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KONINKLIJKE .A.KADE~IIE VAN WETENSCH.A.PPEN 

TE AMSTERDA~I. 

PROCEEDINGS OF THE MEErrING 

of Saturday December 28, 1901. 

------~.OOO~.-------

I 

(Translated from: Verslag van de gewone vergadering der Wis- en Natuurkundige 
Afdeeling van Zaterdag 28 December 1901, Dl. X). 

CONTENTS: "Contributions to the knowledge of VAN DEI!. W A.US' tJ.-surface. V. The dependenee 
of the plait-point constants on the composition in binary mixtures with small 
proportions of one of the components". By W. H. KEESOM. (Communicated by Prof. 
H. KAMERLINGH ONNES), p. 293. - "On function and structure ofthe trunkdermatoma". 
(Il). By PlOf. C. WINKLER and Dr. G. VAN RIJNBERK, p. 308. - "The shape of au 
empirie isotherm al of a binary mixture". By Dr. PH. A. KOHNSTAMM. (Communieated 
by Prof. J. D. VAN DER W A.US), p. :120. - "Factorisation of large numbels". (I). 
By F. J. V AES. (Communicated by Prof. P. H. SCHOUTE), p. 326, (with one plate).­
"A fOl'mula for tbe volume of thc prismoid". By Prof. JAN DE VRIES, p. 337. -
"The rlispersion of the magnetie lotation of the plane of polarisation in negatively 
rotating salt-solutions, Il. Further measurements with potassium ferricyanide". By 
Dr. L. H. SIERTSEMA. (Communicated by Prof. H. KA~IERLINGH ONNES), p. 339. -
"A new law conceming thc relation of stimulus and effect". By Prof. J. K. A. WERTHEIM 
SA.LOMONBON (Communicated by Prof. C. WINKLEB, p. 341, (with one platc). 

The following papers were read: 

Physics. -- W. H. KEES OM : u Contl'ibutions to the knowled,qe of 
VAN DER W AAI,S' ",-surface. V. The dependenee of the 
plait-point constants on the composition in binary mixtw'es 
with small proportions of one of the components." (Commu­
nication N°. 75 from the Physical Laboratory at Leiden by 
Prof, H, KAMERLINGH ONNES). 

§ 1. In § 2 of Communication N°. 59a (Proceedings June 1900 
p. 276) KAMERLINGlI ONNES has drawn attention to the question 
as to how far, for the study of VAN DER WAALS' !p-surfaces, we can 
avail ouraelves of the luw of oorresponding states by applying this 
to the homogeneous phases (stabie and unstable) of mixtures of 

20 
Praceedings Rayal Acad. Amsterdam. Vol. IV. 
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two normal substances, especial1y, in how far fróm an empirically 
correct rppresentlltion of the isothermals (and thus of the l/I-lines), at 
different temperatures fol' a simpie snbstance we can find the lfJ-lines 
for mixtures of different composition x at one tempcrature, and 
hence also the unstable part of the lP-surface. In Communication 
N0. 59b (in collaboration with REINGANUM) this method appeared 
permissible even with entiJ'eIy arbitrary mixtures of carbon dioxide 
and methylchloride; also when the mixtures under observation differ 
only a little in composition, as when investigating the critical 
pbenomena in a normal substance with small impurities, it promised 
to be very useful. For a long time (cornp. Communication N0. 68, 
Proceedings March 1901 p. 630) investigations for this work have 
been made at tbe Leiden Laboratory, in wbich I have taken part 
by making some measurements. As the first part of them we may 
consider VERSOHAFFELT'S measurements on tbe conduct of mixtures 
of carbon dioxide and hydrogen, in so far as they conccrn mixtures 
with a small proportion of the latter substance. Tbey show, as 
VERSCHAFFELT 1) has demonstrated in Communication N°. 65 tbat 
the ]aw of corresponding states in deed is nearly applicable to these 
mixtures, and that by means of the said law, the critica! tempera­
ture anu pressure of the homogeneous mixtures can be determined. 

In tbe following pages we will examine in tbe first place what 
may be derived from VAN DER WAALS' investigation of tbe mixtures, 
by the aid of the law of corresponding states, about the course 
in the pT-diagram of the plait-point curve of binary mixtures in 
the case that the proportion of one of the eomponents of the 
mixture is very smal!. Then the formulae obtained are compared 
with VERSCHAFFELT'S observations. Lastly hy means of the law of 
corresponding states I have derived an expression for the variation 
of the plait-point volume with the composition. 

§ 2. As a starting point some formulae given by VAN DER WAALS 

in the Proceedings May and June 1895, Arch. Néed. t. XXX 
p. 266 and 278 are used, which formulae may be also derived using 
the property that in the plait-point: 

(0
2
') 

O,/)2 pT 0, 

(0
3
') 

oa;3 p7' 0, 

where ,= l/J + pv, if l/J represents tbe free energy. 

I) Arch. d. Sc. Néerl. (2) t. V p. 644. Comrn. Phys. Lab. Leiden nO. 65. 
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The first of these equations states thftt the plait-point is situated 
on the spinodal line, the second that the isobar on the I/J-surface 
drawn through the plait-point, does not enter the plait. 

VAN DER WAALS finds (Proceedings May 18D5) for J1 = 0, a 
formula (5), which we write: 

MRT ( a2
p ) (ap

) 

(
dp ) __ (ap ) _ Tc av aT ax vT a . . . (la) 
dT pi T IJ (ap) 

2 + MRTTc ( a2
p ) 

aJ1 vT ax av T 

where it is taken into account that at the critical point of a simple 
substance 

Besides VAN DER WAALS finds an equation (9) (Proceedings J une 
1895) which we write: 

. • • . (tb) 

for tV equal to zero. From these two equations follows: 

H dTpl d dppl . d' h " f h " I ]' ere -- an -- In lCate t e vanahon 0 t e cntlca p alt-dJ1 daJ 
point temperature and pressure with small admixtures, TTc is the 
critica] temperature of the pure substance. 

We may now naturally introduce the law of corresponding states 
into the equations given above. By means of 

v = (j) VxTc ; T = T Ta,Tc 
20* 
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where pxkl vxk and T:rk respectively represent: critical pressure, 
volume and temperature of the mixture taken as homogeneous, and 
therefore: 

we find 

This becomes for :r = 0, as then n = 6J = T = 1, 

(on) (02n) 
06J = 0 and 06J2 = 0 : 

in which we have called: 

if 

With these we have for equations (lb) and (lc): 

1 dTpl 
---=a:­
Tk dx 

~{3 - a: (~)r 

04 (o~~J 
• • • (2a) 

• • • • (2b) 
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which two equations also give immediately the slope of the plait-{)oint 
curve in the Tp~diagram at the critical point of the pure substance. 
Rence we see that the variation of critical plait-point temperature 
and pressure due to the presence of smaIl admixtures is entirely 
determined by the two quantities €X and (3. 

From these two equations follows also that for very smaIl vaIues 
of :1): 

• . • • • • (3) 

if (dP ) is the dP
T 

for the saturated-vapourpressure curve of the simple 
dT lc d 

sub stance at the critical point. In this way we again find the relation, 
given by VAN DER WAALS Proceedings Nov. '97, p. 298. 

If therefore we conneet lD the pT-diagram the critical points of 
the homogeneous mixtures with the plait~points of these mixtures, 
these connecting lines at the critical point of the pure substance 
are parallel to the vapourpressure curve of the latter. 

§ 3. In order to be able to compare these formulae with observatioDs 

on mixtures G:) and 04 (a:2;J are required. 

(;:) can be determined in two ways. For according to a thesis 

of VAN DER W AA.LS G:) at the critical point = (~:) coe:/ where 

neon repre8ents the maximum vapourpressure. Prof. VAN DER WAALS 

was so kind as to communicate to me the following proofs for this 
thesis) as developed mally years ago in his lectures. 

1. MAXWELL'S criterium at a coexistence pressure independent 
of the volume is given by 

fVd 
pCoex (Vd - vu) = p dv, 

where Vu and Vd refer respectively to liquid and vapour. By differen· 
tiating this with regard to T, we haye 
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or 

Vd 

, (dp 
) = 1 ji(ap

)' du 
dT coé":!; Vd-Vv aT v . 

Vv 

and in words: (~~) i~ the mean value of (OO~) between the volumes 
eoez . v 

Vv and Vd. At the critical temperature the mean value is the 
pressure-variation co-efficiënt itself or 

2. 'Byintegrating the isentropicrelation 

(017)" . (OP) 
aiJ T ,aT v 

and by putting (Vd-t'v) G~)e!~steadOf1]d-~vandproCeedingaSinlo. 

3. By using the pvT-surface. 
At the critical point a tangent to this surface may be drawn 

parallel to the v.,.axis. ,The tangent-plane at the critical point is thus 
at right angles to the pT-plane, and its section is a straight Hne. 
Each curve on' the pvT-surface whi~b passes througb the critical point 
and whose osculating plane at the critical point, while cutting the 
tangent plane to the puT-sllrface at an augle, is not perpendicular to 
the pT-piane as is the case with the tangent plane to the pvT-surface, is 
projected on. tbe pT-plane as a curve touching the above named section; 
Rence 1. the border curve, of which the osculating plane co-in­
ddes with thetangent plane to the pvT-sllrface at the critical point,' 
2. the sedtion of the pvT-surface by a plane at rigbt angles to the 
v-axis, 3. the isentropicline, for the critical point, etc. All these 
lines have projections on the pT-piane, touching eaob other in the' 

projeotion of the critical point and henoe give (:~) values with dif­

ferent indices v, rJ, coëx., etc. wbieh are equal to one another at tbe 
critical point. 
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Analytically we· bring this into the following form. As for each 
point of the pvT-surface _ 

dp ='(3p
) d~ + (ap

) dT av .T .. aT v 

d · t th .. I . t (ap) . an as a e crItIca pOlO a v T IS equal to zero, .we obtain for each 

curve passing through. th at point 

We are uncertain of the equality only. when- the curve has an 
element in common· with the isotherm. In this 'case the value of 

(~P)· dv must be more elosely in~estigated. ,This strict investigation 
OV T dT . .. . , . , 

would therefore be also required for the border CUl'vè' were th is not 
rendered superfluous by the proofs 1 and 2. That the relation 

(dp ) :. = (~P) holds for the border curve must be ascribeu to the 
dT eoex uT v ' 

circumstance tbat the latter lies in f1 eylinder surface, asmentioned 
above, which touches the pvT-surface at the critical point. 

From a gl'aphical representation of p as function of v in the. 
lleighbourhood of the critical point MCOI'ding to AM.A.GAT'S data 
for the isothermals of carbon dioxide I found: 

. -~. \ . \., 

putting the critical· volume 0.00426 and C4 = 3.45' while 

. (~:) = 6.5 

would follow from an extrapolation of AM.A.GAT'S observations for 
the vapour preJ'lsures. ,. 

With ~his. unCel'taillty in (~:) it may be weIl to investigate what 

would be yielded by diffèl'ent cquatiuns of state. 
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V A.N DER W A.ALS' equation: 

( 
1',/,-1.) p--

ae " 
p + V'" (V - b) = MRT 

as weIl as CLAUSIUS' : 

\ p + K 2/ (V - b) = MRT, 
1 T (V + nb) I 

give: 

G:)= 7, 

1 would also have availed myself of the equiltion of state given 
by DIETERICl (DRUDE'S .Annalen Bd. 5 p. 51-88, May 1901), but 
found that there bas crept an error into tbe derivation of this to whicb 
I drawattention in the following section. 

RT 
§ 4. DJETERICI puts p = - b in wbich Va is derived from V 

Va- a 

by means of the equation: 

Va 

J dv Vk Tk Sf, 
--=a-- 3/ 2 ! 
v-b V T 

v 

where a is a constant to be calculated for each substance from the 
critical data, for instance for isopentane a = 2.116. 

From these equations we find: 

3/2 
T (CP) 3 Vk Tlc ~ 1 Vk21 - - =l+-a--s/ 1--­
p aT v 2 v T J 9 vi' 

which for the critica] point becomes 
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hence forisopentane :: (~~)v< 4.174, whic'h does not agree with 

the observations. lndeed DIETERlCl wrongly supposes that his 
formulae also represent the correct isothermals for volumes smaller 
than the critical. 1) 

He derives (l.c. p. 74) the following formula for ~~: 

wh ere P8 l'epresents tbe saturated vapourpressure and VI and V2 tbe 
volumes of saturated liquid and vapour. 

This formula gives at the critical point: 

Tlc dps = 7.9. 
P7c dT 

According to the thel'mo-dynamic thesis laid down in § 3 

dps = (OP) 
dT aT v 

at the critical point. Hence the two results contradict each other. Tbe 
explanation may be found in the circumstance that DIETERWI has 
assumed th at 

if 

j 'Va 
n;dv =J. Q 

VI 

RT 
p+n;=­

v-b 

and if Q is the internal latent heat of evaporation. This would be 
true if n; were not a function of the temperature; as th is is however 
the case with DIETERICl the intern al latent heat of evaporation rnu!:It 
be found from 

1) See DANIEL BERTHELOT. Arcb. Néerl. d. Sc. (2) t. V. p. 441. 
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" Rence, the, circumstance that DIETERICI'S for~ula fol' dps gives a 
'-, " clT 

good representation of tbe observations pl'oves th at his origiIfál equa­
tions do not, do so. Hence his equation of state must be 1eft ,out of 
consideration. 

§ 5. The existing uncertainty aboutG:)' and C4 (0:12
;,), for a 

simple substance (when (OO~) diminishes; probably C4 ( azrr
) mUBt 

T ' ' omOT 
also be diminished) is a great impediment in - the application of our 
considerations to mixtures; we may, however, accept thatwe are not 

far wrong, when witb VAN DER WAALS we put (;:) " 6.:7 and 

C4 ( a2
1l ) = _ 32.2. 

dm OT 

§ 6. We wil! apply the equations (2)' and (3) to tbe observatiollB 
of VERSCHAFFELT. He gives (Communication, n~. '47, Próceedings 
Febr. '99 and Communication nO, 65, Arcb. Néerl. série II t. V p. 
646) for two mixtures of carbon dioxiàe andhydrogen Tpl and Ppl, 

for tbree mixtures Txk and p:r.k as he has derived them by superim­
posing the logarithmic isoth~mal-systems, and ,also for carbon 
dioxide Tk and Pk as calculated by him from AMAGAT'á isotherma1s 

-

I IJ! I l pl .1 ppl I Pd: I Pd: 

0 304..7 73.6 304..7 73.6 

0.04.94 300.4 91.85 287.8 68.1 

0.0995 297.5 114.2 273.6 63.5 

0.1990 248.7 54.8 

" ", 1 dT . .",' 
To derivefrom this a=,- (~), whenx,is ~mall,we may 

, ~. x=o, , 
put Txk = Tk (1 + ax + «','112) and compute the co-efficients a and 
a' from the abservations far x':" 0.0494 and [IJ = 0.0995. Thus we 
find a = - 1.219 (J ,- 1.645. If on the contrary ,we compute 
a and f3 fram the formulae acceptedby VERSCHAFFELT (Communi­
catian nO. 65, Arcb. Néerl. t. V p. 649) to repreBent Txk ,and P::ck 
as functiaDs of IV :' . 
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',' /A1'" . V' ,Kx 
Txk= C'Il - ,p:rk= C 2 -b s' 

, , bx ' ' x 

wbere 
, 

Kx , 2 b " ' 
;;;-= 1-1.40 IC + 0.18 IC , ~=1. + 0.526 IV - 0.035.7)2, 

.Ll.22 b22 ' -

then we find: 

a = - 0.963 fi =- 1.489. 

It appears, therefore that much uncertainty exist:3 about the 
values of a and tJ. This must partIy be ascribed to the uncertainty 
i!J. thedetermination of T xTc and PxTc following the method of RA VEAU 

(from YERSCHAFFELT'S quadratic formulae I calculate for IC = 0.0494: 

TxTc = 290.3° C., pxTc = 68.35 atm., while 'YERSCHAFFELT found 
TxTc = 287.8° O. and pxTc = 68.1 atm.), andpartly to the small 
number of observ-ations, fromwhich the variation of T xTc and PxTc 
with Il' must be derived.' . , 

However this may be, where the uncertainties in a and /3 are added 

to those in G:) and 0 4 (a~)2;Jit is obvious thatnothing can bederived 

from the comparison of the obsE'rvations with the formulae, (2a) and 
(2b). It is, even easy to cho08e within the limits of uncertainty values 

for a, /3,. (~:} C 4 (a~;J, that lead to results ,tor d~l and 

dpp
! , which are entirely at varianee witq thc. observations. With 

daJ ' ',' , ' ." . 

the selection we made, as stated ab~'Ve, of (;:) , = 6.7 and 

C4 ( a
2
n ,) = _ 32.2 we should derive by means ofthe 'Values all) a.. ,-

of ct and (3, found from,the q~adratic formuIae, in which YERSCHAFFELT 

expressed his observations: 

ct ~ - 0.963 , 

!.. dTpl = _ 0.20 , 
TTc d:c' 

/3 = -1.4.9: 

1 dpp! 
--=3.63, 
Pk d:c 

which values might be made to agree ,,\Vith the fortn of the plnit­
point curve according ~o YERSCHAFFELT. , 



- 13 -

( 304 ) 

Of greater importance is the test of the relation (3), which not 
only for hydrogen but for every su bstance mixed with carbon 
dioxide "\\ill hoid with a' exceedingly small: 

Ppl - Pide = 1.61. 
Tpl - TxTc 

For we find for this proportion with 

a: = 0.0494 1.88 , 

a: = 0.0995 2.12 , 

so that the value 1.61 for 3J = 0 will come near to the truth and 
therefore in this respect theory and observations confirm each other 
sufficiently. 

, dPpl dTpl 
§ 7. In the same way as we have consldered ~ and -, we 

d:r: d:r: 

I 'd dVpl can a so consl er ~ 
d:r: 

to the determination 
In the equatlOn: 

for 3J = 0, a quantity important with a view 

of the critical volume of a simple substance, 

dVpl = (aV) dPpl + (a V
) dTpl + (a V) ••• (4) 

d:r: op xT d:c aT px dJ] a:r: pT 

\ 

the co-efficients (~;) irT' Gl
;) p~ and (~;) pT are all infinitely large for 

re = 0 and such that in the development their terms cancel one another. 

Therefore in the development of (~V) etc. the finite terms, in that 
op :cT 

dp 1 dTpl • 
of -E... and - the terms wIth the first power of Ir must be kept. 

ck d:c 
As a starting point I have chosen the relations 

of § 2, which hold for the plait·point. 

If in equation (4) we substitute the values dppl and dTpIWhich we 
dre ik 

obtain hy the differentiation of the above relatioDs: 
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( Os, ) dp I (OS') 
0= - .-L+ 

OX2 op T dw 0.112 oT p 

dTpl -, 
dw 

while we write 

we find: 

(
0 V) (01l1l) ( au ) (02V) 

dVpl = (OV) + (04b) äP xT d;2 pT + äT pa; ä;2 pT • (5) 
dw o.c pT ox4 p'l' (02V) (OSI7) _ (0217) (OaV) 

0.c2 pT ox3 pT ow2 pT oxS pT 

To determine G:)PTWith X small we may avail ourselves of the 

equation 

(02') (a2t/') ( a2
ztJ ) (OV) ax2 pT = ow2 'lJ7 + axov 'I ox pT= O. 

We put 
11' = MRT {(I-x):l (I-x) + x l x I + cp 

where therefore 

If we eaU 

(alP) I (a 2IP) II 

OIC 'lJT= cp , ox2 'lJT = cp , 

then 



- 15 -

( 306 ) 

Rence 

(all) MRT rp" MRT MRT + rp" 
- = + -= -+ + 
o.c pT (1) (OP) (OP) (OP) (OP) 

IC -$ 0111 vT o.r vT 111 0,1; fiT O.c oT 

+ terms with x in the denominator. 

In a similar way we develop each of the differential quotients 
in (5), always retaining the terms of the highest order but one. 
We s11a11 not repeat here tbe rather lengthy computations; it must 
be remarked that in tbe lCduction of the differential qllotients ot 
1J we have started from tbe fundamental form 

dE = TdYJ - pdv + (OOÇ) d:c. 
1& p'J! 

We obtain 

In the same way G:~) p~s determined by means of E. 

(~) is expressed by means of differential quotients of IJl, where 

aIDong others (~::)p:nd (~::)p~ccur. The equation (~:~\T = 0 

gives a value for (~::) p:fter which (~:~) p;an be determined from 

the equations obtained by differentiating 

p=f(va: 1') 

three times with regard to IC, keeping Tand p constant. 
All this performed, we finally obtain: 

I) Comp. VAN DER WAALS, OontmuÎtat Ir pag. 125. 
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If onee more as in § 2 we introduce the law of corresponding 
states, this farm may be redueed to; 

X [04 C::;J j/3-a (~:)r -
- O:(a;:~~) ff3-a(~:) ~ -30la~;T)a], . . (2c) 

. 1 dVxle 
where for a-/3 we may wnte; - -. 

'IJle dJ: 
In this formula two new constants oecur, to be derived from tbe 

equation of state, viz. 

2'~-2' 

According to VAN DER WAALS' formula with ae T for the 
molecular attraction (as weU as for CLAUSlUS' formula) at the critical 
point 

In consequence of the results found during the testing of the 
formulae (2a) and (2b) it is obvious that the observations do not yield 
sufficient data to test formula (2c), the more as higher differential 
quotients of ~ occur. For the comparison of observation and calculation 
formula (3) is for the present the most important. 


