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‘We calculate: 3

for R=0,2832¢M.; %:O,%hence p==0,0201 and §=0,0708; V==0,00265cc.

» »= » »; »=0,15 » »=0,0120 » »=0,0425; »=0,00158 »
» »==0,382 »; »=0,2 » >=0,0202 » »=0,0765; »>=0,00725 »
> 3= »; »=0,1 > »=0,0146 » »>=0,03883; »=0,00362 »

For still smaller values of & we may use the development in series,

dh \ R
in which (d—f) is wholly neglected as compared with unity. We get
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and for the volume of the meniscus -
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(To be continued.)
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Physics. — H. A.Lorextz. —“The Theory of Radiation and the
Second Law of Thermodynamics”.

§ 1. In his celebrated theoretical researches on the emission
and absorption of rays of heat and light, KircHEOFF was led to
introduce a certain function of wave-length and temperature which
is independent of the particular properties of the body comsidered.
This function, whose mathematical form later investigafors have
tried to determine, represents the ratio, at a definite temperature
and for a definite wave-length, between the emission K and the
absorptive power 4 of a body, both taken in the sense assigned
to them by KircHHOFF; indeed, by his law, this ratio is the same
for all bodies, being always equal to the emission of what KIrRcH-
HOFF calls a perfectly black body.

§ 2. The function in question has yet another physical meaning.
If a space which contains nothing but aether is enclosed by per-
fectly black walls of the temperature 7| it will be traversed in all
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directions by rays, and the aether will thus be ihe seat of a cer-
tain amount of energy. 'We may consider this emergy as made up
of a large number of parts, each of them belonging to the rays of
a particular wave-length, and, for a given state, this repartition of
the energy over the radiations of different periods can only be
effected in a single way. Hence, if for unit space, we write

ﬂﬂbd&

for the energy, as far as it corvesponds to the rays of wave-lengths
between A and\4 4 dA, and

for the whole energy, the function f(Z) &) will be wholly determinate.

Now, this function is intimately connected with the emission of
the black walls, and from Kircuuorr’s law it follows that the
state of the aether which it defines may also be the result of the
radiation of a body that is not black.

To begin with, the walls of the enclosure may be made on the
inside perfectly reflecting, instead of perfectly black. If, then, a
certain part E; of the enclosed space be occupied by a black body
M of the temperature T, and the remaining part R, by aether, it
is easily seen that the state characterized by f(T, ), if once existing
in Ry, will not be disturbed by the presence of M, but will be in
equilibrium with the internal motions of the ponderable matter. It
will even be the only state having this property, and must there-
fore of necessity be produced by the body, provided the geometrical
conditions are such that, after a certain number of reflections by
the walls, every ray in the space Ry must ultimately strike the body 2.

Kircauorr's law further proves that the equilibrium will conti-
nue to exist, if the black body is replaced by any other body M of
the temperature I, whatsoever be its physical and chemical state
and its properties. What is more, such a body will also give rise
to the same state of radiation as the black body did before, at least
if the above geometrical condition is again fulfilled, and if, besides,
the body has some absorptive power, be it ever so feeble, and con-
sequently some emissivity, for every wave-length that is represented
in the radiation of the black body. This may safely be assumed,

The function 7(7,2) is thus seen to have a second universal phy-
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sical meaning. The state of the aether to which it relates may for
the sake of brevity be called the state corresponding to the
temperature 7.

§ 3. Since KIRCHHOFF’s time great advances have been made
in the investigation of the form of the function. By a most ingenious
reasoning, founded partly on thermodynamic principles and partly
on the electromagnetic theory of light, BoLrzmANN ') has shown that
the total energy per unit of volume must be proportional to the
fourth power of the absolute temperature, so that, if this is hence-

forth designed by 7,

ff(T,}.)dl:CT4, e )
0

where C is a universal constant, whose numerical value will of

course depend on the choice of the units.
A result that has been obtained by W. Wien ?) is likewise very
remarkable. He found that /(7,4) is of the form

1
Ab

FILA)=To@(TH=— (T . . . . (2)

@(TA) or w(TX) being a function of the product TA. Evidently
BonTzMANN’s result is contained in the latter law.

Wien3) and PrANcK %) have also endeavoured to discover the form
of the function ¢, but we need not here speak of these researches.

§ 4. The experiments of PAsSCHEN, and those of LuMMER and
PrinesBeM have furnished a very satisfactory verification of the
laws, expressed by (1) and (2), and have thus confirmed the fun-
damental supposition that the second law of thermodynamics holds
in this domain of physics, as well as the validity of the reasoning
by which the two formulae have been established. In fact, I don't
see that any but perhaps some far fetched objection could be raised
against the theories of BorLTzMANN and WIEN. In my opinion, we
cannot but recognize all that has been said as legitimate deductions

1) BoLtzMaNN, Wied. Ann, Bd. 22, p. 291; 1884,

2) Wien, Wied. Ann, Bd. 52, p. 132; 1894.

v) Wien, Wied. Ann. Bd. 58, p. 662; 1896.

4y PraNck, Drude’s Ann. Bd. 1, p. 116; 1900. Verllandl. der deutschen Physik.

Ges, Jahrg, 2, p.p. 202, 287; 1900.
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from CarNoT’s principle, but in so doing we are forced to a remar-
kable and, at first sight, somewhat startling conclusion.

The state of the aether which corresponds to a given temperature
is characterized not only by the amount of energy per unit of volume,
but also by at least one definite linear dimension. We may for
instance fix our attention on the wave-length for which 7 (7, 4) has
its maximum-value, and which I shall call 4,, or we may calculate
a certain mean wave-length by means of the formula

fff('r, ar .
= 0

A:: ®
ff(T,l)dA
(4]

Now, the form of the function may very well be such that the ratio
between A,, A and what other lengths !) it might be deemed con-
venient to introduce, is expressed by definite numbers, but we have
to explain for what reason one of these, for instance 4., has pre-
cisely the length that bas been found for it by observation. In
considering this question we shall have to take into account that,
by Wien’s law, A, is inversely proportional to the absolute temperature.

‘We have good reasons for believing that, in so far as the aether
is concerned, the phenomens may be exhaustively described by means
of the well known equations of the electromagnetic field. If this be
true, it cannot be the properties of the aether which determine the
amount of emergy and the preponderating wave-length, the velocity
V' of light being the only constant quantity which these equations
contain. Hence, within the enclosure considered in § 2, the value
of the energy per unit volume and that of A» must be forced upon
the aether by the ponderable body M. But then there must exist
between different bodies a certain likeness, expressible by the equality

") We might for instance, without decomposing the vibrations in the aether by
means of Fourigr's theorem, define a length ¢ by the formula

P= [«
) +G) +G)]
[ 0z 0y 0z
in which & is one of the components of the dielectric displacement or the magnetic

force, whereas the brackets serve to indicate the mean values, taken for a space
whose dimensions are large in compuarison with the wave-length, or with 7 itself.

- 29*
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of pumerical quantities; else it would be inconceivable that two
bodies call forth exactly the same values of «and A,. Without some
conformily, of one kind or avother, in the structure of all substances,
the consequences of the second law and this law itself cannot be
understood If it did not exist, we could not even expect that a piece
of copper and a mass of water for instance, after having been
brought by contact into siates in which they are in thermal equili-
brium, would, under all circumstances, remain in these states, when
exposed to their mutual radiation.

§ 5. It is by no means surprising that the validity of the rules of
thermodynamies should require a certain similarity in the structure
of different bodies, for in reality these rules do not teach us some-
thing about a single body, but always about two or more bodies
and about the way in which these act on one another. The pro-
position that two bodies which, when brought into contact with a
third one, do not interchange any heat with it, will also be in thermal
equilibrium with each other, is clearly of this nature, and-it is
easily seen that our remark applies likewise to the law, that the
absolute temperature is an integrating divisor of the differential
expression for the quantity of heat, required for an infinitesimal
change of state.

Let us suppose that an experimental investigation of the states of
equilibrium of which a body (or a system of bodies) M;, when con-
sidered by itself, is capable, has led to distinguish these states by
the values of certain parameters @, 5, ¥1-.. Then, an infinitely
smwall change of state may be defined by the simultaneous incre-
ments d ey, 451, dy1,... I, in every case, we measure the amount
of heat d@Q; that has to be supplied to the body, say by determining
the equivalent mechanical energy, we may establish an equation of
the form

dleAldal—l—Bldﬁl—}— Cld?’l—*— TN R S T (3)

in which the coefficients 4;, By, Cy,... are known funetions of ey, B 71,...
The integrating divisors

A1,1 A'L”Q Alm’ ey N . . . . . . (4)

of which the expression (3) admits, and which we may imagine to
be determined by an ideal mathematician, will also be functions of

the parameters.
Next, let M; be a second body or system of bodies. Operating
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with this, as we have done with the first one, we shall be led to the
introduction of certain parameters ey, By ..., t0 an expression, cor-
responding to (3), say

dQy = Ay day + By dffy 4 Cedys + - .+
and to its integrating divisors f
AQ’, Az”, AQ'”1 LI ] . . . . . . . (5)

These will be functions of @y, B3 ¥3,.... Now, the proposition that
the temperature is an integrating divisor, ascribes a particular signi-
fication to one of the functions (4) and one of the functions (5),
the inequality or equality of these fuuctions, calculated each for a
determined state of the body, having to decide as to whether the
bodies, taken in these states, and placed near each other will exchange
heat or not. However, in calculating the functions (4), we have not
even thought of the body M,, and in forming the functions (5), we
have not had in view the system ;. Therefore, the two functions
could not be involved in what happens in the mutual action of the
two bodies, if these had nothing at all in common.

§ 6. In our ordinary molecular theories, which leave out of
account the phenomena in the aether, the question is very simple.
So far as we know, the total want of order in the molecular motions,
precisely the state of things which justifies the introduction of the
caleulus of probabulities, is, in these theories, a sufficient ground for
the general validity of CaRrNot’s principle. This irregulanity in the
motion of the ultimate particles scems to be the only common feature
of different bodies that is required. It has been found sufficient to
prove the proposition that the wean kinetic energy of a molecule
is the same for all gases of the same temperature, a result,
which is of the highest importance in the theory of molecular
motion, and is likely to be so too in that of radiation. Indeed, it
is to be expected that in studying the state of the aether, corresponding
to the temperature 7', we shall meet again with the same definite
amount of energy, with which a wmolecule of a gas, of that tempe-
rature, i3, in the mean, endowed, and which must also play a part
in the internal motions of a liquid or solid body.

I shall denote by @ this mean kinetic energy of a gaseous mole-
cule at the temperature 7.

/§ 7. We shall now return to the question what similarity in
the stiucture of all punderable matier must lie at the bottom of the

e~ e €5 S e

e

|
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thermodynamic theory of radiation. Evidently, a perfectly satisfying
answer could only be furnished by an elaborate theory of the meca-
nism of emission and absorption, such as has not yet been worked
out, though Praxckl) and vax DER WaArLs Jr.?) have published
interesting researches in this direction. We may however attack the
problem in a way that does not require a knowledge of peéuliarities.
By comparing two systems, both composed of ponderable matter and
aether, and which are, in a wide sense of the word, ,similar”, i.e.
such, that, for every kind of geometrical or physical quantity involved,
there is a fixed ratio between its corresponding values in the two
systems, I shall try to show that, in all probability, the likeness
in question consists in the equality of the small charged particles
or electrons, in whose motions modern thecries seek the origin of the
vibrations in the aether. We shall begin by supposing that, in pass-
ing from one system to the other, the dimensions, masses and
molecular forces may be arbitrarily modified; then we shall find
that the charges of the electrons must remain unaltered, if the second
system, as compared with the original one, is to satisfy BoLrzMany’s
and WIEN’s laws.

The consideration of similar systems has already proved of great
value in molecular theory. It has enabled KaMERLINGH ONNES to
give a theoretical demonstration of VAN DER WAALS'S law of cor-
responding states; moreover, the experimental confirmation of this
law has taught us that a large number of really existing bodies
may, to a certain approximation, be regarded as similar.

Of course, if the theory is also to embrace the phenomena going
on in the aether, we have less liberty in choosing the systems to be
compared. Since the properties of the aether cannot be changed,
the velocity of light is not in our power, and the similarity im-
plies that all other velocities must likewise be left unaltered.

§ 8. Let the first of the two systems be the one that has been
considered in § 2: a ponderable body M, and, mext to it, a certain
space, filled with aether, both enclosed by walls that are perfectly
reflecting on the inside.

Let the ponderable body be built up of a large number of small
particles, each of which has a certain volume, so that the density

1) Pravck, Drude’s Ann, Bd, 1, p. 69, 1900,

®) VAN pcr Waans Jr., Statistische behandelig der stialingsversehynselen, Disser-
tation. Amsterdam. 1900,
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of ponderable matter is finite everywhere. To these particles weé
shall ascribe an irregular “molecular” motion and the power of
acting on one another with certain “molecular” forces.

We shall farther suppose them — or some of them — to be
electrically charged, and, for convenience’ sake, we shall consider
each charge to be distributed over a small space, with finite volume-
density ¢. This density may be treated as a continuous function,
which sinks gradually into O at the surface of the electrons.
Of course, if some of the particles have no charge, we have only
to put for these ¢ == 0.

Finally, we shall take for granted that the aether pervades the
space occupied by the particles, and that a dielectric displacement
> and a magoetic force £ may exist as well inside as outside a
particle.

Then, if bz 9y b2y D= Pyy H2 are the components of d and H, and
Bz By, v those of the velocity, we have the following equations ):

3y 9

%“Z—”_%=4n(gw+%?, N ()

2t (ot ),

\ %Pm-'f_,_abu_ab" A ¢

4nm(%¥-%3)—a£f,

4nm(a;; %—’)-_—aa?’,
aa€x+a'g’”+a°” . )

1) See f.i. Lorentz, Versuch einer Theorie dei electrischen und optischen Erschei-
nungen 1n bewezten Koérpern, 1895,
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These, with ¢ =0 everywhere outside the electrons, and if we
add proper conditions at the reflecting walls, serve to determine the
state of the aether, as soon as we know the motions of the clectrons.

The energy of the aether per unit volume is given by

1
27 Vzbz—f—-é-;.@g, D ¢ X0))

and the components of the force, exerted by the aether on the elec-
trons, will be for unit charge

47 Vzbz‘{-ﬁy Jbz— bz@y’

Am VP 0 Pe— s Pt o . . . % (11)

4:7'5 Vzbz ‘I‘”z"jy""‘by.bm.

Besides these forces, there may be (molecular) forces of another
kind, acting on the electrons.

§ 9. We have next to compare this really existing system S
with a second system S', which perhaps will be only animaginary
one. Its enclosure is to be geometrically similar to that of S, the
linear dimensions being a times what they are in the first system.
By corresponding points in the spaces within the two enclosures,
we shall mean points that are similarly situated, and to every
instant in the interval of time, during which we consider the phe-
pomena in 8, we shall coordinate an instant for the second case,
in suech a way that the interval between any two moments in S’
is @ times the interval between the corresponding moments in S.

Let it further be assumed that, if at a particular instant ponder-
able matter or an electric charge is found at some point of one of
the two systems, this will likewise be the case at the corresponding
time and the corresponding point of the other system. As a con-
sequence, the distribution of matter and of electric charge will
be, at corresponding times, geometrically similar in the two cases,
the dimensions of the particles in S8' and their mutual distances
bearing the ratio a to the corresponding quantities in 8.

What has been said suffices to determine the internal motions in
S', as soon as one knows those in 8; the velocities will be the
same in the two systems, because we have supposed the ratio of
corresponding times to be equal to that of corresponding lengths.
Of course, the motions in S and 8’ will present just the same degree
of irrogularity.

-10 -
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Now, our description of the state of the second system will
become complete, if we indicate, for each of the physical quantities
involved, the number by which we must multiply its value in &,
in oxder to obtain its value in S' at corresponding points and times.

Let this factor be b for the density of ponderable matter, ¢ for
the density of electric charge, and ac for the dielectric displacement
and the magnetic force. Then, since the phenomena in the system
S, which exists in reahty, agree with the equations (6)—(9), those
in 8" will likewise satisfy these relations. Nor will the conditions
imposed by the nature of the walls be violated. We may also remark that
the formulae which are obtained for the two systems, if the motions
are analyzed by means of FOURIER's theorem, will differ from each
other only by the constant factors « and ¢. The ratio between
corresponding wave-lengths, e.g. between the values of Ax, will of
course be a.

As to the motions we have attributed to the elecirons in S’
these will only be possible, if a, b and ¢ satisfy a certain condition.

1
The ratio of the accelerations being — , and that of the masses of
a

corresponding elements of volume (or of corresponding particles)
a3b, the forces acting on such elements must be in § a?b times
what they are in S. Now, whereas the ,molecular” forces may be
supposed to be regulated according to this rule, the action of the aether
on the electrons in §' has already been fixed by what has been
said. The components (11) of the force on unit charge are, in
8'y a¢ limes what they are in S, and for the charges of correspond-
ing elements of volume the ratio is a®c. The factor for the forces
exerted by the aether on such elements will therefore be o*¢*, and
we must have the relation

@b = at &2
or
e O € 1))

This being the only condition, we may imagine a large variety
of syslems 8, similar to S, and which must be deemed possible
as far as our equations of mot1on are concerned The coefficients
a and ¢ having been choscn, and & calculated “by (12), we should
find, by (10),

~

T ¢ 1))
for/ the ratio of the kinctic ecnergies per unit volume, and

) at b,

-11 -
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or, in virtue of (12), )
D (2R

for the ratio of the kinctic energies of a moiecule or an electron.

The latter number will at the same time be the faclor by which
we have to multiply the temperature T of S in order to obtain
that of 8'. Indeed, in the formulae (1) and (2), we may suppose T
to be measured Dby observations in which radiation does not come
into play, say by means of a thermometer; we may therefore apply
the result of molecular theory that 7' is proportional to the mean
kinetic energy of a particle.

§ 10. If we had only to satisfy the equations of motion, ¢ and
¢ might be arbitrarily chosen. We could then take -

and b=10a—%. By this the value of (14) would become 1 and
that of (13)

a3,

which might have any magnitude we like. In this way we should
have got two systems S and S8’ of equal temperatures, but with diffe-
rent amounts of energy in the same space. This being in contra-
diction with the results, deduced from CaRNOT's principle, the choice
of a and ¢ must be appropriately limited.

If the two systems we have compared with each other are to
agree with BorrzMany’s law, (18) must be equal to the fourth power
of (14). From this we conclude

aSe=1,. . . . . . . . . (15

that is to say, the charges of corresponding elements of volume,

) A moving charged particle produces in the surrounding aether an electromag-
netic energy, which, for small velocities », may be reckoned proportional to »° It
may therefore be represented by '/, %% The factor & plays the part of a mass, and
may be called the electromagnetic or apparent mass, in order to distinguish it from
the (true) mass in the ordinary sense of the word., Now, % isfound to be proportional
to the square of the charge, and inversely proportional to the dimensions of the
particle. The condition (12) therefore means that the ratio between the true and the
electromagnetic masses is the same in § and 8'. There would be no necessity to
introduce a condition of this kind, if there were no true mass at all ; neither, if
some of the particles had no charge, and the remaining ones no true mass.

We may also express the relation {12) by saying, that the ratio between the elec-
tromagnetic and the ordinary kinetic energy las to be the same in the two systems.

-12 -
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and also those of corresponding electrons must be the same in S and 5.

If (15) is satisfied, the two systems will accord with Wien's law,
as well as-with that of BoLrzmaNnn, In the first place, the ratio of
the temperatures, for which we found the number (14), now reduces to

1

a

As the values of A, are to each other as 1 to «, they are inversely
proportional to the temperatures of the two systems.

We may remark in the second place that the repartition of the
energy over the rays of different wave-lengths will be similar in the
two systems. Consider for instance the rays in S whose wave-lengths
lie between A4 and A4-d4; by WIEN's law, the energy in unity
of volume, depending on them, is

Top (TA)dA « « o o . . . . (16)

The corresponding rays in the second system have their wave-
lengths between A' and A' 4 d A, if

N=alk, dM=adl,
and, in order to calculate the energy in unit space which is due to
these rays, we have only to multiply (16) by the factor (13), which

1 .
becomes = in virtue of (15). Now, one gets the same expression
1
- Thp(TAdA,
a¥

if, in (16), one replaces A by A", dA by dA, and the temperature T
T .

of S by the temperature T'= — of §'. It appears from this tha the
a

distribution of energy over the different rays in &' is exactly what
it ought to be by WinN’s law at the temperature of the system.

§ 11. What precedes calls forth some further remarks. It might
be argued that two bodies existing in nature will hardly ever be
similar in the semse we have given to the word, and that therefore,
if S corresponds to a real system, this will not be the case with
S'.,But this seems to be mo objection. Suppose, we have formed an
image of a class of phenomena, with a view to certain laws that

-13 -
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have been derived from observation or from general principles. If
then, we wish to know, which of the features in our picture are
essential and which not, i.e., which of them are necessary for the
agreement with the laws in question, we have only to seek in how
far these latter will still hold after different modifications of the
image; it will not at all be necessary that every image which agrees
in its essential characteristics with the one we have first formed
corresponds fo a natural object.

We have many grounds for expecting that a theory of radiation
can be developed on the lines drawn in § 8. In such a theory
we shall have to distinguish between the hypotheses concerning the
uncharged particles, the ordinary molecular motions and forces, and
those which relate to the electrons, their dimensions, masses and
charges and the non-electrical forces which, conjointly with the
electromagnetic ones, determine their motjon. Now, it seems natural
to admit that in a theory of radiation the hypotleses-which relate
to the electrons form the essential part of the explanation, and that
all the rest may be freely modified within the limits indicated by
the ordinary molecular theories.

If we had a right, likewise to change at will the dimensions of
the electrons, their true masses and the forces to which they are
subject, the considerations of § 10 would only leave room for the
conclusion, that a definite magnitude of the electric charges must
be reckoned among the essential features of our picture. One might
however be of opinion that these dimensions, masses or forces con-
tain already elements that are necessary parts of the theory., For
instance, the electrons could bave a fixed, constant diamecter, the
same in all ponderable matter. If this were the case, our factor a
could not be different from unity, and the formulae (12) and (15)
would give 0 = 1, ¢ =1, The system S8’ would be identical with S,
and it would be impossible to learn anything from it. Again, the
ratio between the densities of ponderable matter and of electric
charge might be a universal constant. This would require d=¢, and
by (12) and (15) @ = & = ¢ = 1. The way in which we have
treated the molecular forces acting on the electrons is also liable to
objection. If a definite intensity of these forces were a requirement
in the theory, it would be impossible so to regulate them, that they
are in S' a*c® times as great as in S.

These remarks do mnot, however, invalidate the general con-
clusion, that the electrons in two ponderable bodies cannot be wholly
different. 'We may even remark that, if it were found necessary to
aseribe equal dimensions to the electrons of different bodies, it would

-14 -
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be wot unnatural to suppose them equal in all other respects. This
latter hypothesis would likewise recommend itself as the simplest
possible, in case we ought to assume a constant ratio between the
masses and the charges, and a fixed relation between the above
mentioned forces in different bodies would in its turn point with
some probability to an equality of the electrons.

Of course I do not mean to say that all electrons in nature must
be of one and the same kind. Anyways, there must be hoth po-
sitive and negative particles, and we may imagine any number of
kinds of electrons we please. The conformity between different sub-
stances should in this case be attributed to the existence of each
of those kinds, with their definite charge, in every body.

We must leave these questions for future research. The theory
will also have to explain why the phenomena always depend on
the temperature in the way expressed by the equations (1) and (2).
It is true, we have compared cases in which the temperatures were
not the same, but in those cases we had to do with different bodies,
whose molecular weights were such, that the velocities of the particles
were equal at the two temperatures compared. It will be necessary
also to compare the same body at different temperatures, and this
cannot be done by barely comparing similar systems.

§ 12. The question remains, on what quantities that are involved
in the constitution of ponderable bodies the values of A, and the
energy 4 per unit space may be taken to depend. We have spoken
of the dimensions, the masses and the electric charges of the electrons,
or of a particular kind of electrons. These might be the same
through all nature, and besides these there is the mean kinetic
energy @ of a molecule at the temperature T. Now we may con-
ceive different ways, in which A, and g could be derived from
these quantities. TFor instance, a given electric charge e, taken
together with a given amount of energy ®, may determine a definite
length. This follows at once from the ,dimensions” of ¢ and @,
but we may explain it as well by remarking that, if a charge ¢ is
uniformly distributed over a sphere of radius R, there will be an
electrostatic energy

1 272
2 R

(¢ being expressed in eclectromagnetic units). Ilence, if we desire
this emergy to have the value ®, the radius must be

-15-
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| A
R=—2,-T........(17)

This is a length, entirely determined by ¢ and @, and it may be
that A, bears always a fixed ratio to B. As to the energy per unit
volume, it will probably be determined by some such condition as
this, that the energy, contained in a cube whose side is 4y, isin all

cases the same multiple of @ 1)
" We may add that o varies as 7, and that therefore the line R,

. 1
calculated by (17), will vary as v Hence, the length of A, if deter-

mined in the way we have indicated, will be found inversely pro-
portional to the temperature, as we know it to be. Morec;ver, in
accordance with BOLTZMANN's law, the energy in unity of volume
would become proportional to T4 if a cube, whose side varies as

contained an amount of energy, which is itself proportional to the

)
temperature.
I shall conclude by mentioning that Prof. Praxck, after having
found for the function f(7, A) the form

p
aV

2V2b6 T a7
PR ’

has caleculated from experimental data the coefficients a and & con-
tained in it, and has used these coefficients, together with the velocity
of light and the constant of gravitation, for the purpose of establishing
units of length, mass, time and temperature that are given by nature,
without it being necessary to choose some standard body.

If the above considerations are to be trusted, this universal sys-
tem of units would be based on the velocity of light, the constant
of gravitation, the mean kinetic energy of a molecule and the pro-
perties of the electrons, present in all ponderable matter. ]

1y What multiple this is, may be deduced from the observations on radiation, com-
bined with what we know about the mass and the kinetic energy of a molecule, It
is also implicitly contained in the considerations by which PraNck terminates his
last paper. By his formula, which, as he shows, agrees with the results of the kinetic
theory of matter, I find that the energy of radiation in a cube whose side is A (§ 4)

amounts to a little more than 5,5 o,
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