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Physics. — Dr. G. BAKKER: “Contribution to the theory of elastic
substances.”

If we leave electrical and magnetical forces out of consideration,
the forces acting on a body are gravitation, external pressure or
tension and the internal molecular pressure and thermic pressure.
Though in the theory of elasticity the substance is substituted by a
continuous agent and we have therefore strictly speaking not to deal
with mutual action of molecules, I shall yet keep to the usual
term, though the term cohesion seems more suitable to me than
the term molecular pressure.

In the theory of elasticity, just as in the theory of capillarity,
forces are assumed, which are only perceptible at exceedingly small
distances. If these forces are supposed to have a potential, the
potential function
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which is a special case of the general function of Dr. C. NEuMANN,
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might be of great use here, for if we take ¢ very large, the forces
between two volume-elements will rapidly decrease with the distance.

In his thermo-dynamical theory of capillarity VAN DER WaaLs
has found this potential function to be a probable function for the
capillary forces. Afterwards I have further discussed this function
in two papers, presented to the Academy the 28t of Qctober and
the 25t of November 1899, and I further applied it in my treatise
“Zur Theorie der Kapillaritit” (Zeitsch. fir phys. Chemie XXXIII,
4. 1900). ‘

Let us imagine an “infinitely small” volume-element in the body
in consideration, and let us take that space as unity of volume.
It U, B and ¢ are respectively the virial of the external forces,
that of the molecular attraction and that of the thermic pressure,
then the total virial per unity of volume is e.g.:

F=U+B+8&Y . . . . ... (1

1) The influence of gravitation is left out of consideration.

32
Proceedings Royal Acad. Amsterdam, Vol. IIL,




(474)

I imagine the element to have the shape of a cube, the sides of
which are parallel to the principal pressure-axes of the point in
consideration, which I take as coordinate axes. Then the general
expression for the virial:

Fe= — 2} (X + Yy -+ 22) .

gives immediately:
U=3%(@+pat+ps) « « + « - « . (3

PPy and ps representing the principal pressures.
If 5,8, and &; represent the molecular tensions in the same
directions and @ the thermic pressure in the pointin question, then:

n=0—-S8, p,=0—8 and p3=0—-S§ .
or
p1+pe+ps=3860—(8 4+ & + )
So:

1 \
U=%&—?@rp$+&}.. )

As the thermic pressure depends only on the condition of the
substance in the immediate neighbourhood of the point?), where
the value of the virial of the thermic pressure is 02), we may
take for @ also the value which this quantity would have if at the
same temperature the substance round the point in consideration
had the same density as in the point itself. If we take for the
agent, which in these considerations is used as a substitute for the
body which is thought to be isotropical, the potential function:

e—9r

”
the following differential equation holds good for that agent:

Vo V =1¢* V4 dnjfp ¥).

9 In contrast to the molecular forces of attraction.
*) Zeitschrift fur phys. Chemie XXXIII, 4 1900 p. 478.
3) Konink, Akad. v. Wetenschappen: Proc, Nov, 25th 1899 p. 2.
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For a region which is large enough and for which we think the
density ¢ to be the same everywhere, Vo ¥V =0 and so:

V= — 4nfi%
or substituting a for 2 w fA%: (). = —1—)
)
V= —2q0

the tension S now becoming:

V2

S=pp=@ . @

If in this case we call the pressure p, then:
p=60—ag®* ¥ . . . . . . . . (B
p is the pressure of the homogeneous phase with the demsity ¢ of

the point in question and at the temperature of that point.
From (5) follows:

3 3 3
—2~pv:~§0'v———2—a() (v = specific volume) . . . (6)

If F, is the virial of the homogeneous mass per unity of mass,
then :

3 3
Fl_-—_—z—fp'v—}——ga@—l—l?l e v e e e (7)

.3 .
for, as may be easily shown, the virial is ) X the potential energy

with reversed sign. (See Zeitschrift fiir phys. Chemie XXI. 3. 1896,

1) Konink. Akad. v. Wetenschappen: Proc. Nov, 25th 1899 p. 219 and 320.

?) If the expression §= ;I—e_!—b held for the thermic pressure for an isotropical sub-

stance with a certain density, we should get the same equation of state as that of
VAN DER WaAArLs® for gases and liquids.
32*




( 476 )

3
pag. 503). Further Y pv is the virial of the external forces and

9, that of the thermic pressure (per unity of mass).

3
If we substitute in (7) the value for L derived from (6) we get:

-

3
F]_:E 617—-]—'91-

If we suppose that the total virial of the mass-unity is a pure
function of the temperature, just as for liquids and gases, and further
that ¥; depends only on the density (and temperature) then :

—

/

Flo=F and $,0=¢&
and so according to (1):

U+B+0=%0+0
By substitution in (3):
1
=< G+S+H . - ®

or in words:
the virial of the molecular forces per unity of volume is half

the sum of the three principal tensions.

Jf we put A= —fand B=0 in the expressions which in the
paper already mentioned I found for the tensions puz, pyy and p..
(pag. 318), through which the potential function

Ae—9 4- Be 97 i
— becomes — f —_—

we get:
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By addition :

— 87 f(paw + pyy + p=) = — g(dV)2+ (%)2-{- (%?)2; — 3¢V

dr

The sum of the teusions pur + pyy + pe. is therefore independent
of the direction of the sides of the cube-shaped element 1n conside-
ration. We may therefore represent the sam by 8 +— Sy + S and
find then:

R 372 1
= Tonr T Tomre = © (9)(“:7)

The tensions S, and S; mormal to the lines of force appeared to
be the same. We found for them:

R? Ve
S = 3——Snf--l_ 8w fA2
and
2 2
S = L4
8nf 8mfA

while we found for the potential energy per unity of volume:

R? V2

V= — — .
v 8mf 8ayA?

Now we can easily derive the relation:

Sg—8=—3W—2B ... ... (10

or in words:

The difference of the tensions normal to and in the direction of
the lines of force (per unity of suiface) is three tumes the work
required to ravefy the substance infinitely, diminished with twice the
virial of the molecular forces of attraction (per unty of volume).
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Dilatation.
If X and u« are two constants, we have according to KIRCHHOFF

for the projections of the displacements of a point, whose coordinates
are =, y and z:

ov ow (— X is there-

du
(}'+2ﬂ)§; +A@ "‘)‘é'z":”'xl fore a tension)
Qu ov B ow
du dv dw
la—(c— -l—),-é; +(l—l—2,u)a—z-=——Zz

By composition:
B+ (i) ==+ T+ 2.

The second factor in the left-side member represents the dilatation,
and is generally indicated by the symbol . Therefore:

X4 Y, Z
v——'—m—“- e e e s e (11)
The quantities Xz, ¥y and Z; correspond to the quantity which
we should call the hydiostatic pressure in case of aliquid. If there-
fore the molecular tensions are represented by S etc., we have:

Xx=0—'8xa.
Yy=0—35,
Zy =0 — 8,

By substitution of ¢ from (3)

or according to (11)

2 U
- 2
7= 31_{_2!‘.......(1)
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Applications.

1. Elongation of a prism. We 1magine at the two ends a force S
per unity of surface 1 the direction of the longitudinal axis. If we
apply formula (12) to every volume-element of the prism, the total
increase of volume becomes:

2fUdT
fvdr—'—3

A2

For space-elements which are quite inclosed by others, the increase
of volume for the external virial (external with regard to such an
element) is neutralized by that of the surrounding ones and finally
the total external virial is that of the external forces acting on
the prism. That virial is in this case: — 4 Sid.

Therefore :

Sid
ar = — = section).
fV ’ 3l+2/¢ 3A+2pu (€ = section)

The dilatation is therefore:

S
3A+2u

2. Dilatation of a hollow cylinder. T.et S be the corresponding
force just mentioned, P and p the forces per unity of surface, normal
to the outer and inner suiface, taken positively in the direction
of the radius, then, if ! represents the length, » and R the radii
internal and external, the virial of S 1s:

— 1 81 (m R? — 7 +?),
the virial of P:
—3SPR=—4RX2zRIP

and that of p:
—3rX2melp.

Therefore:
—2U=S8ia(Rr—r)+2al(PR*{pr).

The total increase of volume divided by the volume = (R? — r2)}
yields for the dilatation:
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1 PR -pr? -

= )84 2
v 3A4+2u + R? — %

3. Dilatation of a spherical shell. -
Let p be the internal, P the external pressure, both calculated

positively in the direction of the radii » and R, theun is, according

. 3 .
to the general expression of the external virial — 7 b the virial

—

of p:

3 4 3 4
— _— 3 i :—_— - 3. -
2px3nrandofp 2P><3nR

After having divided by 31 4 2 # and by the original volume

4
-§-n(R3 — %), we get for the dilatation: ~

2U 4 3 PR3 4 prd

=T iyoe 3 W TS L Boe

4. QERSTED’s Piézometer.

If V is the external and » the internal volume, then the virial

3
of the external pressure is p : - pV and that of the internal press-

3 . .
ure: — — pv. As the original volume of the substance forming

&

the shell is V' — v, the dilatation becomes:

3
92 — —
B . X5 v)_ 3p
V= 3A+2u Vv T 3A+2u

So we see that the value of ‘the ratio v does not depend on the
external or internal volume nor on the form. The external volume
is therefore compressed in a proportion as if the vessel were massive,
which corresponds with the views of CorLrApoN and SturM and
is opposed to those of OERSTED.
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