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for which T, is a minimum. But it may be advisable to wait with
the discussion of this and similar cases till an experimental inves-
tigation has brought them to light.

If by increase of temperature the surface of coexistence has so
far contracted that it no longer covers the whole triangle oy, a
tangent cylindre may be drawn normal to the wy-surface. All the
points, in which the tangent cylindre and the surface of coexistence
touch, represent mixtures which are in critical tangent-point cir-
cumstance. A plaitpoint can never lie on this apparent circumference
of the surface of coexistence, except in some special cases. For as
the generatrices of this tangent cylindre are parallel to the volume-
axis and p must have the same value for the pair of phases coin-
ciding in a plaitpoint, we have

G
ov?
for such a special case. In order not to have ¥ or & negative
’ . 07,° oy’ 8 ’
oy oy . .
—— and —— must be equal to 0. Such a mixture behaves asa
oz dv dy dv

simple substance even under critical circumstances. See for a similar
circumstance with a binary system Cont. II page 116. So the
plaitpoints lie either on the liquid sheet, or on the vapour sheet of
the surface of coexistence. In the first case all mixtures, indicated
by points of the ay-surface, lying between the section of the tangent
cylindre and the projection of the curve on which the plaitpoints
are situated, have retograde condensation of the first kind. If the
plaitpoints lie on the vapour sheet, then such mixtures have r. c. II.
(To be continued).

Physics. — “On the asymmelry of the electro-capillary-curve.” By
Dr. J. J. vaAN LAAR (communicated by Prof, VAN DER WAALS).

I. We may suppose, that it is well known, that the new theory
of the so called Capillary-Electrometer of LIPPMANN may be described
as follows.

Two mercury surfaces, one large (4), the other small (B) — this latter
in the so called capillary — are separated by a conductive liquid
C, diluted Hy S0y, a solution of K Cl, or any other solution. In all
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these cases some mercury is solved and a saturated though very
diluted solution of Hg, SO, or Hg, Cly ) is formed.

The mercury and the solution assume
therefore a different potential. The dif-
ference- between those potentials I call
,natural difference of potential”. The con-

-+
centration of the solved Hgo-ions being
greater than that, at which the Hg-electrode
and these ioms are in equilibrium, some

++
Bir, 1 Hgs-ions are deposited ou the mercury,

where they garé discharged immediately. So at the separating surface
between the mercury and the solution is established a so called electric
double-layer: on the side of the mercury - electrons, on the side
of the solution — ions SO, or CL. The thus established difference of
potential be V;—7V;=p,. (I always indicate the solution by means
of the index 2). In the normal case this quantity is negative.

We know however, that the absolute value of this difference of

potential will decrease, when the concentration of the ﬁgg-ions in
the solutton decreases. 'Whken we extend the dilution beyond a
certain point, the difference reverses its sign, the potential of the
mercury becoming —, that of the solution -, so the electric be-

haviour of mercury becomes comparable to that of zinc,
How can this dilution at one of the electrodes be brought about?

To that purpose we apply an electromotive force £ in a manuper
as is indicated by the figure. In consequence of the tramsport of

++
ions, the concentration of the Hgg-ions in the solution near the
large mercury surface will become greater, that near the small

4+ +
surface will decrease. At this latter surface namely, Hg, (and H or ﬁ)
will be continually deposited in consequence of the transport of
SO, or Cl towards the large surface; but when the current of the
inserted cell has only passed for a very short time, the concentration

++ _ ,
of the Hgg-ions near the large surface will practically not have
varied, near the small surface however it will have varied conside-
rably in consequence of the mueh greater density of the current.

++ +
) Not HgCl The mercurosion being proved to be Hgg and not Hg. [See e, g
Oao, Zeitschr, f. Ph, Ch, 27, 298 (1898)L
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The more so, as the solubility of Hg, SO, (or Hg, Cly) is 0 small,

3
that the number of }Igg-ions present in the solution was already
very small from the beginning. ‘

Because of this considerable change in concentration near the
small surface, the difference of potential soon varies at thal place,
and it is easy to see, that this ,kathodical” polarisation causes the
current to cease quite, or nearly quiteY). Be E namely the elec-
tromotive force of the inserted cell, then the intensity of the current
has become zero, as soon as the original difference of potential Aq
at the small surface has varied so much, that the new value A
satisfies the equation

-E:A""Aoy

from which follows :

- AZAO“F'E . . . . [ . . a (I)

‘When this value is reached, the concentration ceases to vary and
a stationary state is established.

A, being negalive, A will, when ¥ increases, first reach a value
zero and afterwards when E increases still more, A will become
positive. For every electromotive force Z, which we may apply, we
get a definite value of A, and so — measuring every time the
surface-tension y of the mercury in the capillary — we get a series
of values, which form together a curve

y=5(8) or =TF(&),

which is called the electro-capillary-curve. Thig is the curve whose
properties we will discuss in this paper.

On purpose I have given the above explanation rather elaborately,
because for the theoretical considerations which follow, a clear
insight is required in what takes place in the capillary-electrometer
according to the new electrochemical theories of NErNsT, PLANCK
and others. These theories are confirmed brilliantly by the experi-

1) We shall leave out of account the so called sresidual current”, which will
be caused by the slow depolarisation by diffusion, the intensity of that current being
extremely small,

4
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ments of PALMAER?), SmITE?) and many others, and so the old
theory of voN HerLmmOLTZ, that of the so called “charging current’’
has been overthrown. The electromotive forces, calculated according
to the old theory, do not agree at all with the experimental data,
whereas those, calculated according to the new theory, agree quite
well,

II. We will now deduce two relations. First one, giving O as

++
a funetion of the concentration of the Hgy-ions in the solution; in
the second place one, giving ¥ as a function of A.

g .- In order to find the conditions of
’lﬂ ° equilibrium between a metal (mercury)
2 # and a solution (in which the ions of

the metal must occur), we imagine a

i [4
/ gl .
Hgs-ion to pass the separating surface
" in the direction from the solution

24 towards the mercury. The mercury is
Tig. 2. ! thought -}, the solution —. The

++
molecular thermodynamic potential of Hg, in the solution be wy,
and that of 2Hg in the mercury be g;, then the change of the
thermodynamic potential per gram-ion will be:

H1 — HMg.

As in every gram-ion 2¢ electric units are stored, the change of

++
the thermodynamic potential for the passage of a quantity Hg,,
corresponding with de electric units, will be:

o — fg
——
250 ¢

P (1))

The electric potential of the liquid being represented by V,, and
that of the mercury by V;, the passage of de electric units through
the bordering layer will work a change of the electric energy

equal to
(V]. -— Vz) de o « + v v 0 0 e (b)

1) Z, £. Ph. Ch. 25, 265 (1898); 28, 267 (1899) ; 86, 664 (1901).
%) Id, 32, 433 (1900).

\
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Finally an accessory process takes place — and to this no suffi-

. . - ++ 3
cient attention has been paid as yet. As soon as a Hgy-lon has

passed from the solution info the mercury, a superfluous SO,-ion (or
Cl-ions) will go to the bordering layer, and in the mercury the -+
electron, which is liberated, will also move to the bordering layer.
In the bordering layer therefore changes take place. Let ¢s be the
so called capillary energy (s representing the surface). This quantily
changes, when the SO, (or Cl)ions go from the interior to the
bordering layer. For the transport of a quantity SO,, corresponding
with de electric units, this change will be:

d (¢p9)

aede..........(c)

In combining (), (b} and {c¢), we get the following condition of
equilibriom :

fﬁ~#2+(m_y»+3Wﬂ:

0,
28 de

or when we call gy — py ==y, and Vy,—V;=A, as we have
already done:
3
N N )

2 g dw

where @ = — represents the surface density of the charge of the
8

bordering layer.
If we had made the supposition, that the mercury is negative,

the solution positive (as is the case when the concentration of the
++
Hgo-ions is exceedingly small), the electrons in the mercury at the

bordering layer would have been negative, and in the solution
+

+ — —_
positive Hgy-ions would have occurred instead of the SO,- or Cl-ions.
In that case we should have deduced the conditions of equilibrium,
by imagining 2 Hg -+ positive electrons to pass from the mercury

A+
into the solution, where they would have formed Hg,. The super-
fluous negative electrons in the mercury would then go to the bordering

++
layer, while in the solution the Hgy-ions go thence. In this case
we should have got:
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Moy — 1y
2&0

d
+ (V=P + 5L =0,

++
where % is related to the change of the number of Hgy-ions in the

0a
bordering layer of the solution. So equation (2) would have been:

Hig @_@g_ .
é";;-f-[)-f-aw_ﬂ v e e e e e (21)18)

Let us pay attention to the fact, that in (2) and also in (2bis)
the surface-density of the charge @ is always taken positive; A can
be 4 or —, but @ is always .

Formula (2) has already been found by Prancg 1), though in another
form and deduced in a somewhat different manner. We shall see
how great the importance of the supplementary term ?}% is for the
explanation of the asymmetry of the capillary-curve,

Before we proceed to express y as a function of A, we will show
how the usual expression of NERNST may be deduced from equation

(2). To that purpose the term 6—2, whose value is small, compared

ow

with the two other terms, is neglected. So we find :

e

A —
280

But for w;, we may write :
tg = peg—pty = (ttg' -+ RT log ¢) — p;
where, when™ the solutions are diluted, u,' will be independent of

++
the concentration of the Hgs-ions. [As we mentioned above, the
solubility of Hg, SO, (or Hgs Cl,) is so small, that the solutions will
always be extremely diluted]. If we write:

ti— g’ = RT log C,
then

C
— RT -1
Hig log C

) Wievemann’s Annalen 44, 385 (1891),



and therefore:

RT c
A='2_£;log'?y a e & & 4~ 4 o (Qa)

which is the well known formula of Nernst. This formula repre-

gents A as dependent on the concentration ¢ of the ﬁzz-ions in the
solution. C is a constant.

If we express A in Volts, and introduce Briggian logarithms, we
get as a factor 0,0002, and the equation becomes:

¢
A == 0,001 Tlogl0 —. . (2b)

LI

For mercury at 18° the quantity C is 10337, when we namely

St
put e=1 for normal concentration of the Hgs-ions. For normal
solutions we get therefore as the value of the difference of potential
(T = 291°,2):

A = 0,0291 X — 33,7 = — 0,980 Volts,
as also NEUMANN and others have found [with the exceedingly

- .1 .
small concentration of Hg, Cl; in T normal KCl-solutions, A=—0,616

Volts (OsTwaLD)].
From formula (2a) it is clear, that A will reverse its sign, when

¢= C, i.e. 10—3%normal.

IIT. Let us now calculate the surface-tension y as a function
of A or .

/ t- -~

Fig 3.

{

To that purpose we increase the surface s virtually with an element
ds. In that element a new state of the surface must be established.
'We have called @ the fofal increase of the thermodynamic energy
per unit of surface, accompanying this change; therefore an increase
of the surface with ds will involve an increase in energy with

¢d‘ov0700'p.0(a)
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But this quantity ods, including the formation of a new double-
layer, this formation must have been rendered possible by transition

~edn
of the required number of Hgg-ions from the solution info the mer-
cury. [We will namely first discuss the case that the mercury is 4-,
the solution —]. Then in the solution SO-or Cl-ions are left free,
and in the mercury -+ electrons, which may move to the new sepa-

rating surface. The total number ﬁ.gg-ions required, is obviously that,
corresponding with eds clectric units. But we saw in II, that the
change of energy, accompanying the passing of de electric units, is
(only (¢) and (b) have to be added):

"-%-Tl‘—%de e (Vi—Ty) de.
o

‘When in consequence @ds units pass, this quantity will amount to
Hig
—0 == ds.
@ (280 + A) ?
According to (2), we may write this:

-——mg—gds..........(b)

3

Moreover for the formation of a new electric double-layer (mercury
-+, solution —) a (negative) electric energy wds (Vy— Vy) is required, viz.

wds. A . . o o0 o 0 oL ()

Adding (a) (¢) and (¢),and representing the mecanical energy, which
must counterbalance these changes, by
f - yds,
we get finally:

dp
y._.rp——aréz)—{-mA.

@ being always -, we have in the case we are treating of
(mereury -4, solution —)2

A:“'k(’],

and finally we get the equation

dyp
7:(?_—.[0 —;;-—k[l)g, . ] . . . + ¢ (3)
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and not simply y = ¢ — ke?, as was assumed in the old- theory, in
which the changes of the bordering layer were neglected.

Had we started from the supposition, that the mercury was —,
the solution -, a transition of 2 Hg - positive elections from’ the

mercury into the solution — where they would have formed ﬁgg,
— would have been required, in order to remnder the formation of a
new double layer possible ; and that would have caused the above
deduction to be modified as follows.

The part (b)) would have been derived from

(#12 +A) ds.

2¢,

But, according to (2:s), this would still have yielded = — ngﬂ ds, s0

this part is not modified. The change of the (negatwe) electric energy
on the other hand becomes now @ ds(V;— Vy), 1. e. -

—ods, A,

where now A is positive = %w; so finally equation (3) is yielded
quite unmodified.

This equation therefore is of general application, as well in the
case, thatin the solution at the bordering layer negative SO,- or Cl-ions

-+
occur, as in the case that there occur positive Hgy-ions.

But — and this is a circumstance of great importance — the term

wgtf will in the two cases nof have the same value for equal values
w

of @. For it would be a curious coincidence, that the change of energy
in the bordering layer, occasioned by adding an infinitely small

++
quantity of Hgp, would Le the same as that, occasioned by adding

. an equal quantity of S0, or Cl. In fact this does not happen. The

experiments show clearly, that the curve represented by (3) is not
symmetrical on the two sides of the point, where w is zero; and
that the curve does noi consist of one continuous parabola, but of
two parts of quite different parabolae, which meetin the point where
@ = 0. Only one of them, namely the ascending branch (mercury +,
solution —), presents a mazimum near the poini where @ =0 (s0

not exactly at that pomt)

-10 -
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In order to enter into more details, we must first examine what
is the form of ¢ as a function of the quantity o.

IV. Let us to this purpose state the fact, that ¢ represents the
excess of the thermodynamic potential in the bordering layer above
that in the mercury and the solution. Therefore we may write in
any case:

p=(ptewtpfa®+t...)+ dolyge,

where ¢ represents the concentration of the 30, or Clions in the
bordering layer, or — when the sign of A is reversed — that of

++

the Hgo-tons, The constant A mway have the positive, as well as the
pegative sign. 'When the charge spreads in such a way, that it
penetrates rather deeply into the bordering layer — as the experiments

o+
seem to prove for the case that the Hg::ions form the + charge (the
mereury being negative) — then 4 will be positive, So this is the
case for the descending branch of the electro-capillary-curve. But
when the charge remains more at the surface of the bordering
layer, as is the case, when SO,- or Cl-ious form the negative charge
in the solution (the mercury being positive), then 4 is negative.
We find this realised in the ascending branch of the curve.
Writing aw for ¢, we get:

m%:(am-{-2ﬁw2+...)+Acalogaa)—]—Am,

and equation (3) takes the following form:

y=@gy—do—k+Ha*H . . . . . . (4

This is the accurate equation of the electro-capillary-curve, and
in what follows we will determine the value of @y 4 and %48
for the two parts of the curve — on the left and on the right of
the point, where & = 0.

The maximum is obviously to be found in one of the branches,
when

1) @q is In this equation still a function of the concentration of the electrolyte, as
oppears from the experiments of Bmirn. See ia. OsrwaLp, Lebrbuch I, 581 £, j
Tuwes, Z. £ Ph, Ch, 28, 625 (1899); 89, 564 (1901).

-11 -

-
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_ 4
8(k+8)

As k4 g is always positive, and ® must be positive, the
maximum can only be found in a branch where A4 is negative,
le. in the ascending branch. The value of the maximum is given
by the equation

Wn ==

4
Ym= Po + 4(k+ ﬁ)

Before we pass to the caleulation of a series of experiments of
SmirH, we will give to equation (4) another form, where not w, but
the electromotive force & of the inserted cell is used as argument.
According to equation (1), we have

A=y + E.
For the descending branch A is positive, namely
‘ A = ke,
So we may write for (4):

A N2
9’=¢’0—A7c-—(70+(3);c-2‘,

or

A
Y =¢o— 5 (Lo + E)— _l—ﬂ(Ao—{—E)2 N ()

For the ascending branch A is negative, namely
A=—tw.

So we get:

4 k !
= g0t 5 (Go+ By =5 Gt B L L )

When developing, we find:
L lm,

7=[%:F%Ao_ﬂl\o]+[ —HSAOZF

k* £ k

-12 -
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where the higher sign relates to the descending lranch, the lower
sign to the ascending branch. This equation may be represented by

y:a—l“bE—cEz, e 0 s e e o e (6)

of which we will determine the coefficients a, b and e.

I have chosen to this purpose a series of experiments of SMITH?)
with 1/;-normal KCl as electrolyte. The concentration of the solved
Hyg, Cl, is here exceedingly small, and the difference of potential between
the solution and the mercury is for this “normal-electrode’ accurately
known (OsTwALD) %), namely:

Dy = —0,616 Volts,
The place, where @ (or A) becomes zero, may be determined without
difficulty. For from A = Ly + B fOHOWb, that if A = 0:
E=—A;=0,616 Volts,
Now in the experiments of SMlTH X is expressed in such units
that E =500 corresponds to 0,102 Volts. The value
0,616 Volts = 6,04 x 0,102 Volts

corresponds therefore in the units of SmiTe with

E=6,04 X 500 = 3020.

!

V. For the calculation of the descending branch we have there-
fore to take into account only such values of E as are greater than
3020. From this I calculated:

0,5318 0,090
¢ = .
0,102’ (0,102)

a = 29,766, b —

The following table shows, that these values represent the descending
branch in fact with great accuracy.

1) Zeitschr, f. Ph. Ch. 82, 460 and 467 (1900).
%) Zeitschr, £, Ph. Ch, 35, 335 (1900).

-13 -
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v caleulated, Found, A
F=3000= 60.402V. | v =99.774 4.99— 3.2%4=31.52 | 31.4 | 4 0.1
3500= 7  » 5.82— 4.40=31.18 | 31.20 | — 0.02
W000= 8  » 6 65— 5.76=250.66 | 30.70 | — 0.04
BW=9 » 7.48— 7.99=-929.97 | 29.99 | — 0.02
5000=10  » 8.92— 90.00=29.09 | 29.10 | — 0.0t
5500=11  » 9.15—10.80=28 03 | 98.00 | -+ 0.03
6000=12 > 9,98 —12,96=26.79 | 26 72 | 4 0,07
6500=13  » 10 81 ~15.21=95.97 | 25.33 | - 0.04
7000=14  » 11.65—17.64=23.78 | 23.79 | — 0.0l
7500=15  » 19.48 —20.23 =22 00 | 22.00 | + 0.00
8000=16  » 13.31 —93.06==20.04 | 20.01 |} 0.03
8500=17  » 14.04—96.01=17.90 | 17.90 | % 0.00:
9000==18  » 14,97 —99.46=15.58 | 15.60 | — 0.02

As we see, formula (6) with these values for e, band ¢ represents
the . descending branch with extraordinary accuracy. If we leave
out of account the value for % =3000, which no longer belongs to
the descending branch, as I have shown above, the difference between

1
the calculated and the observed value surpasses mowhere 6—%; only

. .1
once (at E=06000) the difference is T /o

If in (6) we substitute for E the value 6,04 X 0,102, we get
y for @=0, i.e. ¢. So we find

4
. In order to calculate " and

kB 0,00
= 9= (0,102p

k2

oy
— 23

%, = 31,508,

k2

= §,651.

Ao——=b=

-14 -

we combine (5) and (6):
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Taking into account, that Ay = — 0,616, the latter equation yields
A 0,090 0,8318

—==2 = — ——— = 10,658 — 8,155 = .

p 102 " 008 108 — B85 =2,503

It is superfluous to mention, that the manner in which g is caleu-
lated, involves that equating the first term of (5) with o« = 29,766,

. . 4 .
an identical value-k— is found.

For the descending branch we may therefore write either (according
to (6))
0,8318 0,090

y = 20106 + 555 £ — 5,109

e
)

or, according to (4) y = 81,508 — 2,503 A — 8,651 A?,
putting again A for k@ (A positive).

For the caleulation of the ascending branch we have to make
use of the values of E between 0 and 3000. From these I calculated
as the most probable values:

2,158 0,1906

= 25,45 b= = .
a = 25,456, 0,102 7 (0,102

At once we see, that we have to deal here with a branch of
another parabola than in the descending branch of the electro-
capillary-curve; » being nearly three times, ¢ more than twice as
great. The slope of the ascending branch is therefore, as all experi-
ments show, steeper than that of the descending one.

The following table may serve to verify the values, found for q,
b and ¢, by means of the experiments. We notice, that the experi-
mental data for the ascending branch are few in number, and
moreover are considered as umreliable by the experimentators. )

Notwithstanding the agreement may be considered to be satis-
factory.

Y See 1. 6. SyutH, 1. c. pag 455,
38
Proceedings Royal Acad., Amsterdam, Vol, 1V,

-15-
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1

v caleulated. | Pound, A
B= 0=0%0.02V, | y=25.46-- 2.00—0.00=25.46 | 24.78 ?| 4 0.68?
500=1 > 9.15—0.19=97.42 | 27.40 | 4 0.02
1000=2 > £.31—0.76==99.00 | 29.00 | + 000
1500=3 > 6.46—1.79=30.20 | 30.20 | + 0.00
2000=4 » 8.61—3 05=31.02 | 30,657 | 4 0.37?
B0=5  » 10.77—4.T7=31 46 | 30.33 | 4013
000=6 » 12.92-6.86=31.51 | 8L.41 |4 0.10

The values for E=0 and E= 2000, namely y = 24,78 and
y = 30,65, have been marked with a nole of interrogation by the
experimentator himself; so these values may be left out of conside-
ration (l. ¢. page 460 and 467). The greatest difference is then
about 4 9,. We have still to mention that for

E = 3020 = 6,04 X 0,102 Volts

the values, calculated for a, b and ¢, yield y = ¢, = 81,51, as they
ought to do. The two parabolae meet there.

For ;;p and 7 we find in the same way as above:
k;ﬁ——a—(gi—%g%—lswo
R

so putting Ay =— 0,616
%?—2XI%1,}1%E’2 +§_;_‘;’~2 — 22,570421,108= —1,462.

4 . -
< @ppears to be negative, i.e. the negative charge (Cl-ions) is

situated in the solution at the surface of the bordering layer, and

++
not — as the positive charge of the Hgg-ions — deeper in that layer.
For the ascending branch we may write for this case either

-16 -
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2,158 0,906
0,102 (0,102)2 . ®

y = 25,450 +

or

putting -— A for k@ (A being negative).
The maximum, which is to be found in the ascending branch, may

be calculated from the first of these equations (-Em: ,‘%)

i
2,153

By U7
" T 2% 0,1906

% 0,102 = 5,65 3 0,102 Volts,

1. e.
E, = 5,65 X 500 = 2820, -
Further we find for

2
Ym = @ =+ i’
(2,153)*
= 25,456 - ——— . = 25,456 -}~ 6,080 = .
Ym ¥ -+ 1< 0,1906 1 -+ 6, 31,54-

In the descending branch no maximum is to be found, because a
maximum requires there a negative value of A, and A is here positive.

We see, that the maximum (£ = 2820) does n0f coincide with the
point, where @ =0 (& ==38020, as we found above). The difference
is not great, but still (6,04—5,65) X 0,102 Volts = 40 millivolts. And
in other instances it may be greater of course. It depends wholly
on the value of 4.

The figure represents the accurate course of the two parts of parabolae.
The dotted curves indicate, how the course should have been, if the
branches had been continued on the other side of A =0.

The abscissae are the electromotive forces B of the inserted cell,
and increase with 500 = 0,102 Volts; so they are respectively 1 x 500,
2 X 500, 3 500 ete. The ascending branch is AP, and would
have been continued in P4, if the coefficients remained the same
after A == 0. The maximum is to be found at M, somewhat to the
left of P, the point which separates the two different parabolae.
The descending branch is PB, and would be continued along PB'.
Its maximum is to be found at 22, So the curve, really passed through,
is 4PB. The experimental values agree perfectly with the caleulated
values, now that the figure is made on this scale; only those found
for E=0 and F=4X 1,02 (those with?) do not agree (as is
indicated in the figure by the sign X). -

38*

-17 -
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ﬂ"tiﬂf- dio A/So.uf
P/ZJ9}‘!;0,/0///3,;@”{5,,/4

£

. Fig, 4.

‘We may therefore summarigse the above conelusions as follows.

1s5. An accurate theoretical investigation of the eapillary-elec-
trometer shows, that the surface-tension as a function of the charge
of the double-layer is not to be expressed by the simple equation
¥ = @ — kw?, but by the relation

v = g — Ao — (& + ) .

20d, The coefficients 4 and g differ as fo whether the charge of
the solution is negative (A negative) or positive. For a 1/jg-normal
solution of KCl 24§ is in the first case twice ag great as in
the second, and 4 is in the former case negative, in the latter positive.

51, The electro-capillary-curve consists of two paris of different
parabolae, which meet each other at A =0, and of which the course
of the ascending branch is much deeper than that of the descending
branch. .

4th, The ascending branch presents a maximum ,and this maximum
need no¢ coincide with the point, where A =0. In our example this
difference amounts to 40 millivolts,
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5th. The hitherto unexplaired peculiarities of the electro-capillary-
curve are in this way fully explained.

6th. The capillary-electrometer of LipPMANN is according to 4th
not at all reliable for an accurate measuring of the differences of
potential between metal and electrolyte.

March 1902,

-

Mathematics. ,Right lines on surfaces with multiple right lines”.
by Prof. JAN DE VRIES.

§ 1. If a surface S* of order n possesses a line ! of multiplicity
n— 2, it is cut in a conic by any plane passing through I In order
to find the locus of the centre of these conics we consider the sec-
tion C% of S» by the plane at infinity. The point L, on! at infinity
is a point of multiplicity »—2 on this curve; so €% is of class
(4n—0) and admits of 2(r—1) tangents passing through I, and tou-
ching it elsewhere. Each of these tangents determines a plane
through ¢ cutting S in a parabola; so the locus of the center is a
curve of order 2(n—1), of deficiency zero, cutting [ 2n—3-times.
This curve meets S a number of (2n—3)(n—2)-times on ! and
2(n—1)-times at infinity; the remaining points of intersection are
double points of degenerated conics. From this ensues the known
property that the line ! of multiplicity (n—2) is met by (3n—4)
pairs of single lines.?).

§ 2. If [ is chosen for the axis 0Z of a right-angular system of
coordinates the surface S can be represented by an equation of the form

A (24 y) + da—1 (2, 9) 2 + Ba1 (2y9) +-
+ dn2 (2, 9) 2 4 Brso(2,y) 2 + Coa (2, ) =0,

the indices n, (n—1), (n—2) denoting the order of the corresponding
functions 4,B,C.

From this is evident that an S* with given (n—2)-fold line ¢
can be made to pass through (6n—3) more points chosen at random.
As we have 6 n—8 =5 (n41) £ (n—8) it seems that for n > 7 we

1) See e. g R. SrurM, Math, Annalen, vol. IV, p. 249,
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