leads to (9); = 84 points

1
Pyy5, situated three by three on r (9)s. (63 = 280 lines, whilst

reversely ten of those 280 lines pass through each of those 84 points.
So we can deduce out of 12 arbitrary points in Sy, performing the
decomposition of 12 into two factors in different ways, 66 points
Py, 220 points Pygs or 495 points Py, and remark that the points
Py, are situated six by six in 10395 spaces S, the points Pjyq four
by four in 15400 planes and the points Py, three by three in
13305600 lines, etc.

Although the configuration of SeerE is undoubtedly a part of
the general group indicated here, it is certainly distinguished from
most of them and probably from all of them by the property that
it is determined by a quadruple of crossing lines taken arbitrarily
and these lines fix in a narrower sense a fifth of the fifteen lines,
which group of conjugate lines then bear together the fifteen points
of the configuration. Indeed, in 8, the system of six points as well
as that of the four lines is dependent on 24 parameters and so
these figures agree in number of constants, according to an expres-
sion of ScruBerT. If on this point we examine the configuration
deduced from the nine points of Sy, it is even evident by merely
consulting the numbers of constants 63 and 12 of the nine points
and of a line in &, that it is impossible to determine the 280
right lines (123, 456, 789) by some of them crossing each other;

I8
Proceedings Royal Acad, Amsterdam. Vol, 1V,
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twelve points in S, this is likewise proved for the configuration
| of the 13305600 lines from the fact, that 18 is not a factor of 120.
1 However, the numbers of constants of plane and four<dimensional
1”3 space in S;;, namely 24 and 30, being factors of 120, considerations
”J; of another kind only can teach us that the 15400 planes and
l% 10395 spaces 8, cannot be determined by some of them crossing
|
!
1

f{ for 63 is not divisible by 12. In the second example of the
!

each other. So a characteristic difference between these two examples

in 8y, and the configuration of SEGRE would already appear if it was
{] proved that five planes in a narrower sense do not lead to 55 planes
through the 220 points, and four spaces §, in a narrower sense
not to eleven spaces &, through the 66 points. And should this
prove to be the case in one of the two, there still remains the
rl difference that in S, five lines are found intersecting six arbitrary
k planes and that these lines are related in such a way that each
line cutting four of the five lines also cuts the fifth; whilst according
1 to a general formula of ScrusErT (Miti. der math. Geselischaft in
Hﬁ Hamburg, vol. 2, pag. 87, 1883) in 8y, are found not only 55 but
il 116848170 planes and not only 11 but 689289872070 spaces S,
§ which have respectively a point in common with each of the 24
‘ arbitrary spaces & and with each of the 30 arbitrary spaces S;.
} Finally we must stated that H. W. RicaModD has made the figure
of the six arbitrary points in the space S, called by him “hexastigm”,
the subject of two papers (Quarierly Journal of Math., vol. 31,
! pag. 125—160, 1899 and Math. Ann., vol. 53, pag. 161—176, 1900).
i In these important studies the configuration of SEGRE and its simplest
3' analytical representation is brought into close connection with
G. Veroxese’s theorems about the Pascan hexagram; but, com-
paratively spoken, the curied space of SeGRE is only carsorily
mentioned.

cation from Dr.J.J. BLANKsMA: “On the influence of different
atoms and afomic groups on the conversion of aromatic
sulphides into sulphones.”

It is known that organic sulphides may be converted first into
sulphoxides and then into sulphones by means of oxidising agents,
: nitric acid for instance. From the following observations it appears
| to what extent atoms or groups which occupy an ortho-position in
E regard to the sulphur atom, render the latter unoxidisable,

!
|
! t
' ! Chemistry. — Professor LoBrY pE BrRuyN presents a communi-
l
k
?
|
E
a
E
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