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KONINKLIJKE AKADEMIE VAN WETENSCHAPPEN
TE AMSTERDAM.

PROCEEDINGS OF THE MEETING

of Saturday December 28, 1901,

D OCH

[
(Translated from: Verslag van de gewone vergadering der Wis- en Natuurkundige

Afdeeling van Zaterdag 28 December 1901, Dl. X).

Coxrenrs: “Contributions to the knowledge of vAN pER WaALs' -surface. V. The dependence
of the plait-point constants on the composition in binary mixtures with small
proportions of one of the components”, By W. H, Keesonm. (Communicated by Prof.
H. Xansroinee ONNES), p. 208. — “On function and structure of the trunkdermatoma®,
(II). By Piof. C. WixkLEz and Dr. G. vaN RiaNBERK, p. 308, — “The shape of an
empiric isothermal of 2 binary mixture”, By Dr. Pa. A. KornsTamn, (Communicated
by Prof. J. D. vAN DER WaaLs), p. 320. — “Factorisativn of large numbeis”. (I).
By F. J. Vaes. (Communicated by Prof. P. H. ScHouTE), p. 326, {with one plate). —
“A formula for the volume of the prismoid” By Prof Jax pE Vaiss, p. 337. —
“The dispersion of the magnetic rotation of the plane of polarisation in negatively
rotating salt-solutions, II. Further measurements with potassium ferricyanide”. By
Dr. L. H. Sierrsema. (Communicated by Prof, H. KaMERLINGH ONNES), p. 339, —
%A mew law concerning the relation of stimulus and effect”. By Prof. J. K. A. WERTHEIM
SaroumoxsoN (Communicated by Prof. C. WiNkLeR, p. 341, (with one plate).

The following papers were read:

Physics. — W. H. KeesoM: ¢Contributions to the knowledge of
VAN DER WAALS w-surface. V. The dependence of the
pladt-point constants on the composition in binary mixtures
with small proportions of one of the components.” (Commu-
nication NC 75 from the Physical Laboratory at Leiden by
Prof. H. KAMERLINGH ONNES).

§ 1. In § 2 of Communication NO 59a (Proceedings June 1900
p. 276) KamMERLINGH ONNES has drawn attention to the question
as to how far, for the study of vAN DER WaALS' y-surfaces, we can
avail ourselves of the law of corresponding states by applying this
to the homogeneous phases (stable and unstable) of mixtures of
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two normal substances, especially, in how far from an empirically
correct representation of the isothermals (and thus of the y-lines), at
different temperatures for a simple substance we can find the w-lines
for mixtures of different composition « at one temperature, and
hence also the unstable part of the w-surface. In Communication
No. 595 (in collaboration with REiNeANUM) this method appeared
permissible even with entirely arbitrary mixtures of carbon dioxide
and methylchloride; also when the mixtures under observation differ
only a little in composition, as when investigating the critical
phenomena in a normal substance with small impurities, it promised
to be very useful. For a long time {comp. Communication NO, 68,
Proceedings March 1901 p. 630) investigations for this work have
been made at the Leiden Laboratory, in which I have taken part
by making some measurements. As the first part of them we may
consider VERSCHAFFELT’S measurements on the conduct of mixtures
of carbon dioxide and hydrogen, in so far as they concern mixtures
with a small proportion of the latter substance. They show, as
VERSCHAFFELT!) has demonstrated in Communication N°. 65 that
the law of corresponding states indeed is nearly applicable to these
mixtures, and that by means of the said law, the critical tempera-
tare and pressure of the homogeneous mixtures can be determined.

In the following pages we will examine in the first place what
may be derived from VAN DER WAALS' invesiigation of the mixtures,
by the aid of the law of corresponding states, about the course
in the pT-diagram of the plait-point curve of binary mixtures in
the case that the proportion of one of the components of the
mixture is very small. Then the formulae obtained are compared
with VERSCHAFFELT’s observations. Lastly hy means of the law of
corresponding states I have derived an expression for the variation
of the plait-point volume with the composition.

§ 2. As a starting point some formulae given by VAN DER WAALS
in the Proceedings May and June 1895, Arch. Néerl. t. XXX
p- 266 and 278 are used, which formulae may be also derived using
the property that in the plait-point:

A
@
037
=) =0,
(8-’173 T
where £ =w 4 pv, if w represents the free energy.

1 Arch. d. Sc. Néerl, (2)t. V p. 644, Comm. Phys. Lab. Leiden nl. 65.
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The first of these equations states that the plait-point is situated
on the spinodal line, the second that the isobar on the wy-surface
drawn through the plait-point, does not enter the plait.

VAN DER WaALs finds (Proceedings May 1895) for + =0, a
formula (5), which we write:

0 )
@)_(@}3) MRTk(ﬁ)(;ag o
" e (adf & MET (32 I;v )T

where it is taken into account that at the critical point of a simple

substance
()= o (zar)

Besides vAN DER WAALS finds an equation (9) (Proceedings June
1895) which we write: -

pl

dTp (gz) MR (ajzgv ) T

do MRT;, ("a“?‘z'ag_'z'") "
for « equal to zero. From these two equations follows:
92
appl ( ) ( ) (8d‘)v;’i_ ME (aw gv )1' . (10
“ T T ()

Here Tt an indicate the variation of the ecritical plait-

de
point temperature and pressure with small admixtures, 7% is the
critical temperature of the pure substance,
We may now unaturally introduce the law of corresponding states
into the equations given above. By means of

d;
d 'Ppl
dr

P == T Pzt V= vy} T=7Ty
20%*
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where pu, vi and T, respectively represent: critical pressure,
volume and temperature of the mixture taken as homogeneous, and
therefore :

= f (@, %),
we find

(310) . dpt _ par dvat 0 (Bn Pk dkaT (3%)

oz dz  vg do do/ Tz do 97/’

() = oy () e o (3)_pt e, (B

Pk dek ( 0% )

This becomes for # =10, as then r=w=7r=1,

(a)_O d(g;) 0:
@)=l =< ()

(a)e=—"5 (55

in which we have called:

1 dTg 1 dpa

Ty de " pr d

=4

With these we have for equations (18) and (1):

L dly_ ;ﬂ““@_y':)is. )
Tk de CQ(%)
L 2
—-a
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Ca m)

if



( 297 )

MRTy,
PEVE

04.'=

which two equations also give immediately the slope of the plait-point
curve in the Tp-diagram at the critical point of the pure substance.
Hence we see that the variation of critical plait-point temperature
and pressure due to the presence of small admixtures is entirely
determined by the two quantities ¢ and f.

From these two equations follows also that for very small values
of z:

ppz-—m_(d_p_) 3
Tp—To \dTl/g @)

if ( dT) is the =z for the saturated-vapourpressure curve of the simple

substance at the critical point. In this way we again find the relation,
given by VAN DER WaaLs Proceedings Nov. ’97, p. 298,

If therefore we connect in the pZ-diagram the critical points of
the homogeneous mixtures with the plait-points of these mixtures,
these connecting lines at the critical point of the pure substance
are parallel to the vapourpressure curve of the latter.

§ 3. In order to be able to compare these formulae with observations

. om ¢*n .
on mixtures (5?) and Cy (m) are required.
(?) can be determined in two ways. For according to a thesis
T

of VAN DER WAALS (gr) at the critical point = (%—T:) , Where

coex
Teoew Tepresents the maximum vapourpressure. Prof. VAN DER WAALS
was so kind as to communicate to me the following proofs for this

thesis, as developed many years ago in his lectures.

1. MaxwenL's criterium at a coexistence pressure independent
of the volume is given by

Ud
Peoez (Vd — vn) =f p dv,
L

where v, and vg refer respectively to liquid and vapour. By differen-
tiating this with regard to T, we have
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dp | dvg  dvy dvqg  dvy

—_ = = d P bl

(di CSZ’;’ ”")Jr”“’“ dT f aT v peo (dT ’dT)

or : ' ' ‘
’Ud

| (—)— vdi,,vf <3';)d

)

and in words ( dT)cifzthe mean value of (g 7 between the volumes

v, and vg. At the ecritical temperature the mean value is the

* pressure-variation co-efficiént itself or \

; Z%)m gm't: 3 @%’) fcrit |

2. By 1ntegratmg the lsentroplc relatlon '
oY\ Bp
(30 ) (BT)

and by puttingﬂ (vd — vy) (ﬁn) instead of 74— and proceeding as in 1°.

coéz

3. By using the pvT-surface.

At the critical pomt a tangent to this surface may be drawn
parallel to the v-axis. The tangent-plane at the critical point is thus
at right angles to the pT-plane, and its section is a straight line.
Each curve on the pvT-surface which passes through the critical point

‘and whose osculating plane at the critical pomt while cutting the

tangent plane to the pvT-surface at an angle, is not perpendicular to
the pT-plane as is the case with the tangent plane to the pvT-surface, is
projected on- the pT-plane as a curve touching the above named section:
Hence 1. the border curve, of which the osculating plane co-in-
cides with the tangent plane to the pvT-surface at the critical point,
9. the section of the pvT-surface by a plane at right angles to the
v-axis, 3. the isentropic line for the critical point, etc. All these
lines have projections on the pT-plane, touching each other in the
projection of the critical point and hence give (;ZZ;,) values with dif-
ferent indices v, », coéx., ete. which are equal to one another at the

critical point.
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Analytically we brmg this into the following form. As for each
point of the pvT-surface

(N L (N
= @ @+ (a2),

and as at the critical point (%%) is equal to zero,.we obtain for each
. b .

curve passing through .that point.

dp ap
ar (a T),,'

We are uncertain of the equality only. when the curve has an
element in common w1t11 the 1sotherm In this case the value of

(gp ) ng’ must be more closely mvestmated Thxs strict mvest1gat10n
v/r

would therefore be also required for the border curve were this not
rendered superflious by the proofs 1 and 2. That the relation
(dp) | (EE) holds for the border curve must be ascribed to the
AT Jeoiz aT ‘ v :
circumstance that the latter lies in a cylinder surface, as mentioned
above, which touches the pvT-surface at the critical point.

From a graphical representatlon of p as fllﬂCthD of v in the.
neighbourhood of the critical  point- according to AMAGAT’s data
for the isothermals of carbon dioxide I found: o

(g’:) ——\7 3 and c'4 (aazgt) = — 522

t “\

puttmg the crltmal vo]ume 000426 and 04_ 3.45 whlle

on
= 0.5
(ar)
would follow from an extrapo]atlon of AMAGAT's observations for
the vapour pressures. ' |

With this uncertainty in (g—:) it may be well to investigate what

would be y1elded by different cquations of state.

3 _E°RY o
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VAN DER WAALY equation:

T,—r
11'

ae

»+ (v — b)) = MRT

ue

as well as Crausiug’ :

gp +m§7ﬂ,—)22 (v — 5) = MRT,

(gi’-:)z ., G, (a—a;%;) =_ 32

I would also have availed myself of the equation of state given
by Dierericr (Drube’s Annalen Bd. 5 p. 51—88, May 1901), but
found that there has crept an error into the derivation of this to which
I draw attention in the following section.

give :

i

RT . . .
§ 4. DIETERICI puts p = = 7 which v, is derived from v

Vg ~—— Ug

by means of the equation:

Vg .
dv v T2
eSS
v
1 & 2
ba:bc—z—v-c, bc=—é‘vk,

where a is a constant to be calculated for each substance from the
critical data, for instance for isopentane a == 2.116.
From these equations we find:

T /dp 8 v T} ’ 1 v?
—_—la— ) =1 —_— — .
P (3T>,, + 2% T’/’gl 9 vasg
which for the eritical point becomes
Ty sop 8§ 1 w?
2k (aT v + 2 ¢ ( 9 'Uazg’
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hence for isopentane ﬁ“—(g—i) & 4.174, which does not agree with

the observations. Indeed Diererici wrongly supposes that his
formulae also represent the correct isothermals for volumes smaller
than the critical. 1)

3

He derives (L.c. p. T4) the followmg formula for E_f"

d
w oy T "” = 2.116 v, RTFk,

where p, represents the saturated vapourpressure and v; and v, the
volumes of saturated liquid and vapour.
This formula gives at the critical point:

Ty dps

—_— — =

pr dT

According to the thermo-dynamic thesis laid down in § 3

‘iffs__(@z_o
T \T/,

at the critical point. Hence the two results contradict each other. The
explanation may be found in the circumstance that DIETERICI has

assumed that
'vz
j ndv=J.p

L3
if
RT

P+7F=m

and if ¢ is the internal latent heat of evaporation. This would be
irue if © were not a function of the temperature; as this is however
the case with DieTERICI the internal latent heat of evaporation must

be found from
J. o= f 5-1-, —~ p]d

Y} See Davier Berrueror, Arch, Néerl, d. Sc, (2) t. V., p. 44l.

-10 -
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. Hence .the circumstance that DrerERIOr 8 formula for %- glves a
(

good representation of the observations proves that his original equa-
tions do not do so. Hence his equation of state must be left out of
congideration.

- . (omy | o'
. T ting —
§ 5. The e?zls ing uncertainty about (Br) and C, (aa ~

simple substance (when (avn) diminishes, ﬁrobafbly Cy (a?aar) must

a7,
also be diminished) is a great impediment in the application of our
cons1derat10ns to mixtures; we may, however, accept that we arenot

P2 forg

far wrong, when W1th VAN DER WAALS we put (gr) — 6. 7 and

C, (aa%; ) =- 32.2.

§ 6. We will apply the equations (2) and (3) to the observations
of VERSCHAFFELT. He gives (Commumcatlon; n% 47, Proceedmgs
Tebr, '99 and Communication n° 65, Arch. Néerl. série II . Vp.
646) for two mixtures of carbon dioxide and hydrogen T} and Poly
for three mixtures T.x and p.z as he has derived them by superim-
posing the logarithmic isothermal-systems, and also for carbon
d10x1de Tr and pr as calculated by him from AMAGAT § isothermals

z T | pp Tex Prk

o | s047 | 73.6 | 3047 | 73.6
0.0494 | 800.4 91.85 | 287.8 | 68.1
0.0095 | 997.5 114.2 973.6 63.5

0.1990 : 248.7 | 54.8
1 dT, PR
To derlve from thls o= — ( xk) - when 2 is small, we may
Te N de /Ja=0 L .

put Top = T} (1 4- aw - #'s®) and compute the co-efficients @ and
o' from the observations for # = 0.0494 and #=0.0995. Thus we
find = —1219 B=—1.645. If on the contrary we compute
¢ and B from the formulae accepted by VERscHAFPELT (Communi-
cation n° 65, Arch. Néerl. t. V p 649) to represent Txk and pak

a8 functlons of z:

-11 -
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T = C'y 1/? ) Pak = Cy l/-.b_;
. Zz :

where _ )
.K_:c bz 1 ‘ “
2= 1—1.402 4 01842, =1+ 0.526 2 — 0,085 22,
K22 - bgz . -
then we find :
o= —0968 [=— 1489,

It appears: therefore that much uncertainty exists about the
values of & and /. This must partly be ascribed to the uncertainty
in the determination of T and p.z following the method of RavEaT
(from VERSCHAFFELT'S quadratic’ formulae I caleulate for 2 = 0.0494;
Ty = 290.8° C,, pa = 6835 atm., while VERSCHAFFELT found
Ta = 287.8° C. and pur=068.1 atm.), and partly to the small
number of observations, from- which the variation of Ty and py
with # must be derived.’

However this may be, where the uncertainties in aand /J’a.re added

o 0%
to those in (87) and C, (8 5
from the comparison of the observations with the formulae (2a)and
(20). Tt is even easy to choose within the hmlts of uncertalnty values

04w dTy
for e, ﬂ,. (3;)’@"( ), that lead to results‘for — and

)11: is obvious that nothing can bederived

dwdr
f‘l—};"f’i—, w,hich are entirely at variance with the observations. With
. an '
the selection we made, as stated above, of . (Br = 6.7 and

‘, (aa:av )= —32. '2 we should derive by means of the values

of & and /3, found from the quadratxc formulae, in which VERSCHAFFELT
expressed his observatlons :

A

@ — 0963, f=—149:
1 4
_l_d_TLl—_-__o,zo, _ﬂ_e,eg
I, de Pr dx .

which véiﬁes might be made to agree “lvwvit'h the form of the plait-
~ point curve according to VERSCHAFFELT. .

-12 -
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Of greater importance is the lest of the relation (3), which not
only for hydrogen but for every substance mixed with carbon
dioxide will hold with » exceedingly small:

Ppl — Pk

— " —=1.61.
Typ — Tox

For we find for this proportion with

@=0.0494 : 188,
z==0.0995 : 2,12,

so that the value 1.61 for » = 0 will come near to the truth and
therefore in this respect theory and observations confirm each other
sufficiently.

d, arT
“pt and —Z l

§ 7. In the same way as we have considered ==
T

we

oy d s . .
can also consider —& for 2=10, a quantity important with a view
dz !

to the determination of the critical volumwe of a simple substance.
In the equation:

%=(%>WT%€E+(%>px%+(%>pT SR

the co-efficients (g—;) . :—%

=10 and such that in the development their terms cancel one another.

0v -
)P, and (5;);;2’ are all infinitely large for

Therefore in the development of (g—;) . ete. the finite terms, in that
Z.
aT'p

andﬁ the terms with the first power of » must be kept.

As a starting point I have chosen the relations

@@=t G

of § 2, which hold for the plail-point.

dpyi
f L2
%

If in equation (4) we substitute the values %ﬂand %2;‘31 which we

obtain by the differentiation of the above relations:

-13 -
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=(%%§>T% (%)p %ﬁ’

o= (25, 2o (), T ()
while we write

4 )
(a—PZ)mT= ” <8—§§‘)vz ==n

we find:

dv 02 0 o

d'vpl (80) + (aég) (ap) (ﬁ)pfl’—]_ (-a—;)px (Ez%)pl'
4 ) 3 ) 3

e () () e e

- (3)

To determine (2—33) with z small we may avail ourselves of the
aw pT
equation

&)= Gt Gy (B
We put

y = MRT{(1—a)1(1—2) - zla} 4 @

v
(p::——-fpdv.

%3‘0>v1'

where therefore

If we call
0%\
=, (sz vT_ Py

then

(_g%’) T &1241111;) + ¢

-14 -
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Hence

MRT " MRT  MRT 4 ¢"
(av__ +¢=ap+ —l—w+

(@), @@, @
4 terms with # in the demominator.

In a similar way we develop each of the differential quotients
in (5), always retaining the terms of the highest order but one.
We shall not repeat here the rather lengthy computations; it must
be remarked that in the 1eduction of the differential quotients ot
n we have started from the fundamental form

de = Tdn — pdv -+ (g_i)pr ds.

We obtain

7 (5= (57, (52t G2t

+ 35z, &),

o%ey 002
T + (3v2>z1' <3m)

3
In the same way (gﬁ) is determined by means of .
2T
4
(g;i) is expressed by means of differential quotients of i, where

among others (?2}) and (a 3

gives a value for (@_v after which (8 ) can be determined from
022 043 T
the equations obtained by differentiating

) occur, The equation (as—g)ﬂ = 0

p=f(v2 1)

three times with regard to =, keeping T aud p constant.
All this performed, we finally obtain:

'} Comp. vAN DER Waars, Contmnuitat II pag. 125.

-15-
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& (5 (@5,

dopt_ MRTk[ L
72 (@) (MRTy® " MRT (URTw?
305 Id
(83:§T) { (Opy? ¥ ﬂ
VD 2 t('a_w> + HET awauz

(@az) (M21:)

If once more as in § 2 we introduce the law of corresponding
states, this form may be reduced to:

o
/j‘_ -
—2—4—17;%:5 g =B —— “(372% X
ACEPRACLY

[ (azjgr) f—a g:) ; o
C(aj:;r )}—a( v 5)i-se, aig)] e (@)

. 1 dv’w’k

r —/f3 we may write: - —.

where for a—f w y ol
In this formula two new constants occur, to be derived from the

equation of state, viz.
0w 0%
C‘*(’c)m) and C (8 ZBT)

According to vaN DER WaaLs' formula with ae “  for the
molecular attraction (as well as for Crausius' formula) at the critical

point
27 3% 3/0%% 512

In consequence of the results found during the testing of the
formulae (2a) and (2b) it is obvious that the observations do nof yield
sufficient data o test formula (2¢), the more as higher differential
quotients of w occur. For the comparison of observation and calculation
formula (3) is for the present the most important.

T,T
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