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Consequently, assuming the yearly motion to be constant, we find for
the 14-monthly motion, both from the = and they, values of the am-
plitude that decrease pretty regularly and pretty rapidly ). For the
epoch we find from the first and the second period a fairly good agree-
ment 2), whereas from the third we find a decidedly deviating value.

The reality of this last deviation is not very probable, and this
tends to diminish the force of the arguments which are in favour of the
acceptation of a decrease of the amplitude, which might be explained
by frictional influences 3),

Physics. — “The properties of the pressure curves for co-evisting
phases of mixtures”. By Prof. J. D. vAN DER WaALs.

In the “Verslagen en Mededeelingen der Akademie voor 1891”
I have deduced an explicite expression for the pressure in the case
that one of the phases of a mixturé may Dbe considered as a
rarefied gas.

Since that time the course of the value of the pressure for diffe-
rent mixtures has been determined experimentally in different ways,
so that we are cnabled to test the”given formula at the results of
the experiments.

In the given formula an auxiliary quantity w. occurs, which

represents: pv — |pdv or pv~MlﬁTlog(v—bx)——(zf—, while the diffe-
v

. . . . . /4
rential coefficient of this quantity with respect to #, viz. (E‘uf
2 /p T
"
may be approximately equated to — d;

As examples I draw attention to two shapes of these curves,
which have been communicated in the Proceedings of this Academy:
1st, by Mr. HARTMAN for mixiures of CHzCl and CO, and 20 by
Mr, CuxaEus for mixtures of Acetone and Ether. The curve traced
by Mr. HARTMAN is remarkable on account of the simple shape of
p =f(«y), which is almost a straight line, and that of Mr. CuNazUs

1) See also Areliv. Neerl, 'T. 11, p. 475 (29).

%) See also drchiv, Néerl. T, 11, p. 469 (23).

%) CuanpLER . finds by his empiricnl theory that the amplitude varies periodically
ond deereases in the years considered. It seems to me however that the foundation
of his formula is not yet sufficiently certain.
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on account of the fact, that in the curve p = f(2,) a distinct inflection
point occurs.

The investigation in how far these cuives agree with the given
formula, will show that in one respoct these two shapes may be
considered as two limiting cases. For simplicity’s sake I shall write

,uxT. In the same way I shall represent

henceforth w, instead of

(dts
S 4 /pr by «'», and a similar expression for the second differential
MRT 3 K P ?
coefficient by g".. The value of these quantities fors =0and 2 =1
will be: gy, #cyy g and gy, #; and g";. Then p may be repre-
sented by the formula:

p=MRT (1—z)) e¥e1 - muz—1 | YRT ) okt (1= ey = 1
or
p= py (l—m)etn—to— vz, + py oyern—# T (1—z) iy

N

In general we cannot express p explicitely as function of «,. But
for the same value of p we have the following relation between r;
. . d
and , which may be derived from the equality of (7"0) for the
ol

L
two phases:

! ' Ty
ety =

1—a, I—ap

If we take into consideration, that for very low temperatures,
az
d =

. : b oo
the value of g’ is approximately equal to — -d—{-, we may indi-
J£

. .. sy a
cate a few limiting cases for the course of the quantities f?-, and
>

the shapes which the pressure curves will assume in these limiting
shapes. I have already assumed in my: ¢Théorie Moléculaire” that
az

d—

b and the deductions

by approximation g’ may be equated to — A

which have there been obtained from this assumption, have since
been confirmed to such an extent by the properties of the plaitpoint
curves for mixtures, which show a minimum critical temperature,
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that I feel justified in deriving further results from this approxi-
mation. I shall, however, first derive other equations which are
independent of this approximation from the given values for p.

If we write p = MRT e ™" ™! fl—az; + 2 e"”fx}, then follows:

1 dp (¢"5— 1) 4o e & pdf

_'—':-"‘rlfl"g’l'l_ =

dr y
£ 1—a fapefa

_(e*m— 1)L 4oy (1 — ) w5,

u
l—a'l—l—a‘le-”n

This latter value agrees perfectly with that which is found by
starting from the rigorously correct equation:

dp a*
gy = (= ) (% )pT

if compared with v,, the volume of a molecule in the vapour phasis,
MRT

d
we neglect the value of » and ((—if,}) and equate v, to
1/ pT

We may namely put @ -+ pv for §; we find then:

d
(—-g-)zMRTl -—-——+( )
d-'l’l pT — (l-’l:'l pT

2L MRT (em
(CZJ:‘] pT | (1 —-’-Ul) d3'12>p.1

and

After elimination of =, we find :

L?:;—-———?&—;&;)gl—l—m(l —a) i, g o= o (0w
pash AT
(L —ay) + oy es

The following wellknown facts may be deduced from this equation:
dp
1st, :Z)l 01 if "m=1 or ur, =0 or \1:,;: z, and 2nd dwl—o if
14 oy (1—ap) g =0 or (_g_) =0,
1 1 1 d”l oT
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From
dp (e m—1) [I4ay (1—ay) il ] ,
dJ‘l 1 — y +:l'1 e"'.l'ﬂ
we deduce
&p -
df _1dp @Dy oMot ]
dp  p da; : .
(1—2a) .”:! +a (1 —a) z“_:'l
-+
142 (L—ay) pz,
or . -
d?p
a2 ., P (1 —2z;)
1 = ‘le S’—'wl + = + ! 7" %
ap o Ja . tral—a)el
dr, N
+ ‘Ll”/ a'l (1 - wl) .
N s Tfa (— e,
Let us put some special cases:
Put =1 or U =0,. . .+« . .. (@
then :
. dzp

T AL E LR A

T s T " s :
If 4 is positive, o is also positive; so in this case there is

a minimum pressure. But from the assumption that MRTu may
—d (Z’l) 2 (fi"_'_)
bz, by,

follows: MRT v = — ————— ., We
dr, 1‘_,;‘ dw12

conclude therefore, that at very low I' therc is a minimum pressure

be equated with

N . ax . .
for that mixture, for which . has a maximum value. A mixture
@

. . a,
with a maximum value for gﬂi has, however, not been found as
X

yet, and it is even doubted whether this will ever occur for normal
substances.
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2

n . . d . . ”
If u, is negative, then :i% is megative, when 1+ 2y (1 —ay) s,

is positive. So there is for p a maximum value for that mixture

. .. a . .
which shows 2 minimum for 55 And numerous instances of this
(73

have becn found. If #, has so great a negative value, that
14 oy (1 —2y) ,a;" is also negative, then p has again a minimum

value, That 1 4 2, (1 — ;) ‘“;. is negative, implies however, that

d2
d—i) is negative, and can therefore only occur for unstable phases.
A2 T

And for this too we -may say that it is very doubtful, whether this
can ever be the case for mixtures of normal substances.

If -
- n=0, . . . ... 0
we find:
d%p

3;15)'6: pras@e = 1)

If the pressure is inereasing at x; =0, then ({%) has the same
1770
sign as "y If the pressure should also increase on the side where
#y=1, and if there should therefore be a maximum pressure for a
o
certain value of z;, then the quantity C-I—d"-pg has all over the curve
1

p=f(z) the sign ", which is necessarily negative. The supposition

dz%
that we may put MTR y;’_' = — makes the sign of p; depen-
dent on:
) ) a2

— o co— ——

opaps bt bbb
PR (=) b a !

by -t g

-l

at least if we may replace b;, by the approximate value

But even though this should not be quite accurate, yet it is not to
be expected that the value of Ju;' should deviate much from the

given formula. The given formula makes the sign of ,u: dependent
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do \ -

— +—-—— I—)%), so that all over the curve the sign remains

bg? 109 ]
mvarxable

If on one of the sides the pressure should decrease, and if we

put on that side «; =0, then the value of ¢ is smaller than 1.

4 mz @ 1 . d2
We get then — < 1. But not before —=< — the sign of(—ﬁ—)
) v 2 dr?/

will differ from that of s,
If we have the exceptional case that there is a maximum

pressure just on one of the sides then' e#o =1, and therefore
:'?

d733> = p; 4¢'- This is almost, if not quite the case for the mixtures

of acetone and ether mvestlgated by Mr. CunaEUs. On the ether-

side the pressure is maximum, and the simple shape of the curve
2

p = f(z), for which the curvature is always such that ;%<0,
1
follows immediately from this supposition. '

In this curve of CuNaEUs we have the case that one of the mix-
tures has a minimum critical temperature, though it is one of the
components, but on the other hand in the curve of HARTMAN we
have almost, if not quite the case, that «’ is constant for all values
of «, and that there is therefore no question of a minimum eritical
temperature — not even if we should take # far beyond the limits
of z=0 and #=1. It is not to be expected that this will ever
be rigorously the case. Only if we put for 0. the approximate

a. . . .
value by (1—2) + by 7, —51 would be a linear funclion of «, in case
£

a . . .
— J——2—"1is equal to zero. But even if we do not introduce
this approximate value of 2, we may at least imagine as limiting

case such a value of —c:i, that it differs little from a straight line
x

between 0 and 1. As limiting case we may thercfore put ¢z = constant.
Then we get sz, — &) tdr, = py and ey 4 (1—2) ¢’y = 2, and

p = MRT (1—z;) dto=1 - MRT 2y eb=)
or
p= po (1—m) +pn

Consequently p==f(+;) is exactly a straight line, which HARTMAN
has found for mixtures of CO,and CH; Cl by approximation.
Moreover, it follows immediately from the value which we have
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"

!
d.['lz

found for that if we always put ¢, and so also s¢;, as equal

to zero, the value of this quantity is always equal to zero, and the
pressure must be represented by a straight line.

‘In this special case it is also possible to give p = f(«;) explici-
citely. 'We have namely as relation between #; and #,:

& & r a
2= e — T ey = L n
1"—c2'2 1-'—1"1 l‘-‘".l'l 1"—";1'1 pU
or ’
1"""(1,’2 /
[~y ——————
1—ay —}—Z—’Q Iy
?1
and '
b,
p—.l"z
iy == 1
1—r, + 24,
P

Substituting these values we find:

Po 1
p1{l—ap) 4 py 1y

p:
The curve p = f () traced by HaRTMAN, resembles a hyperbola,
but it deviates too much irom it for the deviations to be ascribed
to experimental errors. But in reality, these observations have been
made at a too high temperature for considering the vapour phasis
-as a rarefied gasphasis. Specially for carbonic acid, where the pres-
sure was even greater than 45 atmospheres, the deviations, caused
by it, must have been considerable. It would be interesting to
investigate whether at a lower temperature (HARTMAN observed at
9°,5) the vapourbranch would approach closer to a hyperbola.
We may in this case write for p = f(z):

1 1—0‘2 H)

—_—

P Py 21

1]

from which, as we are here concerned with gasphascs, follows:
v=1y (1-—-J‘2‘ + Uy &g

If we take therefore an arbitrary quantity of the saturated vapour
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of the first substance, and also an arbitrary quantity of the saturated
vapour of the second, and if they mix in a volume which is the
sum of the two volumes, the mixture is again saturated vapour.
This result deviates altogether from the law of DarntoN applied
to saturated vapour. DBut this law of DartoN will only hold
good as an approximation, if the liquid, which would be formed
through condensation, may be considered as unmixed liquid.
It is well-known that DANIEL BERTHELOT has put ¢)5® = ayap. I
have refuted this opinion some time ago, first because the ground
which was alleged for concluding to this relation, seemed incorrect
to me, as it does still, but secondiy because the great variety, which
the critical phenomena of mixtures show, seemed to me to clash
with the assumption of such a simple relation between a5, a; and a,.
Since I have learned io ascribe many complications, which mixtures
show, to the anomaly of the components themselves, a great many
objections, which I had against the relation a;3 =/, ay, have lost
their weight, and any rate I think it desirable to keep in view at
every phenomenon the possibility, that this relation should be ful-

filled. If we do so also in this case, the condition that -g?— be a’
Xz

linear function of #;, becomes at least by approximation the following:

va _ 1“3)2_ 0
bl b2 T

or the critical expressions of the components are the same. Now it
is indeed remarkable, that in the mixture of HarTMAN, for which
the eritical temperatures are almost in the proportion of 3 to 4,
the critical expressions differ comparatively little — that of CO,
being equal to 73 and that of CHsCl to 65 or 66 atmospheres.
The condition that the critical expressions must be the same for

b : .
the components, is fulfilled if 7., = T, f—, so if the critical fem-
]

peratures are proportional to the volumes of the molecules. And
though this condition is not quite fulfilled for CO, and CHy Cl, yet it is
tulfilled in an incomparably greater degree than for the other examined
mixtures, for which the substance with the smallest molecule pos-
gesses the highest critical temperature, So is in a mixture of acetone
and ether the critical temperature of ether lower than that of acetone,
whereas the volume of the molecules of ether exceeds that of acetone.
Ve V/ ag

For acetone and ether the condition T h is certainly not ful-
1
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filled and in close connection with this is the great differencein the
curve determined by CUNAEUs as compared with that of HARTMAN ).

In what precedes we have been specially occupied with the dif-
ference in the course of p = f(x)) for these mixtures. Let us also
pay attention to p == 7 (s). As the elimination of ; from the equation:

il . “'m, . &g
i - 1 —&

18 not possible, when u's depends on #;, p can generally not be

. . . d,
expressed explicitely in #;. Yet we may deduce formulae for 2

Ty
da? . . o e .
and d—g, which are of importance for the determination of the dif-
Ty

ferent shapes of these curves.
From the two strictly accurate equations:

d )(dz; a
L) = (Py—T e I
91 dp = (29— d$12>PT 2
and
a2y
dp = (z,— (——— d.

19 dp = (#1—ap) an/ )
follows, in case the second phasis is a rarefied vapour-phasis, and
we may consequently put vy = v, and vy, = — v,:

a*C @y
— dz; = (———-) dz

<d»¢'12>p1€vl d-’l‘z2 T 2

or
(ld‘l ? d"v2

ag (L—2p)
When the second phasis follows the gas laws sufficiently, the
second term is simplified to the form given here.
By means of this relation between de; and dz, and of the relation
%y ! g

"
= e @, we find:

1) The value of a,; caleulated by M:. Quint for mixtures of Ol H and C; H,, how-
ever, does not fulfil the 1elation &, =V a0,

L2
Proceedings Royal Acad, Amsterdam Vol IIL

-10 -



( 172)

1 d 1 d — ! ’
—_— .._}.7_=._._ f& ..ﬁ:(l_._g #a’)<1-—ﬂh +d’1 6“ xl)
p dzy drg i

or
dp K #'%
— =p|l—e¢ *)(1——wl—}—mla !

It appears from this formula that p as function of », presents a

maximum or & minimum only when &= =1, TIn the case, that a
longitudinal plait exists, there are two more values of xy, for which
p as function of » might become maximum or minimum in the
unstable region, but this is not the case for p as function of =,
The curve p=f(z;) presents two cusps for the values of g,
which are conjugated to those values of #;, for whieh 1 f-#(1—2y) ,u;'

should be zero. This I have already pointed out in the Théor. Mol.
2

d
In order to determine ;—pg we differentiate the logarithm of the
Ty

last equation, which yields:

&p
de® doy(ldp | (" —1)f e Pus + & e, |
dp " deslp dn 1 — e 1 — ¢ Fm
dﬂ"g
or
dyp dp dey | 2("™—1 2 2 4y ¥ 1
2 2R 1 —uy oy ¥ 1— 2y ™ e H—1
Special cases are:
B 1 1 " oo 0 h d’gp —_ d'rl H
(@) Be 1+a(1—a)e, =0, then i ag d};lb oo

in this case. We have already pointed out, that the curve p = ()
presents cusps in the points conjugated to these values of .

e "
() Be u'x, =0, then il

P IF w
—— . we com-
d“’zg z 14w (l—u) H"x:

L. @ . .
pare this value with -d—%, it appears, that at the point of confact
o

the two curves p = f(#;) and p = f(») lie on the same side of the
tangent. The curvatures however are unequal, except in the case,
that for such a point #; =0. For the mixture of acetone and ether

-11 -
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this exception oceurs at leass approximately on the side of the ether.

dpy | 2(eo— 10+ 4
dwzz)o— 0 (e¥)?

(¢) Be 2;=0, then (

a
This equation shows, that (d%’é) will be mnegative only by
Y A 0

exception; only when ", is mnegative and has a numeric value,
greater than (e*» — 1)%. Tt may however occur, and that on both
sides for mixtures with maximum-pressure. It the following three
figures the curves p ==f(2;) and p =f(x5), which may then occur,
are drawn.

/\\

Fig. 1. Fig. 2. Fig. 8.

In fig. 1 a curve has been drawn, for which the maximum-
pressure is not much greater than the pressures on both sides, and
for which therefore ¢ — 1 has a small value, even on the sides.
As in the case of a maximum-pressure the quantity " is negative,

2,
(dp) may be negative on both sides.
0

dag?
In fig.'2 this is the case only on one side, while in fig. 3 the
72
- value of {¢¢»—1) is supposed to be great emough, to cause ;_pé to
¥y

be positive on both sides.

The curve, traced by Mr. CunarUs relating to his investigation
on acetone and ether is therefore to be considered as either the
lefthand or the righthand half of fig. 3, and the point of inflection,
which he has found, was to be expected, as on the side of acetone
To — &y

) is rather great, viz. 3,5.
‘e
From the value of #; and «,, at which the point of inflection has

been found, we may derive the value of " with the aid of the

x|
12*

the value of e*s — 1 = (

-12 -
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d%
formula we have found for :7,’7&9 To that purpose we have to equate
R
dp d ] 1— -
the factor of i to zero. If we substitute 1 for
wg -1'2 —;Z'g "vl
¢z, we may write this factor as follows:
1 {2y — @) " [ {
LY % (2g — )2 1 — ] .
el A= + px |2 (g — @) Ly (1 — o) [

From this we deduce for the point of inflection:
(2 — =)
ety = # (1 — 2)
2(ey—m)P + o (1—ay)
In the experiments of Mr. CUNAEUS, we are not perfectly sure
of the values of #; and «y for the point of inflection?). The numeric
value of ,ull cannot therefore be #bund with accuracy. Put

1 2 ' 8
n=- and 7, = 3 then the value of — “‘;. =1 put @ ==0,45
and zy = 0,65, then the value of — z", will be found sfightly less
x4

than unity.

We can predict the course of the critical curves for mixtures of
acetone and ether, from the properties of the pressure-curves for
these mixtures at low temperatures. Let us imagine the critical
curve, either the plaitpoint-curve or the curve of the critical points
of contact of C1H and C; Hg, and let us take the upper half of it,
i.e. that part, that lies above the minimum-temperature. That mini-
mum temperature, the critical point of ether, will be the starting
point. We have therefore reason to expect that mixtures of ether
in which a little quantity of acetone has been solved, will present
r.e. II. But for these critical curves also it is to be expected that
they will deviate so slightly from one another, that it will be
difficult to observe the retrograde condensation ?).

1) In the determination of the vapour-phasis by means of the refractive power, the
circumstance, that the glass plates are covered with acondensed layer has an influence,
which is probably large enough, to vitiate noticeably the values found fur =,

2) Let us avail ourselves of this occasion to point out that the rule, given by Prof.
KueneN, to find 7¢ II 1s not quite correct. Prof, Kuexen thought that ¢ ¢ 1I is to
be looked for in mixtures of substances, of which that one, which has the highest
criticnl temperature, has at equal tempeiatures also the highest vapour tensions. If
we consider o plaitpoint curve, beginning exactly at the minimum critical temperature
and therefore just beginning with » ¢ II, the vapour tension of the component with
the highest 7, will be lower than that of the other component; and the more so,
when the diference between gy and 7 is large,

-13 -
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. e :
Let us write the value of Zi; also under the following form:

Lo
&p e (l—ay) 252 (rg—my) 72 ',
dig? = [“‘2 (1""’2)} { ["1 (1—'“‘1)] + L+ o (1l —a) p's

This form enables us to conclude to the curvature of the vapour-
branch, if it has an unstable partY), in consequence of the presence of
a longitudinal plait, which interseets the liquid branch. For this unstable
part we have 1+ (1 —m) ,u: < 0, and ,u;: and 1—]—a:1(1—--:ul);a"T

1 1 1
has the same sign. For this unstable part of the vapour branch
d¥ .
we get iberefore Ew%>0' Let us imagine two values of 2, dif-
9
fering very little from that which makes 1 + =, (1 — zy) ﬂ:c =0,and
chosen on either side of it, then 1 4 2;(1 — ) uz has either a
1

very small positive value or a very small negative one, and therefore

a very great positive or a very great megative
Tho—ear ~ 08P 8
2

: . d
value. This makes us conclude that the sign of -d—% changes for

g
those values of «y, which are conjugated to these, at which the
liquid branch enters or leaves the unstable region. At the extremities
of the unstable part of the vapour branch we find therefore cusps.

Consequently the two stable parts of the vapour-branch end with a

Tr

;- As a rule the vapour-branch at #=0 and
2>

negative value of

a2
z=1 has a positive value of d—&

5 therefore there arealso as a rule
)

. d’ . .
two points, where J% will be equal to zero. Probably these points
73
always lic near the cusps. The following figure gives a shape of
the vapour branch fulfilling these conditions.
If before its end the vapour branch should possess a maximum,
the second inflection point is unuecessary and its shape will be

represented by fig. b.

1) We use here the term ““unstable part” to indicate that the phases, represented
by it, could oniy co-exist with uns‘able plases. Considered in themselves these
phases are stable.

-14 -
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Fig. 4. Fig. 5.
This latter figure represents the vapour branch of mixtures of
phenol and water below the critical temperature of complete mixture.

If the second phasis is a rarefied gasphasis, the pressure of which
18 p, p(1—a3) represents the partial pressure of the first component

and pry that of the second component. The value of these quantities
is given by

Fxl—x, .u’x' -1
p(l—ay) = MRT (1—=2)) ¢
and
pry= MRT o, eztxl-i-(l—xl) #’xl—l
and
B kX W',
p(l—e) =py(l—zy) e = "
and

F«x!-—-f-‘l‘l-(l—-x,) F”xl
Dbre =P ¢

We conclude from this
dp (1—uxg) 1—a,
SPUTT) .

;1 + (1 fz)ﬂxs

dur; 1—ug

dp 24 Ty | w

. = 1 l—z

da, b 2y | Tl 1) Ha
and

dp (1—ag) 1—uy [ ) "o

a|14m Q- i, ]

d.flfl

-15-
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= » 2 l0—a)d 1+ a0—m ] +

d.l‘12 1

d [] 4~ 2y (1—2y) ,u:‘] |
diny |

_|_

By adding the two last conditions, we find:

1 & i S (1 )Swz(l"‘rz) (7g— 1) |
p dn 2 It (l=a)w x‘s('rl(l—'”l) 2y (1—27)] +
At a—oyi |
Lo ! @
-+ )
vy (1—ay) dar

a form to which we may also reduce the form given before. From
the value for the first differential coefficients we deduce, that for
substances, which are perfectly miscible, the partial pressure of one
component decreases, when the second component is substituied for
a part, of it. From this follows that the total pressure must be
smaller than the sum of the tensions of the separate components.
If 14-2,(1—2)) s, should be mnegative, the partial pressure of a
component increases on the other hand by substitution by the second
component. Then it will be the question whether the partial pressure
cannot rise so high, that it exceeds the initial value.

This question, however, cannot be solved without the knowledge
of the properties of the function s.

Physics. — Dr. E. vaxn EvErDINGEN JRB.: “The Harv-¢ffect and
the increase of resistance of bismuth in the magnetic field at
very low temperatures.” II. (Communication N 58 from the
Physical Laboratory at Leiden, by Prof. H. KaMERLINGH
OxNgs).

1. From the measurements of the Hari-effect in bismuth at the
boiling-point of liquid nitious oxide and liquid oxygen, described in
the Proceedings of 29 October 1899, p. 221 and 30 December 1899,
p. 380, it appeared that the Harwz-coefficient increased considerably
with falling temperatures; it hence seemed desirable to determine
this increase with greater accuracy. The measurements in liquid
nitrous oxide had shown that the strength of the magnetic field had

-16 -



