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4. Thl'eshold value and refractory periou are complex quantities 
which originate in the imperfect isolation of the reflex-arc from the 
surrounding medium alld in the passive resistances of the chemical system. 

5' A.ugmentation and summation of the effect ofstimulation are thQ 
conscquence of not compensated changes (in tbe sense ofCLÄUSIUS). 

6. The form which expresses the law of WEBER-FECHNER is a 
formula of interpoJation deduced from the principle of entropy. 

Dynamics. - H. A.. LORENTZ. «Some considemtions on the princi­
ples of dynamics, in connex ion witk HERTZ'S "Prinzipien 
der Meckanik". 

In his last work HERTZ has fonnded the whole science of dy­
namics on a single fundamental principle, which by the simplicity 
of its form reca11s NEWTON'S first law of motion, being expressed 
in the words that a material system moves with constant velo city 
in a path of least curvature ("geradeste Bahn"). Ey means of the 
hypothesis that in many cases the bodies whose motion is studied 
are connected to an invisible material system, moving with them, 
and by the aid of [t terminology akin to that of more-dimensional 
geometry, HERTZ was able to show that all natural motions that 
may be described by the rules of dynamics in their usual form, 
may be made to fall nnder his law. 

From a physical point of view it is of the utmost interest to 
examine in how far the hypothesis of a hidden system, connected 
with the visible and tangible bodies, leads to a clear and satisfactory 
view of natural phenomena, a question which demands scrupulous 
examination and on which physicists may in many cases disagree. 
On the contrary, it seems hardly possible to doubt the great advan­
tage in conciseness and clearness of expression that is gained by 
the mathematical form HERTZ has chosen for his etatements. I 
have therefore thonght it advisable to consider in how far these 
advantages still exist, if, leaving asi~e the hypothesis of hidden 
motions, and without departing from the general use in dynamical 
investigations, one considel's the motion of a system as governed hy 
'%rces" in the usual sense of the word. 

In what follows there is much that mayalso be found in the 
book of HERTZ. This seemed necessary in order to present the 
subject in a connected form. 

As to the authol's who have, befare HERTZ, published similar 
investigations, I need only mention BELT1tA.:~II, LIPSCIIITZ and DARBOUX. 

47* 
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§ 1. We shall consider a system, consisting of n material points 
and we shall deterUline its position by the rectangular coordinates 
of all these points. The coordinates of the first point will be re-

I 

presented by .'l11, ms, lIJS, those of the second point by m.]" IV6, mo, etc., 
and any one of the coordinates by m., the index v varying from 
1 to Sn. We sbaH write m for the mass of the system, and m. Jor 
that of the point to which the index v belongs. Th is implies that 
any one of these quantities m. has the same meaning as two other ones. 

§ 2. We shall determine an infinitely small dis placement of the 
system by the increments dJ'. (or, as we shall write in some cases, 
(jm.) of the several rcctangular cool'dinates. We shall ascribe to such 
a displacement a definite leng th , to be denoted by ds, and defined 
as the positive value that satisfies the equation 

Sn 

md 82 = Em. dm.2 
1 

• • • • • (1) 

The displacement of the systcm may be considered as the complex 
of the displacements of the individu al points, and the rectangular 
components of these last displacements, i:-e. the differentials d.v., may 
be called the elements of the displacement of the system. We sbaH 
also caU ds the diiJtance between the positions of tbe system before 
and af ter the infinitely small displacement. 

§ 3. Let P, P': pil be three positions, infinitely near each 
other, ds, d8', dB" the lengtbs of tue displacements P~P', ~P", 
p'~p". It may be shown by (1) that any of these lengths can 
never be greater than the sum of the other two, so that we may construct 
a triangle, having de, ds', dl," for its sides. By the angle óetween tlte 
displacements ~ P' and P-;; pil we sball understand the angle 
bet ween the sides d8 and ds' of this tl'Îallgle. If we denote it by 
(B, s'), the elements of the first displacement by dm. and those of 
the second b d.v'., we shall have 

Sn 

m ds ds' C08 (8, 8') = E m. dm. dm.'. • • • • (2) 
L 

In special cases the ang'les of the trianglc may be on a straight 
line, so that (s, s') = 0 or 180°. 

The above may be extended to two displacements, having tbe 
clements dm. and dIU'., the lengths d8 and d8', whose initial positions 
do not coincide. In this case, just like in the former one, we calcu­
late the ang'le between the displacements by the formula (2). 
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§ 4. 1f we have to do with a set óf vector-quantities of one kind 
or anothor - but all of tho same kind - cach belonging to one of 
the material points, we shaH caU the complex of all these quantities 
a vector in the system or simply a vector. 1'he rectangular compo­
nents of the several vector quantities will be called the elements of 
the vector in the system. 

From this it follows that an infinitely small displacement is itself 
a vector in the system, and that any vector may be geometrically 
represented on an infinitely small scale by such a displacement. The 
lengtlt or value of a vector and the angle between two vectors may 
be defined in a similar way as the corresponding quantities in the case 
of infinitely small displacements. 

We shall of ten denote a vector by the letter 15, its value by S, 
its elements by Xv' Accents or other suffixes will serve to distinguish 
one vector from another. Other Gothic letters for vectors, and the 
correspondillg Latin ones for their values will likewise be used. If 
an infinitely sqlall displacement is to be reg~lrded as a vector, we 
shall denote it by dè or oè. 

The value 8 of a vector, considered in most cases as a positive 
quantity, is givcn hy the formula 

an 
m 82 = E mv Xv2 •••••• (3) 

I 

and the angle «5, 6') between two vectors by 
an 

m SS' cos (6, 6') = E mv Xv Xv'. • • • • • (4) 
1 

If (6, Ei') = 0, the vectors are said to have the same direction. 
For this it is nflCeSSal'y and sufficicnt th at the ratios bet ween the 
elements Xv should be the same as those between the elements Xv'. 
The mtios between the elements and the leng th will then likewise 
be the same for the two vee tors. It is natural to caU these last 
ratios the direction-constants. If these are av, so that 

the equation (4) becomes 

X_ 
«.=-, 

S 

an m C08 (S, Ei') = Em. a. a.'. . . . . • • (5) 
1 

The angle between two vectors depends therefore on their direction­
constants, or, as we may say, on their directions. 

The direction-constants of a vector may not be chosen indE'pen­
dently from each another, the relation 
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an E m. a.'2 = m. . . . . '/ . . (6) 
1 

having always to be satisfied. 
Two vectors are saicl to be perpendiculal' to ('ach other, if(ES, 6') = 90°, 
If the angle is 180°, the vectors have opposite directions. This 

will sometim('s be expressed by saying thrtt the two have jhe same 
direction-constants, but that one value is positive anel the other nogative. 

J 

§ 5. MuItiplying a vector 6 by a positive or negative number k 
means, that each element is multiplied by k, and that the produets 
are taken as the elements of a new vector, which wc shall indicatc 
by k6. 

Two vectors 6 1 and 6 2 are said to be compounded with cach 
other, if any two corresponeling elemcnts are added algebraically, 
anel the sums jhus obtaineel are taken as the elements of a new 
vector. This is called the ~'esultant or the slim of tlte two vector.'!, 
allel represented by 6 1 + ~2 j it may again be decomposed into the 
components ~1 and 6 2, 

There are a number of theorems, closely correspondillg to those 
in the iheory of ordinary vectors. Weneed only mention some of them. 

If 6 1 + 6 2 = 6 3 , • • • • • •• (7) 
and if lL be an arbitrarily chosen dlrectión in the system, i. e. the 
direction of some vector in the system, we sh l.ll have 

81 cos (61 , IL) + S2 cos (62 ,ft) = S3 cos (63 , It). 
From this it appears that, as soon as two of the vectors 6 1, 6 2, E3 

are perpendicular to the direction ft, the third will likewise be so. 
It may further be shown that a given vector ES may always be 

deeomposed mto one component ha.ving a given directionlt (or preci­
sely the opposite direction) and a seconel component, perpendicular 
to IL. This decomposition caD be effected in only one way, the va.lue 
of the first component being 8 ws (~ ,IL). 'flus may be positive or 
negative; in one case lhe component has the direetlOn ft, in the other 
it has the opposite direction. 

':rhe value of the component along It is also calletl the projection 
of ~ on the direction IL. 

By the scalal' p1'oduct of the vectors ~1 and ~2 we understand 
the expression 

S1 82 cos t6 11 ~2) , 

for w hieh the sign (~1' ~2) will be used. 
It is also to be remarked th at, in the case of (7), 

S32 = 81
2 + 82

2 + 2 (~l ,(52) 

and that we may regard the formula 
, , (8) 
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~l = ~3 - S2' 
as expressing the same relation as (7). In this way the difference 
of two vectors is dcfined. 

We shall speak of the sum and the difference of two vee tors not 
only if these relate to the same position of the system, but likewise 
if they are given for different positions. 

§ 6. The material points of the system are said to be connected 
with one another, if the system is, by its nature, only capable of 
such infinitely small displacements as satisfy certain conditions. We 
shall suppose that these may be expressed by i equations of the form 

3n 

,E:'l!,. dte. = 0, (t = 1, 2, • . , , zj" , , • • (9) 
1 

in which the coefficients llJ,. are functions of the rectangular coordi­
nates, but do not explicitly cOlltain the time. Displacements agreeing 
with (9) are called possible displacements ; displacements which violate 
the conditions are however equally imagmable. ~ 

A position of the system and a vector in it being given, we may 
ex amine if the vector have or not the direction of a possible displa­
cement. lf will have such a direction if its elements or its direction­
constants obey i equations, similar to (9), 

If two of the th1'ee vectors in (7) have the dit'ection of a possible 
displacement, the third will have the same property. 

§ 7. There are directions pel'pendiculm' to all possible displace­
ments. If a vector S is to have such a direct ion, it must be possible 
to express its elemcnts X. in i quantities Z, by means of the equations 

I 

m.X. = E te,. S, "",. (10) 
1 

Any system of values for Z, will give a vcctor that has the 
propcrty in question. 

If, among the vectors occurring in (7), there urc two that are 
perpendicular ta all possible displacemellts, the same will be the 
case with the thiru vector. 

A given vector may be decomposed into two components of which 
the one is perpendicular to all possible displacements, and the other 
has the direction of a possible displacement. There is only one sueh 
decomposition. 

In order to show this, wc may regm'd as unlmown quantities the 
3n elements of the seeond component and i quantities E" in whieh, 
hy (10), the eloments of the first component may be expressed. There 
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js an equal number of linear equations, i of them exprE'ssing (§ 6) 
that the first component has the direction of a possible displacement, 
and the remaining 3n equations, that the elements of the giVCll v~ctor 
are the sums of the corresponding clements of the two components. 

§ 8. The path of a moving system i§ determined by the positions 
it occupies one af ter tht' other. It may be considered as a succession 
of infinitely small displacements, which we sha11 call the elemenis 
of the path. The leng th of any part of the path is defined as the sum 

of the lengths ds of the elements of which it consists. 
The direction of a path in one of its positions is gi ven by the 

direction of an element. 
We shaH always think of the system as moving along a path in 

a definite direction. Then the coordinates ,'lJv , and all other quantities 
that have determinate values for every positioll in the path, may be 
regarded as functions of the length s of the path, reckoned from 
some bed position. Accents will serve to indicate differentiation of 
sueh quantities with respect to s. 

From what has been said in § 4 it fo}lows that the quantities lIJ'v are 
the direction-constants of thc path; 1hey will always satisfy the 
relation 

3n 

~mym'V2 = m, • • • • • • • (11) 
1 

as appears from (6). Using (3), we see that a vector whose elements 
are m'v has the value 1. I This vector of value 1, in the direction 
of the path, may be called the direction-vector. We shall represent 
it by ~. 

§ 9. We define the CUl'Vatu1'e of a patl1 as the vector c, given by 
dJ:) 

c = -,. . . . . . . . . (12) 
ds 

the numcrator heing the difference between the vectors rD at the 
heginning and at the end of an element of the path of length ds. 

The clements of ;0 heing m'v, we see at Ollee that those of care ,'IJ"v; 
accordingly, in virtue of (3), the value c of the curvature is given by 

3n 

2 ~. "2 mc=~mvmv. • . . • • • • (13) 
1 

By differentiáting (11) one finde 
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8n 

Lfm.I/)'.,v". = 0, • • • . • • • (14) 
1 

thc meaning of which is tbat the curvature is perpendicular to tbe path. 
Let PI and P2 be two paths, having in common a position A and 

the direction in this position, sa that the direction-vector 1), in the 
position A, is likowise tho same for the two paths, or 

1)lr al = 1)2(a)' 

Let us consider elements of tbe two paths, beginning in A, and 
of equal lengths ds. If 1)1 alld 1)2 are the direction-veotors at tho 
euds of these oloments, the vector 

1)1 - 1)2 
Cr = . . . . . . . . (15) 

ds 

may appropriately be called the relative curvature of the path PI with 
respect to the path P2• Now, we may replace the numerator in (15) 
by (1)1 - :!)J(a)] -l1)2 - :!)2(a)]; the relative curvature is therofore 
lelated as follows to the curvatures Cl and '2 of the two paths: 

Cr= Cl- C2 •••••••• (16) 
Like Cl and C2, the relative curvature is pel'pendicular to both paths. 

§ 10. What has been said thus far holds for every imaginable 
path. We Rha11 now consider possible patks, i. e. such as al'O com­
posed of possible infiuitely smal1 displacements. The dircction­
constants of such a path satisfy the iconditions 

Sn 

EI/)IV .v'v = 0,. . . • • . . . (17) 
1 

as may be deduced from (9). 
Let there be given a position A and a dirertion in this position, 

so that the values of I/)v and I/)'v are known, and let us seek the 
values of I/)"v, wbich make the curvature c a minimum. 

In solving this problem, we havo to take into account oquation 
(14) and the conditions 

Sn 8n8na E 1/)1.1/)". + EE a,vl. n/fL lIJ'. = 0, • • • • (18) 
1 1 1 I/)fL 

which are got by differentiating (17). We may therefore write for 
the values of 1/)". that make (13) a minimum 

I 

m. ,v". = E 1/)1. PI + m. 1/)'. Q , 
1 

PI and Q being i + 1 quantities whose values can be determined 
by means of (14) and (18). 1'he first of these equations, eombined 
with (17) and (11), gives Q = O. The so]ution beeomes t11e1'efo1'e 
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i 

m. [IJ". = Eo21 l • PI" . • • • • • (19) 
1 

anà the formulae (18) will serve to determine the quantities PI. 
A possible path which, in each of the positions belonging to it, is 

less curved than any other possible path of the same 'direction may 
bo called a path of least CU1'vatu1'e. In every position through which 
it passes it has the property expressed by (1 H) or, as we mayalso 
say, its curvature is perpendicular to all possible displacements. 

A path of least curvature is detormined by one position, auu the 
direction in that position. 

§ 11. We shaH next oonsider a possible path Pand the path 
Po of least curvatul'e, having in common with P one position A and 
the direction in th'lt posItion. Let, in the position A, CO be the 
curvature of Po, o21".co) the elemeuts of this curvnture, C alld .'IJ". the 
corr<~sponding quan ti ties for P, and let us fix our atteution on the 
relative curvature of P, with respect to the least curved path Po. 
We ahaH denote this relative curvature by Cf, and caU it the (ree 
curvature of the possible path P.- It may be shown to have the 
direction of a possible displacement. 

Indeed, we have by definition 
Cf = c-co ....•... (20) 

so that the elements of Cf are .v".-.v".(o). Now, if \\e write down 
two times the equations (18), first fol' Po and then for P, we fiod 
by su btraction 

3/1 

,E.,vl • [,v".-.v".(o)] = 0, 
1 

which proves the proposition. We may add that Co is perpendicular 
to cf' being perpondiculur to all possible displacements, and that 
therefore by (8) 

cZ = c0
2 + cfz. 

'l'his confirms the ineq uality Co < c. 
It is easily seen that a possible path is wholly dotermined if one 

knows one position belonging to it, tho direction in tlll1.t position and 
the free CUl'vatUl'e in all positions. 

§ 12. Let P be a possible path. From every position A lying in 
it we make the system pass to a vCtl'ied position A', by giving to it 
an infinitely small displacement 06, for whose elements we write oo21v, 

these elements being- supposed to be continuous functions oftha leng th 
s of the pn.lh, l'eckoned along P. 
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The path pr that is determined by the succession of the new posi­
tions Ar will be calleel the varied path and the letter (~ will scrve 
to indicate the difference bet ween quantitiE's relating to this p!l.th and 
the corresponding ones relating to the original puth. We shaH use 
the sign d, if we compare the values of some quantity at the begin­
ning and the end of an clement dB of thc path P. 

It is easy to obtain an expression for the variation in the lengtll 
of an element. Starting from (1), we find 

Sn Sn 

m ~ ds = E mv{IJrv~ dtev = E mv.?l'vd~·?lv = 
1 1 

Sn Sn 

= d ~; mv te'v ~ .?lv - d 8. Emv {IJ"v ~ te., 
1 1 

and we may simplify this by introducing the notation for the scalNr 
product of two Vf'ctors, aud writing (~13)s for thJ projection of ~13 
on the direction of the path. The sums on (he right hand side may 
then be replaced by 

m (î). ~ 13) = m (~13)s 
and m (c. ~ 13) . 

In the last expression, in virtue of (20) 
(c • ~ 15) = (co. ~ 13) + (cf . ~ 5) I 

and this is l'('duced to the last term, if we confine ourselves to possible 
virtual displacements ~ G, these being perpendicular to co. Finally 

~d8=d(~t3)s-(Cf.~t3)d8, ••••• (21) 
aresult, which ean be illustrated by simple geometrical examples. 

§ 13. It is to be romarked th at the varied path of whirh we 
have spoken in the last § is not in general a possible path. This 
will however be the case, if the i equations (9) admit of complete 
integration, i. e. if the connexions may te expressed by i equations 
between the coordinates. 

Systems having· this peculiar property are called hy HERTZ holonomie. 
For these, the equation (21) gives the variation which arises if one 
possible path is changed into another, infinitely near it, aud likewise 
possible. 

If now the original path we re one of leust curvature, we should 
luwe cf = 0, and by integration over same part of the original path, 
in the supposition that fhe initial and final positiollS are not varied, 

12

d8= o. 
1 

This shows that for holonomic systems the paths of least eurvature 
are at the same time geodetic paths. 
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§ 14. In consklering the motion in reJation to the time t, we 
shall indicate differentiations with respect to this variabie /either by 
the ordinary sigu Ol' by a dot. If some quantity cp may be conceived 
as a funetion of tand llkewise as onc of the length of path 8,~ we 
have the relation 

drp dcp ds • ds 
di = ds • dt ' cp = cp' dt • 

We shall deRne the vr:loeity I) of the system as the complex of 
• ds 

the velocities of the indiviclual points. lts clcments are aJv = m' •• dt .-

and the vector itself is 
ds 

b = -ri)o 
dt 

The dil'ection of the velocity is tInt of the path, so that we may write 
I) = v 1) • • • • • . . • • (22) 

and thc value is 
ds v=_ 
dt • 

If the value is determined by (3), the kindie enel'gy is cfisily 
found to be 

T=! mv2 • 

By the aeeelemtion f of the system we understand 1he complex 
of the aecelerations of all the material points. Thus the elements 
of f are ~., and 

f = \), 
An interesting result is obtained if in this equation we use (22), 

(12) and (20). We are then led ta thc following dceomposition of 
!he acceleratlOn into three components: 

r.... dD. . 0 • 

f = v;,u + ",1) = ",2 d 8 + v~ = v2 , + v1) = v~ Co + v'}, Cf + v 1) • (23) 

The first component is perpendicular to all possible displacements, 
the seeond has the direction of the free curvature and the third 
that of the path. 

It is easily seen that a possible motion will be quito dete] mined, 
if we know oue position, the velocity in that position and, for every 
instant, the secoud and. the third component of the acceleration. 
Indeed, the second component determines the free curvature, and by 
this the change in 1he direction of 1he path, and the third compo­
nent determines tbe change in the value of tIle velocity. 

§ 15. Let the material points of the system be actod on by 
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forces, in the uóual sense of thc word, and let X. be the rectan­
gular components of these. We shaH take together all these forC'es, 
so that we may speak of them' all as of one thing, but in doing 
so we shall slighUy depart from thc way in whieh we have defined 
the velocity and the acceleration. We begin by muItiplying eaeh 

individual force by m" m' being the maas of the point on which it 
m 

aets, and m the mass of the whole system, and we understand by 
the force ~ acting on the system the complex of these new vectors. 

m 
The elemen ts of ~ are therefore - X •. 

m. 
A.ssigning to ~ a definite direction and a definite value will of 

course imply that all the forces acting on the material points of 
the system are given in direction and magnitude. -

The definition of the force ~ has been so ehosen that the work 
of the forces in an infinitely smal1 dis placement, i. c. the expression 

becomes equal to the scalar product (~. d s). 

§ 16. Every force ~ may be decomposed into one component 
~o, perpendicular to all possible displacements, a second componen t 
~l, having the direction of a possible displacement and perpendicular 
to the path, and a third component ~2, in the direction ofthe path. 

One can conduct this operati~n m two steps. ReplaC'e first (§ 7) 
~ by ~o, perpendicular to all possible displacements, and ~', in the 
direction of such a displacement. This being done, we have to 
decompose (§ 5) ~' into a force CS2, along the path, and a force ~l, per­
pendicular to it. The lat ter component will have the direction of a 
possible displarement, becaUl:,e ~' and ~2 have l:lUch directions. 

For a given force the three components are wholly determinate. 

§ 17. We may imagine each material point to be acted on hy a 
force in the direetion of the aceeleration of the point aud equal to 
the produet of the aceeleration and tbe mass. We ahaH denote by 
@; the force acting on the system in this special case, by @;o, @;l, @;2 

its components in the above mentioned dil'ections. 
Now W0 have in the supposition just made Xv = mv :~v, from which 

we find ut .~: fol' the elements of @;, @3 = m f for the force itself, 
and, hy (~3),. 
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@)o = m v2 COl @)l = m v2 cl, @)2 = m ~ ~ 
for the three components. 

\ 

§ J 8. What precedes has prepared us fol' the consideration of 
thc fundamental principles hy which the motion of the system under 
the action of given f'Jrces is to be deterll]ined. We may in tbe first 
place start from the following assumptions: 

a. The system wiU have the acceleration f, if thc force is proci­
sely @) = mf. 

b. Two forces lJa and lJö may have the same influence on the 
motion. For this it is necessary and sufficient that the force 

lJa -lJb 
should be perpendicular to all pcssible displacements. 

Let the syiJtem be subject to the force lJ with the components 
lJOI lJlt 62, and let the acceleration be f. Then, by the first principle, 
15 bas the Slme influence as @) = mf, and by the second principle 
~ - @) must be perpendieular to all possible displacements. This 
amounts to tbe same thing as ~l = @)l' ~2 = (3)2, or 

~l = m v2 Cf' lJ2 = m ~ 1). • • • • • • (24) 

It will be immediately seen that the above assumptions are equi­
valent to D' ALEMBERT'S principle. We might also have replaced 
them by tbe following rule: 

Decompose tbe acceleration into two components fo and f', the 
first perpendicular to all possible displacements, and thc sceolld iu 
the direetion of sueh a displaeement. Decompose the force lJ in the 
same way into the components lJo and lJ'. Then the equation of 
motion will be 

~' = mf'. 
This leads directly to thc equations (24), hy which it is clearly 

seen that the change in dil'ection of the pa th is dctermined hy thc 
component ~h and tho change in tlJe value of the velocity by the 
component ~2' It is to be kept in mind that the first of tbe for~ 
mulae (24) is a vector-equation. In general the free curvature, as 
weU as tbe force ~l' may lJave different directions, in some cases a 
great many of them. The equation does not on1i show us io wltat 
alnount the path deviates from one of least curvature, but also to 
which side the deviation takes place. 

If ~ = 0, we have Cf = 0 and ~ = 0; we are then len back to \ 
the fundamental law of HERTZ. 

§ 19. Let us now return to the equation (21), taking for the 
\ 
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original path one that is described under the action of the existing 
forces. Attending to (24), we may write in (21) 

(Cf. (j 5) = ~ Ü~l . /J 5) = ~ [(\J • (j 5) - (\Jo' (j e) - (~2' /j 5)]. 
mv 1ItV 

Now we have (\jo. /j 5) = 0, because \Jo is perpendicular to tbe 
virtual displacement. Further: 

• • " dv 
(~2' /j e) = m v (;1) • /j 5) = m v «(} 6)s = 111 V V «(} s)s = m v - «(} 6)s, 

dB 
50 that (21) becomes • 

1 1 
/J d 8 = d (/J ~)s + - d v (/j 5)s - ~ (~. Q 5) d 8, 

V rtI V 

or, multip1ied by m v, 

1 
m v /J d 8 + - (~ . (} 6) d 8 = md [v (/J 6}s J. 

v 

The scalar product (~. (}5) on tbe 1eft is the work of the force 
for the virtual displacement ; in tbe case of a conservative system 
with potential energy U, it may be denoted by - (} U. The result 
therefore takes the form 

1 I 

m v (} d s - - (j U d 8 = m d [v ( Q 5)s ] • • • • (25) 
v 

§ 20. Thus far, we have spoken ouly of a varied path, but not 
of a varied motion ; we have said nothing about the instants at 
which we imagine the varied positions to be rcached. In this respect 
we may make different assumptions, and among these there are two, 
which lead to a simple result of the equation (25), jf integrated over 
a part of the path. 

a. Let the varied positions A' be reached at tlte same moments 
as the rorresponding positions A in the original motion. Then 

mvods= mv8v. dt= (}Tdt; 

(25) becomes 
() (T- U) d t = md [v ((} 6)s] J 

and, jf jntegrated along the path which the system travels over 
between the instants t1 and tIJ, in the supposition th at 85 = 0 for 
t = t 1 and t = tIJ, 

(j J(T-U) d t = 0 • • • • • • . (26) 

This is fuMILTON'S principle, which is in itself sufficient for the 
determination of the motion really talting place under the action 
of given forces, and from which we may infer e. g. tbat in the 
course of this motion 
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'1'+ U=E 

b. In the second place we shaU assume that in rite va ried 
motion the energy T + U Ms tlte same constant value E as in tlze 
original motion. This value E ha ving been chosen, and U being 
known for every position, the value of the velocily is given by 

V 2 -
v= -CE-U). 

m 

This second assumption therefore, as weIl as tho first, leaves no 
doubt as to the velocitj with which the system is supposed to 
tra vel along its varied path. 

Tho total energy remaining constant, we have now 
oU=-oT=-mvov, 

and (25) becomes 

or 
o (V E- U d s) ~'V ~ md [v (0 s)s] • • • • • (27) 

Hence, if we integrate along a certain part of the path, supposing 
again the extreme positions to remain unchanged, 

(y J V E U d ~ = 0 • • • • • • • (28) 

This is the principle of least action in the form that has been 
given to it by J.A.conI. Inileed we may dcline the action along a 
path of thc system as the integral that occurs in the equation (28) 1). 
lts value may be calculated for any path A1 .AZ wbatsoever. For 

the sake of brevity we slHlll denote it by v~~. 
Both the principle of H.A.1tuLTON and that of J A.COB! have been 

here obtained by the consideration of the variation in tbe length of 
an element of a cU"ved path that is caused hy virtual displacements 
of the system. It is clear that both principles hold fOl' every 
system, be it holonomic, or not, the only condItion being that the 
virtual displacements do not viola~e the connexions. We must however 
keep in mind that it is only in the case of holonomic systems that 
the varied motion may be said to be, as weIl as the original one, a 
possible motioll. Hence, if we wish to compare the motion täking 
place under the action of the given forces with another motion, 
differing infinitely little from it, and such that it is not excluded 
by the connexions7 thc two pl'inciples wiJl only be true for holonomic 

1) 'l'he action ia usually defined as the integral, mul tipied by V 2m • 
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sylltems 1). The variations of the integrals oeeurring in (26) and (28) 
will be 0, if the original motion is not only a posf:1ible one, but sueh 
that it may really take plaee under the influenee of the aeting forees. 
We shaH calI sueh a motion a rea l or a natural one. 

§ 21. We shaH eonelude by briefly showing how some weU 
known propositions may be presented in a form, agreeing with what 
precedes. These propositions relate to holonomie systems. Let us 
therefore assume that the connexions are expressed by i equations 
which must be satisfied, independently of the time, by the coordi­
nates ,'IJ., and let us con fine oursel ves to possible positions, i. e. sueh 
as agree with these i conditions. We might determine these positions 
by 3 n-i "free" coordinates, but in what follows, it is not necessary 
to do so. 

lf, in addition to the equations expressing the connexions, we 
assume still one otlier equation bet ween the eoordinates, we shall 
caU the totality of positions satisfying that equation a surface of 
positions. 

In case one of thrse positions A is reached by a certain path­
the other positiQns in this path not all of them belonging to the 
surface - the path may be said to cut the surface in the position A. 
For Rimplieity's sake it will be supposed in such a case that the 
sUlface and the path have only that one position in common. 

Starting from a position A, whieh belongs t~, or lies in a surface 
of positions B, we may give to the system infinitely small displace­
ments, in sueh directions 1hat hy them the position does not cease 
to belong to the surface. 

A.nother infinitely small possible displacement d6 whose direetion 
iB perpendicular to all those displacements in the ,surface may be 
said to be perpendicular to the surface. It is easily shown that a 
displaeement of the latter kind may always be found and that its 
direction is entirely determinate. 

Let S be a surface of positions, A a position that does not belong 
to it but is infinitely near others that (Jo, Ba position in the surface, 
suelt that the infinitely small displaeement A ~ B is perpendicular to S, 
and C any position in S infinitely near B. Let {} be the angle 
betweon the displaeements A ~ Band A ~ C, and let us denote 
by AB and .A () the lengths of these displacements. Then 

AB = A C cos {J. 

1) See HÖLDER, Gótt. Nachr., 1896, p. 122. 

48 
.Prooeedings Royal Acad. Amsterdam. Vol. IV. 



- 17 -

~( 728 ) 

This follows from what has been said in § 5, if we consider that 
A ~ C is the resultant of the displacements A ~ Band J3 ~ c. 

§I 22. Henceforth we shall treat only of natural motions, taking 
place with a fixed value E of the total energy, which we choose anee 
for all. We shall suppose that, if 0 and A are any two positions, 
there ii! une and only one sueh a natural motion whieh leads from 
o to A. The action along the path of this motion, 

A 

v; Jo t/(E-U) ds, 

will have a definite value, depending on the coordinates of 0 and A, 
and we shall examine the variations of this action, if we change 
the final position A, the initial one being fixed. 

In the first pI ace it is clear that, if we move A. along a path 
A 

issuing from 0, V 0 will be the greater, the farther A recedes from O. 

A 
Indeed, Vo presents a certain analogy with the length of th3 path, 

the difference being that, in calculating the action j we must mul­
tipIy each element ds by the factor V E-U, which changes with 
the position. 

The increment of the action, corresponding to an element of t11e 
path, is obvious]y 

t/E-Uds. 
In the I second place we eompare two path", both issuing from 0, 

but in directions that differ infinitely little from each other. We 
shaH proceed along these so far, say till we have reached the posi­
tions A. and A', that the action is equal in the two cases) i.- e. 

VA VA' \ (99) 0= 0 • • • • • • • • • ... 

Now, the motion 0 ~ A' may be eonceived as the result of an 
illfinitely sm all variation of the motion 0 ~ A.; we may fherefore 
apply the equation we deduce from (27), if we integmte from 0 to 
A. On account of (29), we get 0 on the 1eft-hand side, hence, the 
projection (~s)s, which vanishes for the position 0, must likewise 
be 0 for the position A, aDd the infinitely small displacement .A -3> AI 
is found to be perpendicular to tbe path OA. 

We may next fix our attention on all paths that issue from a 
definite position o. In each of these we choose a position A at such 
a distance from 0, that the action Vo between 0 and these positions 
has the same value for all of them. The positions A will be10ng to 
a certain sUl'face and this will be cut under right angles by all the 
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paths. We may therefore eaU these latter thc orthogonal trajeetories 
of tbe sUl'faces 

V 0 = COIl8t. • • • • • • • • (30) 
Let S be that ODe of these sUl'faees, to which a certain position 

A l;>eJongs, and let B be some. position, infinitely near A, and furthel' 
from 0 than the surface S. In order to find all expression for the 

B A 
difference Vo - VOl we consider also the surfaee S', likewise belong-

ing to the group (30), and containing the position B; this surface 
will be cut in a certain position C by the path OA prolonged. If 
{} is the angJe between A. ~ Baud the direction of the path in A, 
we sha11 have 

BAG A --- V---Vo- Vo= Vo- VO =VA-U.A()= E-U.ABcos,J • (31) 

§ 23. Instead of considering the paths issuing from one and 
the same position 0, wo mlly also begin llY ehoosing a surface of 
positions So, and think of aH the motionl:! in whieh the system 
starts from a position belonging to this surfaee, in a direction per­
pendicular to it. We sba11 suppose tbat any given position A may 
be reached by one and only one of these motions, and we sha11 write 

V:
o 

for the /lction along tbe path leadirig from So to A. 

This function has properties similar to those of tbe funetion wo 
have studied in tbe preceding' §. The paths are the orthogonal 
trajectories of tbe surfaces 

.-1 
V Sa = const., 

alld the change in the action, cauaed by an infinitesimal variation 
of .A is g'iven by a formula of the same form as (31). 

§ 24. Thê valuea of V~ and V:o may depend in many different 

ways on the coordinates of the variabIe position A, aecording' to the 
chQice of tbe initial position 0 or the surface Sa from which we 
start. All these different functions have however one common property, 
whicb follows immediately from wh at has been said, and fol' which 
a concÏse farm of expression is obtained in the following way. 

U Q is a functioll of the coordinates, we IDay, for every infinitely 
amall possible (Usplacement dG, beginning in a positian A, calculate 
tbc ratio 

dQ 
(32) dB • • • • • • • • 

48* 
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The value of th is will of course depend on the direction of d5, and 
the position A being chosen, there wiJl be one definite diredion 
(perpendicular to the surface Q = const.), for whieh the ratio takes 
the largest positive value. Now, if we denote this ~aximum -value 
of (32) by DQ, the property in question of the funetions V may be 
expressed by 

DVo = V E-(J and DVso = V E-u' 

These formuJae may be written in the form of a partial differential 
equation whieh is 'satisfied by Vo and Vso' 

§ 25. Let R be any solution of this differential equation, i. e. a 
funetion of the eoordinates, sueh that 

DR = V E (J; (33) 
then thc orthogonal trajectDries of the surfaees 

R = const. • • • • (34) 
are natural paths of the system. 

The proof of tbis is as follows. Imagine the infinitely small dis­
plaeements d5, lying bet ween the two eonseeutive surfaces 

R = a and R = a + dG, 
that is to say, the displacements whose initial position belongs to 
the first and whose flnal position belongs to the seeond surface, and 
subject them to the further eonc1ition that they arc to be perpendieular 
to the first surface. Then we have by (33) 

dO ~ 
- = VE (J, V E (Jds= dO, 
ds 

so tbat tbe aetion is the same for all these elements, whiehever be 
the position in the surface from whieh they start. 

On the eontralY, if d 5' is another element of path between the 
two sUl'faces, not perpendieular to them, but making an ang-le {} 
with one of the first-named displacements d 6 in the immediate viei-
nity, we sba11 have ' 

I ds 
d8=-, 

C08 {} 

and for the action along d 5' 
dG 

C08 {j • 

It appears from this that 
81V E Udsl=O,. . ..•. (35) 

if we pass from an element d 5, perpendieular to R = a, to an 
element d s', lying between the same two surfaces, and of sueh a 
dil'ection that {} is infinitely smalI. 
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This bClng' established, we may take an arbitrarily ehosen part 
~11 N of an orthogonal trajeetory of the surfaces (34), we may divide 
it into elements by means of sllrfaces belonging to the group, and 
infinitely near each other, and we mlly give to lff N an infinitely 
small variation, without however changing the positions Mand N. 
Then, applying what has jllst been said to every element of M N, 
and integrating, we find 

~JV E Uds=O, 

showing that M N is a natural path. 
At the same time the meaning of the fllnction R beeomes apparent. 

lts value in a eertain position A is the aetion along a trajeetory, 
ending in A and beginning at the surfaee 

R = 0 • • . . • • • • • (36) 

§ 26. We shall now assume that we know a funetion R(c) of 
the coordinates, satisfying the differer.tial equation (33) and con­
taining an arbitrary constant c. 

Then ~~ , which is Hself a funetion of the coordinates, wilt have 

the same value far all positians lying on a path P, perpendieular to (36). 
Ta show this, we consider the consecutive surfaees whose equa-

tiol1s are 
R (c) = 0 •• • • • • • • (37) 

and R (c + de) = 0 . • • • • . • (38) 

Let Ao be the position in the first surfaee "here the path P 
bc·gins, A any position belonging to P. We shaH sllppose this 
path AoA to cut the sUl'face (38) in a position Al' whieh is, of 
course, infinitely near Ao. We shall finally think of the path, sueh as 
thore certainly is one, leaving the sm-face (38) in a perpendieular 
direction and terminating in A. It has a definite initial position 
in (38), infinitely ncar Al' and which we 8ha11 (lall A', 

Since 
A. A. 

VA. = VAl' 
as may be deduced from (27), we have 

V A
_ V Á = V A _ V A =_ VA, . •..• (39) 

A' Au A, AJ Á, 

Now, VA and V~1' aro the values of R(e) nnd R(e + de) for thc 
.10 • 

position A. Consequently, the fil'st member of (39) is th!:' value of 

oR ~ I' 't' d ~ de lor i liS pOSl 1011, an 
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The l~ight-hand mem brr of this formula remaining the same if 
we move thc system along the path P, the proposition is prover1. 

§ 27. A remarkable and wen known theorem of JACOBI is a dirert 
consequence of our last proposition. If we have tound a function 
R of the coordinates, satisfying 'tJle differential equation (33) nnd 
containing, besides an additi ve constant, 3n-i-l other arbi trary~ 

I aR aR . 
constants Cl' C2, etc., the values of a-' - etc. will not change, 

Cl aC2 

whiIe the system describos apath, perpendicular to the sllrface 
R(cI,C2 .C3, ••• )=0 ....... (41) 

The 3n-i-l equations of sueh a path will t11erefore be of thc farm 
aR aR -a = 11' a- = 12' etc. ••• . • (42) 

Cl C2 

where rl' r~, etc. are constants. 
Tbe total number of the constants c and r is 2 (Bn-i-l); this 

is just sufficient for the rcprescntation of every path that may be 
de:::cribed with the chosen value of tbe energy. If we continc oursel ves 
to fixed valnes of the constants c, and change those of the constants r, 
we shall obtain all paths that are perpenrlicular to one and the 
samo surfaee (41). One of these paths will be distinguished from 
the other hy thc value of the action l'l.long the parts of the path, 
lying between the surface (41) on anc, and each of the sllrfaec'l 

R (Cl + d Cl' C2, c3, •••• \ = 0 

R (Cl' C2 + d /12' C3 • •••• ) = 0 

R (Cl! C2' C3 + a C3' •••• ) = 0, 

on thc otlJCr side. Inócerl, hy (42) tho action along these parts is 
- "ldcl' - r2dc2 etc. 

Ry giving other vn.1ues to the eonstants c, wc shall change tlle 
surface (41) nnd we shall find the paths that nre prrpcnuicular to 
thc ncw surfare. 


