Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

On the system [formula], in: KNAW, Proceedings, 3, 1900-1901, Amsterdam, 1901, pp. 196-203

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl) > 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

(196)

Chemistry. — "On the system: $[B\iota_2 O_3 - N_2 O_5 - H_2 O]$ ". By Prof, J. M. VAN BEMMELEN.

Dr. G. M. RUTTEN has occupied himself in the Inorganic chemical Laboratory of the University of Leiden with the investigation of the system

$$[\mathrm{B}\iota_2\,\mathrm{O}_3-\mathrm{N}_2\,\mathrm{O}_5-\mathrm{H}_2\mathrm{O}]$$

according to the phase rule. He also has, when studying the solid phases, subjected the observations of former investigators (HEINTZ, GLADSTONE, BECKER, JANSSEN, RUGE, YVON, LUDDECKE, DITTE and others) on the basic nitrates and the so-called "Magisterium Bismuthi" to a critical investigation.

His results were as follows:

A. The solid phases.

1. The neutral salt $B_{\ell_2} O_5$. $3 N_2 O_5$. $10 H_2 O$ (in future called briefly Z_{10} ¹)). This, formula accepted of late years has been found correct. The salt does not possess a true melting point as formerly stated (72°), but it decomposes at 75°,5 into a liquid and the basic salt $B_{\ell_2} O_3$. $N_2 O_5$. $H_2 O (B_{1-1-1})$.

The prismatic, triclinic crystals exhibit an angle of extinction of 26°.

Two further hydrates of the neutral salt were discovered: Z_4 and Z_3 .

II. The neutral salt Z_3 (with 3 Mols. of H_2O). It was obtained at the ordinary temperature from Z_{10} , or from $B_{\ell_2}O_3$ by addition of anhydrous nitric acid, in regular crystals as beautifully formed rhombic dodecahedrons. It should be mentioned that its composition eould not be determined directly, because it was not possible to separate the crystals completely from the syrupy mother liquor. The composition was deduced by means of SCHREINEMAKERS' method of calculating, from the graphical construction in an equilateral triangle of the compositions: 1^{st} of two different mother liquors which were in equilibrium with crystals of Z_3 , and 2^{nd} of the crystals themselves with some of the mother liquor still adhering. The same applies to the salts presently to be described Z_4 and B_{1-2-1} , which also could not be separated from the adhering mother liquor.

III. The neutral salt Z_4 (with 4 mols. of H₂O). A definite mode

¹) In future the salts which contain 1 mol. of $B_{i_2}O_3$, 3 Mol. N_2O_5 and 10 or 4 or 3 Mol. H_2O will be briefly called Z_{10} , Z_4 , Z_5 ; similarly the basic salts will be written $Bn_1-n_2-n_3$ if they contain n_1 Mol. of $B_{i_2}O_3$, n_2 Mol. N_2O_5 and n_3 Mol. H_2O

of preparing this cannot yet be given. The salt was accidentally discovered when making efforts to realize points of a quadruple line in the system $[Z_{10}, Z_s, L, G]$ ¹). The crystals differ from Z_3 and Z_{10} as they are not regular and have an angle of extinction of 90°.

IV. Hydrate of Z in a colloidal state. This was discovered when anhydrous nitric acid was dropped into a mixture of Z_{10} with a strong solution of Bismuth nitrate. A salt was deposited in the form of transparent jelly which enclosed all the mother liquor. The colloidal state lasted, however, but a short time. Very soon small crystals were deposited which made the impression of octahedrons, perhaps Z_3 or another hydrate. They have not yet been investigated.

V. The basic salt B_{1-2-2} . In one experiment Z_{10} was decomposed at 75° (which gave rise to the formation of B_{1-1-1}), then mixed with Z_3 , heated to 80° and cooled down to 68°. A crystalline salt was produced which differed in form from Z_{10} and Z_3 , had an angle of extinction of 40°, and the composition B_{1-2-2} . More analyses are however desirable.

VI. The basic salt B_{1-1-2} . The investigation and the analysis confirmed the fact that this salt is the first product of the action of cold water on Z_{10} ; also of cold dilute nitric acid containing less than 6 pCt. of N_2O_5 on Z_{10} ; or of cold water on a not too acid solution of bismuth nitrate. It forms small scales, exceedingly thin crystalline plates without a definite shape and showing double They are not permanent when they remain in contact refraction. with the mother liquor but gradually become converted into another basic salt. It cannot even be dried over sulphuric acid without decomposition. No nitric acid is expelled but it loses water until 0.7 mol. of this is left. This behaviour is not yet explained since B_{1-1-1} does not lose water over sulphuric acid. The velocity of change and the composition of the basic salt both depend on the concentration of the mother liquor and the temperature. As such basic salts have been found: B_{1-1-1} , B_{10-9-7} , $B_{6-5-8(9)}$. It has not yet been ascertained at what dilution and temperature between 20° and 75° the formation of B_{1-1-2} by the action of water on Z_{10} ceases and B_{1-1-1} is formed (or B_{10-9-7} or B_{6-5-8}).

VII. The basic salt B_{1-1-1} . This salt is formed from B_{1-1-2} ,

¹) L = Solution, G = Vapour.

when this remains in contact with a solution containing more than 1 pCt. N₂O₅. If the nitric acid amounted to a few percent only the change required some months at the ordinary temperature. When a few more percent were present the time was reduced to a few weeks. The more the strength of the acid approaches the point where the existence of Z₁₀ becomes possible, namely 24.83 pCt. of N₂O₅ with 32.9 pCt. of $B_{\ell_2}O_3$ at 20°, the more quickly the change will take place. For instance, if it contains 21 pCt. (with 27.15 pCt. of $B_{\ell_2}O_3$) the change only takes a few hours at 20°¹). At higher temperatures — between the limits 9° and 75° — the change proceeds proportionally more rapidly.

The crystals thus formed are probably monoclinic and have an angle of extinction of 10° —15°. Their composition was determined by analysis, which had not been done as yet.

When Z_{10} decomposes at 75.5°, the same salt is formed, but it then has another crystalline form. It forms hexagonal thin prisms which are apparently isotropic but extinguish to the right if they lie on a side plane (salt β). Analysis gave the composition B_{1-1-1} . It is also formed, together with the first form (salt α), at lower temperatures, such as 65°, from Z_{10} and a solution. The salt β seems to be more stable than the salt α ; since in a solution from which the salt α had first deposited, this was after some time converted into the salt β , the liquid having undergone no perceptible change in composition ²).

VIII. The basic salt $B_{6-5-9(8)}$. This salt is formed (as shown by very concordant analyses) at the ordinary temperature from B_{1-1-2} , when this remains for some months in contact with a very dilute solution (< 1 pCt. of N_2O_5 and < 0.33 pCt. of $B_{\ell_2}O_3$).

It also crystallises out when Z_{10} is decomposed by water, and the solid salt which is formed is dissolved in much water. This solution after a short time deposits $B_{6-5-9(8)}$. Even when the scales (B_{1-1-2}) are left for a long time over water so that they attract moisture and become covered with a layer of liquid, this salt is gradually formed. In one experiment, they were completely converted after the lapse of one year ⁸).

The crystals are bi-axial, optically negative and belong to the

¹) The crystals of B_{1-1-2} were shaken in a shaking-apparatus with the solutions for 5 hours.

²) Some difference must exist, though a very small one.

⁸) For instance, a dilution obtained by adding 1 part of Z₁₀ to 24 parts of H₂O.

rhombic system and consequently extinguish to the right. Placed over sulphuric acid they behave like B_{1-1-1} losing neither nitric acid nor water.

They are also formed at higher temperatures from B_{1-1-2} or B_{1-1-1} , even when the solution is still more concentrated, but they then appear as small right — angled rhombic crystals. They are very stable, for they may be boiled for a considerable time with water without losing their transparency. A portion, however, dissolves but again deposits on cooling as $B_{6-5-9(8)}$. Larger crystals of the same composition are also formed. When heated for some hours on the boiling waterbath, the crystals become opaque; they have then disaggregated to a minute crystalline powder of B_{2-1-1} .

The number of mols. of water in the salt $B_{6-5-9}(8)$ is not yet quite fixed. It varies from 8—9 and it remains possible that there exist two hydrates with 8 and 9 mols. of H_2O respectively, and that this may account for the small difference in the crystalline form noticed in different preparations. A further investigation must decide.

IX. The basic salt B_{10-9-7} . This compound is nearer to B_{1-1-1} than the preceding one. By treating Z_{10} with water a salt answering to this composition was obtained occasionally. The crystals extinguish to the right like B_{6-5-8} , but still they make another impression; they also exhibit a weaker double-refraction.

On treating Z_{10} with warm water, not only $B_{6-5-9(8)}$ but also B_{1-1-1} and B_{10-9-7} made their appearance and this appeared to depend on the quantity of water present.

B_{1-1-1}	with	a	quantity	0	\mathbf{f}	1-at	ou	t 3p	arts	of	water	to	1pa:	rt of	\mathbf{Z}_{10}
B_{10-9-7}	≯	>	»	≫	about	:3—	≫	20	>	⋗	>	>	»	>	>
$B_{6-5-8(9)}$	*	∢	≯	۵	∽ 2	025	or	mor	е	≫	>	⊅	>	>	\mathbf{Z}_1

An investigation was instituted to see whether B_{10-9-7} represented merely a state of transition between B_{1-1-1} and B_{6-5-8} , and whether crystals were obtainable which stood nearer to B_{1-1-1} or to B_{6-5-8} , but this investigation has not as yet given any positive results.

X. The basic salt B_{2-1-1} . As already stated above this salt was obtained in a crystalline condition as the final product of the action of boiling water on the neutral salt. This is in agreement with the experience of former investigators. The crystals were too small to permit their shape to be properly observed.

(200)

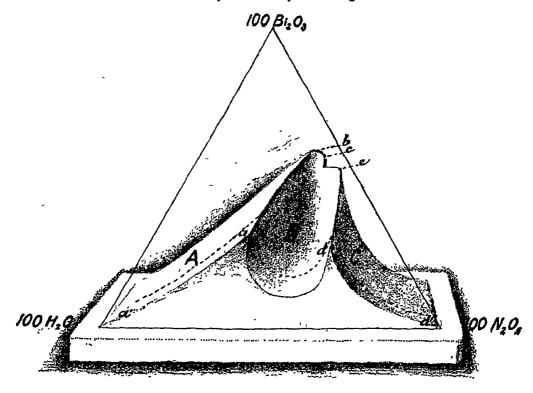
XI. The basic salt B_{5-4-9} , B_{4-3-9} , B_{5-3-8} , B_{5-3-6} described by JANSSEN, BECKER, DUFLOS and HERBERGER do not exist. Following their methods of preparation no other salt than B_{6-5-9} (8), could be obtained as shown by the crystalline form and the analysis. As the analytical process used by these investigators was faulty as regards the nitric acid, we may assume that they have found too little nitric acid. By a too prolonged washing with hot water (DUFLOS and HERBERGER) they may have had to deal with mixtures of B_{6-5-9} and B_{2-1-1} . The said basic salts must therefore, be rejected as long as there is no better proof of their actual existence.

XII. Magisterium Bismuthi. The preparation of this pharmacentical preparation is differently described in the pharmacopaea and chemical manuals and its composition is given wrongly. As all the pharmacopaea direct the decomposition of Z_{10} with about 20 parts of hot or boiling water, it cannot consist of B_{1-1-2} or B_{1-1-1} , but must contain B_{6-5-9} (8) or B_{10-9-7} , or a mixture of both, sometimes even B_{2-1-1} . An investigation showed that different Dutch pharmacentical preparations answered to the composition B_{6-5-9} (8) and others to a mixture of this salt with B_{10-9-7} .

B. EQUILIBRIUMS IN THE SYSTEM $[B\iota_2 O_3 - N_2 O_5 - H_2 O]$ WITH SOLID AND LIQUID PHASES.

The vapour phase has been altogether left out of consideration so that all results relate to the ordinary atmospheric pressure.

The course of the Isotherms, which indicate the composition of the liquid phases which were in equilibrium with the different solid phases, was totally or partially determined for three temperatures: 20°-30°-65°. Some few points were also determined at 9°, 11° and temperatures between 65° and 80°.


These isotherms ware graphically represented in the well-known manner in equilateral triangles; with the aid of these a regular prism was constructed, the length of which answers to the temperature axis ¹).

In this way a figure in space was formed of which I now present to the meeting a plaster cast, with the following perspective drawing of the same.

The triangle in the front surface of the figure corresponds to a

¹) The points at the angles of each equilateral triangle (therefore the long sides of the prism) answer to the compositions 100 parts of H_2O_5 , 100 parts of $B_{12}O_3$. (See figure.)

temperature of 9°. The point b which lies furthest-back is situated in the triangle of 75°.5. The equilibria of the system which are possible at these temperatures in the most dilute and the most concentrated solutions, and also the equilibria at temperatures below 9° and above 76° are as yet entirely wanting.

On the isotherm at 20°, the course of the branches was determined where the salts B_{6-5-9} , B_{1-1-2} , Z_{10} and Z_3 occur as solid phases in the system. In the figure it is shown by a dotted line. The branch with Z_{10} is determined at 30°, the branches with B_{1-1-1} , Z_{10} and Z_3 as solid phases are determined at 65°. The courses of two quadruple lines ¹) were also determined.

1. The one (a b c in the figure) which has the solid phases B_{1-1-1} and Z_{10} has been determined between the temperatures 9° (a) and 75°5 (b) and further back to 72° (c). This line shows a temperature maximum at 75°5, where Z_{10} is decomposed into B_{1-1-1} and liquid (p. 198). It then rebends itself. Its backward course has been examined up to 72° (c in the fig.).

2. The quadruple line which has the solid phases Z_{10} and Z_3

⁾ The quadruple lines separate the triple surfaces formed by the different isothermal curves of different temperatures.

has been determined between 9° and 65° (points d and e in the fig.). The region of B_{1-1-1} (A in the fig.) between 9° and 75°5 has been to a great extent explored, but its boundary with the region B_{1-1-2} and of $B_{6-5-9(8)}$ is not yet known. The regions of B_{1-1-2} and of $B_{6-5-9(8)}$ are situated near the low concentrations. They partly cover or practically coincide with the region of B_{1-1-1} or with each other, because B_{1-1-2} , which is the more labile phase, can change in presence of the same liquid into the more stable phases B_{1-1-1} or B_{6-5-9} , which causes but very little change in the liquid phase.

The region of Z_{10} , as a solid phase (*B* in the fig.), has been explored between 9° and 75°5; except a small portion at the right of the figure between 65° and 72°, where the region is probably bounded by that of B_{1-2-2} and that of Z_4 . The missing part lies between *c* and *e* as indicated in the figure by a right angle.

Of the region of Z_3 as a solid phase (C in the fig.) only a portion is known: 1st. because the quadruple line with Z_3 and Z_4 as solid phases, which must bound it on one side, has not yet been determined 2nd because it has not been determined how far the isotherms with- Z_3 extend to the right. These have not been continued further than the point, where the liquid phase reaches the strength of 1 mol. of N_2O_5 on 1 mol. of H_2O . It remains possible that with solutions, which contain less water still, Z_3 is not capable of existence, but that a neutral salt with less than 3 mols. of H_2O , or an anhydrous salt or a salt with more than 3 mols. of N_2O_5 takes its place. In each case the region of Z_3 must end and pass into another one before the system is reached which consists entirely of $B_{\ell_2}O_3$ and N_2O_5 ¹).

From this it is evident that the solubility of B_{1-1-1} increases pretty regularly between the said temperatures with the amount of nitric acid in the liquid phase, but that it again slightly decreases after the temperature maximum of 75°.5. The solutions which are in equilibrium with B_{1-1-1} differ (as above mentioned) very little from those which belong to $B_{6-5-9(8)}$, at least at 20°. The solubility of Z_{10} between 9° and 75° first decreases rapidly with the increase of nitric acid in the liquid phase, then passes through a minimum and then again increases until Z_3 becomes the solid phase. The solubility of Z_4 decreases rapidly with the increase of the strength of the nitric acid. It is not known whether it also passes through a minimum.

⁾ These systems lie in the graphic representation on the right side plane of the regular triangular prism.

The graphic representation of the experimentally found tripleplanes and quadruple-lines in an equilateral triangle (in the wellknown manner) allows of the prediction of quite a series of cases of equilibrium. So for example it may be concluded what will happen when a certain quantity of Z_{10} is treated at a certain temperature (within the observed limits) with increasing quantities of water, i. e. which solid phases are formed and what composition the liquid phase possesses. Also what will happen when a certain quantity of the basic salt B_{1-1-1} (with or without motherliquor) is treated with increasing quantities of nitric acid of a certain strength, or when the strength of the acid is increased. If may also be concluded which mixtures of $B\iota_2O_3$, N_2O_5 and H_2O may lead at a certain temperature to the formation of one of two above mentioned solid phases, and which changes that mixture will undergo at increasing or decreasing temperatures. And so on. –

The isothermal curves at temperatures above 75.5° are not yet determined. This determination will present great difficulties in its execution, particularly in the separation of the solid phases.

The agreement in form of the triple-lines in this system with those of $[HgO-SO_3-H_2O]$ as determined by C. HOITSEMA (Zeitschr. physik. Chem. 1895, 17, 651) is worthy of notice.

Chemistry. — Prof. A. P. N. FRANCHIMONT presents to the library of the Academy the dissertation of Dr. L. VAN SCHERPENZEEL entitled: "The action of hydrogen nitrate (real nitric acid) on the three toluic acids and some of their derivatives", the contents of which he explains as follows:

The research of Dr. VAN SCHERPENZEEL is connected with that of Dr. MONTAGNE about which I reported last January and was undertaken at the same time. It required the knowledge of a twenty new compounds which have been prepared by Dr. VAN SCHERPENZEEL and are described in his dissertation.

Following up the researches of VAN ROMBURGH in 1885 and of TAVERNE in 1897 and 1898 on the action of nitric acid on benzoic acid and some of its derivatives, such as the methyl ester, the amide and both the methylamides, the question arose what influence would be excercised on the action of the nitric acid by the introduction of an atomic group in different positions into the benzene nucleus. Whilst MONTAGNE had chosen the monochlorinederivatives and thus

Proceedings Royal Acad, Amsterdam. Vol. III.

14