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4, Threshold value and refractory period are complex quantities
which originate in the imperfect isolation of the reflex-arc from the
surrounding medium and in the passive resistances of the chemical system.

5- Augmentation and summation of the effect of stimulation are the
conscquence of not compensated changes (in the sense of CLAUSIUS).

6. The form which expresses the law of WEBER-FECHNER is a
formula of interpolation deduced from the principle of entropy.

Dynamics. — H. A. LorenTtz. “Some considerations on the princi-
ples of dynamics, in connewion with HERTZ'S “Prinzipien
der Mechanik”.

In his last work HerTz has founded the whole science of dy-
namics on a single fundamental principle, which by the simplicity
of its form recalls NewToN’s first law of motion, being expressed
in the words that a material system moves with constant velocity
in a path of least curvature (“geradeste Bahn’). By means of the
hypothesis that in many cases the bodies whose motion is studied
are connected to an invisible material system, moving with them,
and by the aid of a terminology akin to that of more-dimensional
geometry, HERTZ was able to show that all natural motions that
may be described by the rules of dynamics in their usual form,
may be made to fall under his law.

From a physical point of view it is of the utmost interest to
examine in how far the hypothesis of a hidden system, connected
with the visible and tangible bodies, leads to a clear and satisfactory
view of matural phenomena, a question which demands scrupulous
examination and on which physicists may in many cases disagree.
On the contrary, it seems hardly possible to doubt the great advan-
tage in conciseness and clearness of expression that is gained by
the mathematical form HERTZ has chosen for his statements. I
have therefore thought it advisable to consider in how far these
advantages still exist, if, leaving aside the hypothesis of hidden
motions, and without departing from the general use in dynamical
investigations, one considers the motion of a system as governed by
“forces” in the usual sense of the word.

In what follows there is much that may also be found in the
book of HERTzZ. This seemed necessary in order to present the
subject in a connected form.

As to the authors who have, before HERTZ, published similar
investigations, I need only mention BeLTrAMI, Lipscrirz and DARBOUX.

47*
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§ 1. 'We shall consider a system, consisting of » material points
and we shall determine its position by the rectangular coordinates
of all these points. The coordinates of the first point will be re-
presented by =, @y, 3, those of the second point by y, @5, @, ete.,
and any one of the coordinates by @, the index » varying from
1 to 3n, We shall write m for the mass of the system, and m, for
that of the point to which the index » belongs. This implies that
any one of these quantities m, has the same meaning as two other ones.

§ 2. We shall determine an infinitely small déisplacement of the
system by the increments dr, (or, as we shall write in some cases,
0x,) of the several rectangular coordinates. We shall ascribe to such
a displacement a definite length, to be denoted by ds, and defined
as the positive value that satisfies the equation

an
mdsﬂ_—_zm,dwﬁ N ¢ )
1

The displacement of the system may be considered as the complex
of the displacements of the individual points, and the rectangular
components of these last displacements, i’e. the differentials dw,, may
be called the elements of the displacement of the system. We shall
also call ds the distance between the positions of the system before
and after the infinitely small displacement.

§ 3. Let P, P, P" be three positions, infinitely near each
other, ds, ds', ds" the lengths of the displacements P—>F', P—>P",
P'—=>P" It may be shown by (1) that any of these lengths can
never be greater than the sum of the other two, so that we may construct
a triangle, having &, ds', " for its sides. By the angle between the
displacements P—>P' and P—>P" we shall understand the angle
between the sides ds and ds' of this triangle. If we denote it by
(s, &), the elements of the first displacement by da, and those of
the second b ds', we shall have

3n -
mdsds cos(s,s) = %y mydr,da,’ . . . . . (2)
b2

In special cases the angles of the triangle may be on a straight
line, so that (s, s) = 0 or 180°.

The above may be extended to two displacements, having the
clements dz, and de), the lengths ds and ds', whose initial positions
do not coincide. In this case, just like in the former one, we caleu-
late the angle between the displacements by the formula (2).
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§ 4. TIf we have to do with a set of vector-quantities of one kind
or another — but all of the same kind — cach belonging to one of
the material points, we shall call the complex of all these quantities
a vector in the system or simply a vector. The rectangular ecompo-
nents of the several vector quantities will be called the elements of
the vector in the system.

From this it follows that an infinitely small displacement is itself
a vector in the system, and that any vector may be geometrically
represented on an infinitely small scale by such a displacement. The
length or value of a wvector and the angle between two vectors may
be defined in a similar way as the corresponding quantities in the case
of infinitely small displacements.

We shall often denote a vector by the letter &, its value by 8,
its elements by X,. Accents or other suffixes will serve to distinguish
one vector from another. Other Gothic letters for vectors, and the
corresponding Latin ones for their values will likewise be used. If
an infinitely small displacement is to be regarded as a vector, we
shall denote it by d8 or 3.

The value S of a vector, considered in most cases as a positive
quantity, is given by the formula

3n
msz=2m,x,2 N G )
1

and the angle (&, ©') between two vectors by
3n

mS8Ses (6 C)=H» mX X, . . . . . 4
2

If (& &)=0, the vectors are said to have the same direction.
For this it is necessary and sufficient that the ratios between the
elements X, should be the same as those between the elements X,
The ratios between the elements and the length will then likewise
be the same for the two vectors. It is matural to call these last
ratios the direction-conslants. If these are a,, so that

X,

Ay == —

S

the equation (4) becomes
3n

m co8 (61 @') == Ev Mmy Cy uy’- . . . . . N (5)
1

The angle between two vectors depends therefore on their direction-

constants, or, as we may say, on their directions.
The direction-constants of a vector may not be chosen indepen-

dently from each another, the relation



y My aﬂ:m « e+ w e e 4 (6)

having always to be satisfied.

Two vectors are said to be perpendicular to cach other, if (&, &)= 90°.

If the angle is 180° the vectors have opposite directions. This
will sometimes be expressed by saying that the two have the same
direction-constants, but that one value is positive and the other negative.

i

§ 5. Multiplying a vector © by a positive or negative number %
means, that each element is multiplied by %, and that the products
are taken as the elements of a mew vector, which we shall indicate
by ¥S.

Two vectors &, and &, are said to be compounded with each
other, if any two corresponding elements are added algebraically,
and the sums thus obtained are taken as the elements of a new
vector. This is called the resultant or the sum of the two wvectors,
and represented by &; 4+ &, ; it may again be decomposed into the
components &, and ;.

There are a number of theorems, closely corresponding to those
in the theory of ordinary vectors. We need only mention some of them.

If 6 +6=6, .. ...... M
and if % be an arbitrarily chosen direction in the system, i. e. the
direction of some vector in the system, we shill have

8y cos (S, b)Y + Sy cos Sy, h) = 8 cos (Sg , ).

From this it appears that, as soon as two of the vectors €,, S, &
are perpendicular to the direction £, the third will likewise be so.

It may further be shown that a given vector & may always be
decomposed 1nto one component having a given direction % (or preci-
sely the opposite direction) and a second component, perpendicular
to 2. This decomposition can be effected in only one way, the value
of the first component being Scos (€ ,%). This may be positive or
negative ; in one case the component has the direction %, in the other
it has the opposite direction.

The value of the component along % is also called the projection
of © on the direction A.

By the scalar product of the vectors € and ©, we understand
the expression

8y 8 cos (&, Sg)
for which the sign (8;.8,) will be used.

It is also to be remarked that, in the case of (7),

S =82 +82+2(8.8) . . . . . . (8)
and that we may regard the formula
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6 =8 —&,
as expressing the same relation as (7). In this way the difference
of two vectors is dcfined,

‘We shall speak of the sum and the difference of two vectors not
only if these relate to the same position of the system, but likewise
if they are given for different positions.

§ 6. The material points of the system are said to be conmected
with one another, if the system is, by its nature, only capable of
such infinitely small displacements as satisfy certain conditions. We

shall suppose that these may be expressed by ¢ equations of the form
8n

Noada, =0, ¢=1,2.... 9. . . . . (9

1
in which the cocfficients «,, are functions of the rectangular coordi-
nates, but do not explicitly contain the time. Displacements agreeing
with (9) are called possible displacements ; displacements which violate
the conditions are however equally smaginable. }

A position of the system and a vector in it being given, we may
examine if the vector have or not the direction of a possible displa-
cement. If will have such a direction if its elements or its direction-
constants obey ¢ equations, similar to (9).

If two of the three vectors in (7) have the direction of a possible
displacement, the third will have the same property.

§ 7. There are directions perpendicular to all possible displace-
ments. If a vector € is to have such a direction, it must be possible
to express its elements X, in ¢ quantities .2, by means of the equations

'
m,X,: J-ﬂw::-t L (10)
%

Any system of values for =, will give a vector that has the
property in question.

If, among the vectors occurring in (7), there arc two that are
perpendicular to all possible displacements, the same will be the
case with the third vector.

A given vector may be decomposed into two components of which
the one is perpendicular to all possible displacements, and the other
has the direction of a possible displacement. There is only one such
decomposition.

In order to show this, we may regard as unknown quantities the
3n elements of the second component and ¢ quantities %, in which,
by (10), the elements of the first component may be expressed. There
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18 an equal number of linear equations, ¢ of them expressing (§ 6)
that the first component has the direction of a possible displacement,
and the remaining 8n equations, that the elements of the given vector
are the sums of the corresponding elements of the two components.

§ 8. The path of a moving system is defermined by the positions
it occupies one after the other. It may be considered as a succession
of infinitely small displacements, which we shall call the elements
of the path. The length of any part of the path is defined as the sum

fa

of the lengths ds of the elements of which it consists.

The direction of @ path in one of its positions is given by the
direction of an element.

We shall always think of the system as moving along a path in
a definite direction. Then the coordinates x,, and all other quantities
that have determinate values for every position in the path, may be
regarded as functions of the length s of the path, reckoned from
some fixed position. Accents will serve to indicate differentiation of
such quantities with respect to s.

From what has been said in § 4 it follows that the quantities 2!, are
the direction-constants of the path; they will always satisfy the

relation
3n

’ Zmyw'ﬂ:m, e e e e e (1D
1
as appears from (6). Using (3), we see that a vector whose elements
are a', has the value 1. 'This vector of value 1, in the direction
of the path, may be called the direction-vector. We shall represent
it by .

§ 9. We define the curvature of a path as the vector ¢, given by
o
e ¢ 2>
=, (12)
the numecrator being the difference between the vectors ® at the
beginning and at the end of an element of the path of length ds,
The elements of D being &', we see at once that those of carex',;

accordingly, in virtue of (3), the value ¢ of the curvature is given by
3n

met=%,ma"2% . . . . . . . (18)

1
By differentidting (11) one finds
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3n

E y My -'L"v 4‘1}”, ."_".O, PR R (14)

1
the meaning of which is that the curvature is perpendicular to the path.

Let P, and Py be two paths, having in common a position 4 and
the direction in this position, so that the direction-vector ®, in the
position 4, is likewise the same for the two paths, or

Dita) = Dyla).

Let us consider elements of the two paths, beginning in 4, and
of equal lengths ds. If ©; and D, are the direction-vectors at the
ends of these clements, the vector

D, —D,

p=—F L (19)
may appropriately be called the relative curvature of the path P, with
respect to the path P,. Now, we may replace the numerator in (15)
by [D] — D)) — [Dp — Dy(g)]; the relative curvature is thercfore

1elated as follows to the curvatures ¢; and ¢, of the two paths:
G=¢C¢—C « . . « s e e (16)
Like ¢ and cg, the relative curvature is per pendlcular to both paths,

§ 10. What has been said thus far holds for every imaginable
path. We shall now consider possille paths, i. e. such as arc com-
posed of possible infiuitely small displacements. The direction-

constants of such a path satisfy the ¢ conditions
8n

Ea"v .’L"y = O, L T (17)

1
as may be deduced from (9).

Let there be given a position 4 and a direction in this position,
0 that the values of 2, and 2, are known, and let us seek the
values of 2"y, which make the curvature ¢ a minimum,

In solving this problem, we have to take into account equation
(14) and the conditions

3n 3
" a'vlv

Zw,vw —I-ZZ—:L =0, . . . . (18)

which are got by dlfferentntmg (17). We may therefore write for
the values of 2", that make (13) a minimum

m, &", = z:w,,Ps + m, 'y Q,

1
P, and Q being ¢+ 1 quantities whose values can be determined
by means of (14) and (18). The first of these equations, combined
with (17) and (11), gives Q=0. The solution becomes therefore
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1
ma', = Y2y P,y . « « .« . . (19
| }; - - (19)
and the formulae (18) will serve to determine the quantities P,

A possible path which, in each of the positions belonging to it, is
Jess curved than any other possible path of the same direction may
be called a path of least curvaiure. In every position through which
it passes it has the property expressed by (19) or, as we may also
say, its curvature is perpendicular to all possible displaccments.

A path of least curvature is determined by one position, and the

direction in that position.

§ 11. We shall next consider a possible path P and the path
P, of least curvature, having in common with P one position 4 and
the direction in that position. Let, in the position 4, ¢, be the
curvature of Po, 2"y the elements of this curvature, ¢ and 2", the
corresponding quantities for P, and let us fix our attention on the
relative curvature of P, with respect to the least curved path Po.
‘We shall denote this relative curvature by ¢;, and call it the free
curveture of the possible path P- It may be shown to have the
direction of a possible displacement.

Indeed, we have by definition

GF==C—C « « « « » « .« « (20
so that the elements of ¢y are a',—a"). Now, if we write down
two times the equations (18), first for P, and then for P, we find

by subtraction
3n \

Z{b’;v [ —a"yo)] = 0,
1
which proves the proposition. We may add that ¢, is perpendicular
to ¢;, being perpendicular to all possible displacements, and that
therefore by (8)
& = ¢,® + ¢r%

This confirms the inequality ¢, <e.

1t is easily seen that a possible path is wholly determined if one
knows one position belonging to it, the direction in that position and
the free curvature in all positions.

§ 12. Let P be a possible path. From every position 4 lyingin
it we make the system pass to a varied position A', by giving to it
an infinitely small displacement 08, for whose elements we write da,,
these elements being supposed to be continuous functions of the length
s of the path, reckoned along P.
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The path P' that is determined by the succession of the new posi-
tions A' will be called the varied path and the letter 0 will scrve
to indicate the difference between quantities relating to this path and
the corresponding ones relating to the original path. We shall use
the sign d, if we comparc the values of some quantity at the begin-
ning and the end of an clement ds of the path P.

It is easy to obtain an expression for the variation in the length
of an element. Starting from (1), we find

8n 8n
mods = .S.v mya,0day = Ev my &'y d 0 @, =
1 1

Sa 3n
=

:d -:y My-z"yaivv—dSn Eymym"y(smy’
1 1

and we may simplify this by introducing the notation for the scalar
product of two vectors, and writing (0 8); for the projection of 08
on the dircction of the path. The sums on the right hand side may
then be replaced by
m(D.08)=m(J8),
and m(c.08).
In the last expression, in virtue of (20)

(c.08)=1(c,. 08)+(cr.08),
and this is reduced to the last term, if we confine ourselves to possible
virtual displacements &8, these being perpendicular to ¢, Finally

Sds=d(@8)s —(¢f.08)ds, . . . . . (21)
a result, which can be illustrated by simple geometrical examples.

§ 13. It is to be romarked that the varied path of which we
have spoken in the last § is not in general a possible path. This
will however be the case, if the ¢ equations (9) admit of complete
integration, i. e. if the connexions may Le expressed by ¢ equations
between the coordinates.

Systems having this peculiar property are called by HerTz kolonomic.
For these, the equation (21) gives the variation which arises if one
possible path is changed into another, infinitely near it, and likewise
possible.

If now the original path were one of least curvature, we should
have ¢ =0, and by integration over some part of the original path,
in the supposition that the initial and final positions are not varied,

2
c?fvdszo.
1

This shows that for holonomic systems the paths of least curvature
are at the same time geodetic paths.

-10 -
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§ 14. In considering the motion in relation to the time ¢, we
shall indicate differcntiations with respect to this variable either by
the ordinary sign or by a dot. If some quantity ¢ may be conceived
as a function of ¢ and likewise as one of the length of path s, we
have the relation

dp _dp ds . ,ds
TS % PePy

We shall define the welocity v of the system as the cor?nplex of

. ds
the velocities of the individual points. Its cloments are a = o'. T
and the vector itself is
i dsQ
=-D.

The direction of the velocity is that of the path, so that we may write
p=vD . . . . . . . .. (22
and the value is )
ds
U=
dr’

If the value is determined by (3), the kinetic energy is casily

found to be
) T=131m.

By the acceleration f of the system we understand the complex
of the accelerations of all the material points. Thus the elements
of f are ,, and

f=o,

An interesting result is obtained if in this equation we use (22),
(12) and (20). We are then led to the following decomposition of
the acceleration into three components:

. d . . .
f:v@-{—v@:vgg—FvBZ et oD = ;0D . (23)

The first component is perpendicular to all possible displacements,
the second has the direetion of the free curvature and the third
that of the path.

It is easily seen that a possible motion will be quite detesmined,
if we know one position, the velocity in that position and, for every
instant, the second and .the third component of the acceleration.
Indeed, the second component determines the free curvature, and by
this the change in the direction of the path, and the third compo-
nent determines the change in the value of the velocity.

§ 15. Let the material points of the system be acted on by

-11 -
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forces, in the usual sense of the word, and let X, be the rectan-
gular components of these. 'We shall take together all these forces,
s0 that we may speak of theth-all as of one thing, but in doing
so we shall slightly depart from the way in which we have defined
the velocity and the acceleration. We begin by multiplying each
individual force by T—,, m' being the mass of the point on which it
m
acts, and m the mass of the whole system, and we understand by
the force § acting on the system the complex of these new vectors,
The elements of § are therefore — X, .
m,

Assigning to § a definite direction and a definite value will of
course imply that all the forces acting on the material points of
the system are given in direction and magnitude.

The definition of the force § has been so chosen that the work
of the forces in an infinitely small displacement, i. e. the expression

3n

E Xy d &y,

1

becomes equal to the scalar product (8. d8).

§ 16. Every force § may be decomposed into one component
By, perpendicular to all possible displacements, a second component
&1, having the direction of a possible displacement and perpendicular
to the path, and a third component Sy, in the direction of the path.

One can conduct this operation 1 two steps. Replace first (§ 7)
§ by By, perpendicular to all possible displacements, and &', in the
direction of such a displacement. This being done, we have to
decompose (§ 5) §' into a force F,,along the path, and a foree §;, per-
pendicular to it. The latter component will have the direction of a
possible displacement, because §' and B, have such directions.

For a given force the three components are wholly determinate.

§ 17. We may imagine each material point to be acted on by a
force in the direction of the acceleration of the peint and equal to
the product of the acceleration and the mass. We shall denote by
® the force acting on the system in this special case, by B, ©), &,
its components in the above mentioned directions.

Now we have in the supposition just made Xy = my ay, from which
we find wa, for the clements of ©, © =mf for the force itself,

and, by (23),,

-12 -
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Gy, =m e G =mol¢y @52=mz‘:@
for the three components. g

§ 18, What precedes has prepared us for the consideration of
the fundamental principles by which the motion of the system under
the action of given forces is to be determined. We may in the first
place start from the following assumptions:

a. The system will have the acceleration f, if the force is preci-
gely © = mf.

b, Two forces §, and § may have the same influence on the
motion, For this it is necessary and sufficient that the force

Ba — B
should be perpendicular to all pessible displacements.

Let the system be subject to the force § with the components
For B1y Bs, and let the acceleration be f. Then, by the first principle,
§ has the same influence as & = mf, and by the second principle
% —©® must be perpendicular to all possible displacements. This
amounts to the same thing as & = &, §, =6y, or

Gr=molcy F=modD . . . . . . (29

It will be immediately seen that the above assumptions are equi-
valent to D' ALEMBERT's principle. We might also have replaced
them by the following rule:

Decompose the acceleration into two components f, and ), the
first perpendicular to all possible displacements, and the secoud in
the direction of such a displacement. Decompose the force § in the
game way into the components % and §. Then the equation of
motion will be

\ ' = mf.

This leads directly to the equations (24), by which it is clearly
seen that the change in direction of the path is determined by the
component §;, and the change in the value of the velocity by the
component &, It is to be kept in mind that the first of the for-
mulae (24) is a vector-eguation. In general the free curvature, as
well as the force §;, may have different directions, in some cases a
great mapy of them. The equation does not only' show us fo what
amount the path deviates from one of least curvature, but also to
which side the deviation takes place.

If =0, we have ¢/=0 and »=0; we are then led back to
the fundamental law of HERTz.

§ 19. Let us now return to the equation (21), taking for the

-13 -
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original path one that is described under the action of the existing
forces, Attending to (24), we may write in (21)

1 1
(Cf-55)=n~{v—z(%1-55)=W[(%-5f3)—-(5o-35)—(‘552-(5‘3)]-

Now we have (§;.08) =0, because §, is perpendicular to the

virtual displacement. Further:

@ 08 =mo(D.08)=mov(d8)s=mv'v(d é)szmﬂ%(aﬁ)s,

so that (21) becomes

3ds:d(3§)s+—1dv(é‘§)s——j—;(%.é‘é)ds,
v my
or, multiplied by = o,
mv0ds +-E(%.3§)ds=md[v(5é)s].

The scalar product (§.0d8) on the left is the work of the force
for the virtual displacement; in the case of a conservative system
with potential energy U, it may be denoted by — J U. The result
therefore takes the form

mvﬁds—-f—’éUds::md[v((SQ)s]. .. (29)

§ 20. Thus far, we have spoken only of a varied path, but not
of a wvaried motion; we have said nothing about the instants at
which we imagine the varied positions to be rcached. In this respect
we may make different assumptions, and among these there are two,
which lead to a simple result of the equation (25), if integrated over
a part of the path.

@. Let the varied positions 4’ be reached af the same moments
as the corresponding positions 4 in the original motion. Then

movdds=mv0v.dt=0Td¢;
(25) becomes
0 (T—U)dt =md[v(d8)s],
and, if integrated along the path which the system travels over
between the instants ¢, and ¢, in the supposition that 08 =10 for
t=t and t=t,

3f(T-_U)dt=o C e e e . (26)

This is Haminron’s principle, which is in itself sufficient for the
determination of the motion really taking place under the action
of given forces, and from which we may infer e.g. that in the
course of this motion

-14 -
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TLU=E
remains constant.

b. In the second place we shall assume that in the varied
motion the enerqy T 4 U has the same constant value E as in the
original motion. This value E having been chosen, and U being
known for every position, the value of the velocily is given by

o=V v, -

This sccond assumption therefore, as well as the first, leaves no
doubt as to the velocity with which the system is supposed to
travel along its varied path.
The total energy remaining comstant, we have now
OU=—0T=—mvov,

and (25) becomes .
O (vds)=d[v{0 8],

or

W E=Tds) =V Imdv(@8)]. . . . . (27)
Hence, if we integrate along a certain part of the path, supposing
again the extreme positions to remain unchanged,

r)\fl/ff]:?}ds_—_o N €1

This is the principle of least action in the form that has been
given to it by Jacosl. Indeed we may define the action along a
path of the system as the integral that occurs in the equation (28) 1).
Its value may be calculated for any path 4, 4, whatsoever. For

the sake of brevity we shall denote it by le’.

Both the principle of HamirTox and that of JacoBr have been
here obtained by the consideration of the variation in the length of
an element of a cwrved path that is caused by virtual displacements
of the system. It is clear that both principles hold for every
system, be it holonomic, or mot, the only condition being that the
virtual displacements do not violate the connexions. We must however
keep in mind that it is only in the case of holonomic systems that
the varied motion may be said to be, as well as the original one, a
possible motion. Hence, if we wish to compare the motion taking
place under the action of the given forces with another motion,
differing infinitely little from it, and such that it is not excluded
by the connexious, the two principles will only be true for holonomic

1) The action is usually defined as the integral, multipied by |/ %m.

-15-
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systems ). The variations of the integrals occurring in (26) and (28)
will be 0, if the original motion is not only a possible one, but such
that it may really take place under the influence of the acting forces.
‘We shall call such a motion a real or a natural one.

§ 21. We shall conclude by briefly showing how some well
known propositions may be presented in a form, agreeing with what
precedes. These propositions relate to holonomic systems. Let us
therefore assume that the connexions are expressed by ¢ equations
which must be satisfied, independently of the time, by the coordi-
nates @, and let us confine ourselves to possidle positions, i.e. such
as agree with these ¢ conditions. We might determine these positions
by 3 n—i “free” coordinates, but in what follows, it is not necessary
to do so. .

If, in addition to the equations expressing the connexions, we
assume still one other equation between the coordinates, we shall
call the totulity of positions satisfying that equation a surface of
positions. /

In case ome of these positions 4 is reached by a certain path —
the other positions in this path not all of them belonging to the
surface — the path may be said to cuf the surface in the position A.
For simplicity’s sake it will be supposed in such a case that the
suiface and the path have only that ome position in common.

Starting from a position 4, which belongs to, or lies in asurface
of positions §, we may give to the system infinitely small displace-
ments, in such directions that by them the position does not cease
to belong to the surface.

Another infinitely small possible displacement d8 whose direction
is perpendicular to all those displacements in the surface may be
said to be perpendicular fo the surface. It is easily shown that a
displacement of the latter kind may always be found and that its
direction is entirely determinate.

Let 8 be a surface of positions, 4 a position that does not belong
to it but is infinitely near others that do, B a position in the surface,
such that the infinitely small displacement 4 —> B is perpendicular to S,
and C any position in S infinitely near B. Let & be the angle
between the displacements 4 -—>B and 4 — C, and let us denote

by A5 and AC the lengths of these displacements. Then
AB = AC cos 8. l

)} See HoLDER, Gott. Nachr., 1896, p. 122,

Proceedings Royal Acad. Amsterdam, Vol, IV,
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This follows from what has been said in § 5, if we consider that
A= C ig the resultant of the displacements 4 — B and B~ C.

§ 22. Henceforth we shall treat only of natural motions, taking
place with a fixed value E of the total energy, which we choose once
for all. We shall suppose that, if O and 4 are any two positions,
there is vne and only one such a natural motion which leads from

O to A. The action along the path of this motion,
4

A ———
VO = 0 V (E—U)ds,

will have a definite value, depending on the coordinates of O and 4,
and we shall examine the varjations of this action, if we change
the final position 4, the initial one being fixed.

In the first place it is clear that, if we move 4 along a path

4
issuing from O, V  will be the greater, the farther 4 recedes from O.

A
Indeed, ¥, presents a certain analogy with the length of the path,

the difference being that, in calculating the action, we must mul-
tiply each element ds by the factor ¥ E—{, which changes with
the position.

The increment of the action, corresponding to an element of the
path, is obviously

VE—-Uds.

In the second place we compare two paths, both issuing from 0,
but in directions that differ infinitely little from each other. We
shall proceed along these so far, say ill we have reached the posi-
tions A and 4, that the action is equal in the two cases, i. e.

/ 2: 3
e o 1))

Now, the motion O—> A’ may be conceived as the result of an
infinitely small variation of the motion O—> 4; we may therefore
apply the equation we deduce from (27), if we integrate from O to
4. On account of (29), we get 0 on the left-hand side, hence, the
projection (0 8)s, which vanishes for the position O, must likewise
be 0 for the position 4, and the infinitely small displacement 4 ~ 4’
is found to be perpendicular to the path 04.

We may next fix our attention on all paths that issue from a
definite position O. In each of these we choose a position 4 atsuch
a distance from O, that the action V¥, beiween O and these positions
has the same value for all of them. The positions 4 will belong to
a certain surface and this will be cut under right angles by all the
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paths. We may therefore call these latter the orthogonal trajectories
of the surfaces

Vo=—const. . « « . . « « . (30)

Let S be that obe of these surfaces, to which a certain position

4 belongs, and let B be some.position, infinitely near 4, and further

from O than the surface S. In order to find an expression for the
4

B
difference V) —V , we consider also the surface &', likewise belong-

ing to the group (30), and containing the position B; this surface
will be cut in a certain position ¢ by the path 04 prolonged. If
& is the angle between 4 — B aud the direction of the path in 4,
we shall have

Vo Vo=V~ V) =V E—U. AC=y E=U.ABws 9 . (31)

§ 23. Instead of considering the paths issning from one and
the same position O, we may also begin by choosing a surface of
positions S, , and think of all the motions in which the system
starts from a position belonging to this surface, in a direction per-
pendicular to it. 'We shall suppose that any given position 4 may
be reached by one and only one of these motions, and we shall write

V“;io for the action along the path leadfng from S, to 4.

This function has properties similar to those of the function we
have studied in the preceding § The paths are the orthogonal
trajectories of the surfaces

4
VSo ==z const.,

and the change in the action, caused by an infinitesimal variation
of 4 is given by a formula of the same form as (31).

§ 24. The values of V; and V;o may depend in many different

ways on the coordinates of the variable position 4, according to the
choice of the initial position O or the surface S, from which we
start. All these different functions have however one common property,
which follows immediately from what has been said, and for which
a concise form of expression is obtained in the following way.

If @ is a function of the coordinates, we may, for every infinitely
small possible displacement d8, beginning in a position 4, caleulate
the ratio

dQ
-d?"""""(32)

48*
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The value of this will of course depend on the direction of 48, and
the position A4 being chosen, there will be one definite direction
(perpendicular to the surface Q = const.), for which the ratio takes
the largest positive value. Now, if we denote this maximum value
of (32) by DQ, the property in question of the functions V may be
expressed by

DV,=yE=0U and DV, =V E=T.

These formulae may be written in the form of a partial differential
equation which is ‘satisfied by V', and Ver

\

§ 25. Let B be any solution of this differential equation, i.e. a
function of the coordinates, such that
v DR=VE-O; . . . . . . . (8)
then the orthogonal trajectories of the surfaces
R=const. . . . . . . . . . (34)
are natural paths of the system.

The proof of this is as follows. Imagine the infinitely small dis-
placements d8, lying between the two consecutive surfaces

R=C and R=C} dC,
that is to say, the displacements whose initial position belongs to
the first and whose final position belongs to the second surface, and
subject them to the further condition that they are to be perpendicular
to the first surface. Then we have by (33)
%g =VE-T, VE—Uds=dC,
so that the action is the same for all these elements, whichever be
the position in the surface from which they start.

On the contraiy, if d8' is another element of path between the
two surfaces, not perpendicular to them, but making an angle &
with one of the first-named displacements d 8 in the immediate vici-
nity, we shall have ‘

ds
cos &'

!

§ =

and for the action along d#’
ac

L[]
cos 9

It appears from this that
MV E=Uds}=0,. . . . . . . (35)

if we pass from an element d8, perpendicular to B=C, to an
element d8', lying between the same two surfaces, and of such a
direction that & is infinitely small.

v
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This being established, we may take an arbitrarily chosen part
M N of an orthogunal trajeciory of the surfaces (34), we may divide
it into elements by means of surfaces belonging to the group, and
infinitely near each other, and we may give to M N an infinitely
small variation, without however changing the positions M and N,
Then, applying what has just been said to every element of M N,
and integrating, we find

3fl/.E~—Ud3=0,

showing that M N is a natural path.

At the same time the meaning of the function R becomes apparent.
Its value in a certain position 4 is the action along a trajectory,
ending in 4 and beginning at the surface

R=0 . ... .. ... (36

§ 26. We shall now assume that we know a function R(c) of
the coordinates, satisfying the differertial equation (33) and con-
taining an arbitrary constant e,

Then g—g , which is ilself a function of the coordinates, will have

¢
the same value for all positions lying on a path P, perpendicular to (36).
To show this, we consider the consecutive surfaces whose equa-

tions are l

RO=0 . . .. . ... @37
and Re+d=0 . . . . . . . (38

Let 4, be the position in the first surface where the path P
" begins, 4 any position belonging to P. We shall suppose this
path 4,4 to cut the surface (38) in a position 4, which is, of
course, irvfinitely near 4,. We shall finally think of the path, such as
there certainly is one, leaving the surface (38) in a perpendicular
direction and terminating in A, It has a definite initial position
in (38), infinitely near 4;, and which we shall call 4'.

Since
4__ 4
VA = VA"'
as may be deduced from (27), we have

A A__ A A____ Ay

Va—VasVi—Vi=—Tio oo . (89

Now, V": and V’L arec the values of R(c) and E(c - de) for the
alp L.

position 4. Consequently, the first member of (39) is the value of

R -
I%}—dc for this position, and
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oR 1 4
50" —_— dc VAD . . . . ¢ 4/ ) . (4.0)

The right-hand member of this formula remaining the same if
we move the system along the path P, the propesition is proved.

§ 27. A remarkable and well known theorem of JAcoBI is a direct
consequence of our last proposition. If we have found a function
R of the coordinates, satisfying 'the differential equation (33) and
containing, besides an additive constant, 8n—i—1 other arbitrary

' OR OR .
constants ej, ¢5, ete., the values of A ele. will not change,
¢y 0O

while the system describes a path, perpendicular to the surface
Repyepty oo o )=0. . . . . . . (41
The 3n—i—1 cquations of such a path will therefore be of the form
R
%zyl’ggzﬁ’ ete. . . . . . (42
where y,, 7,, ctc. are constants.

The total number of the constants ¢ and y is 2 (32—i—1); this
is just sufficient for the representation of every path that may be
described with the chosen value of the energy. If we confine ourselves
to fixed values of the constants ¢, and change those of the constants y,
we shall obtain all paths that are perpendicular to one and the
same surface (41). One of these paths will be distinguished from
the other by the value of the action along the parts of the path,
lying between the surface (41) on one, and each of the surfaces

Rey +deyyegregy - oo d=0
R(cl7c2+dcz763, .. e .):0
R(chcga ('3+d('3, . e . .)::0,

on the other side. Indeed, by (42) the action along these parts is
— y1dey, — yodey ete.

By giving other values to the constants ¢, we shall change the
surface (41) and we shall find the paths that are perpendicular to
the new surface.
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