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KO:NINKLIJKE AKADEMIE VAN WETENSCHAPPEN 
TE A~ISTERDA~I. 

PROCEEDINGS OF THE MEETING 

of Saturday April 20, 1901. 

--------~.~~~.-------

(Translatcd from: Verslng van de gewone vergadering der Wis- en Natuurkundige 

Afdeeling van Zaterdag 20 April 1901, DI. IX). 

CONTUNTS: Prof. H. A. LORBNTz: "BOLTZ~!ANN'S and WIEN'S La\\'s of radiation", p. 607. -
Prof. H. KAMERLINGII ONNES nnd H. H. FRANCIS HYND~!AN: "lsothcl'mals ofdiatomic 
gases Itnd their binal'y mixturcs. I. ]'iezometers of variabie volume for low 'tempcra­
tUl'CS", p. 621, (with 2 pIntes). - Prof. H. KAMERLINGII ONNES: "On DE HEEN'S 
cxpcl'imcnts nbout the critical state", p. 628. - Prof. J. D. VAN DER WAALS: "The 
cquation of state and thc thcory ofcyclic motwn" III, p. 643. - Prof. J. L. C. SCIIROlliDER 
VAN DER KOLK: "On hnrdness in minernIs in connection with clcavage" p. 655. -
Prof. J. C. KAPTEYN: "On thc lnminosity of the fixed stars", p. 658. - H. D. 
BEYERMAN: "011 thc inBucnce upon respimtion of thc furadic stimul!ttion of nerve 
tmcts passing Ihl'Ough the interlllÜ cJ.psula", (Communicated hy Prof. C. WINKLER). 
(with 1 plate) p. 689. - Prof. H. KAMURLlNGII ONNES: "On diffcrcnces of density in 
tltc ncighbourhood of the Clitica! statc Ul'lsillg from diffct'ences of temperaturen. 
p. 691. - Prof. JAN m: VRIES: "Involutions on a curve of older four with triple 
point". p. 696. - Dl'. F. A. H. SCIIREINEMAKERS: "Notes on equilibria in tel'nary 
systcms", (Communicutcd by Prof. J. M. VAN B~MMELUN), p. i01. - DI'. P. K. LULOFS: 
"Substitutioll vcIocity in the cuse of ul'omatic hulogen-nitl'odcl'ivatives", (ComOluni­
catcd by l'rof. C. A. LOBRY DE BRIlYN), p. 715. - DI'. A. S~IlTS: "On tlte pl'ogrcssive 
change of the fuctol' i as functi'ln of the concentration". (CoOlmunicated by Prof. 
H. W. BAKllUIS ROOZI;BOOM), p. 71i • 

rhe following paperl3 were read: • 

Physics. - Prof. H. A. LORENTZ: "BOLTZMANN'S alld WIEN'S 

Laws of Radiation." 
(Read l!'ebl'uary 23, 1901) 

'rhe theoretical proof of the laws, to which BOL'l'ZMANN 1) and 
WIEN 2) have been led by the applicatioll of thel'modYllamics to the 
phcnomena of mdiatioll may be made ta depelld directlyon the 
equatians of the electromagnetic field, a method which has the 

1 11 ..... 
) llOL1'ZUANN, Wwd. Ann. Bd. 22, p. 2\)1 j 1884,. 

2) WIm" llerliuer Sitz. lJel'ichte, 1~93, p. 55. 

41 
l'l'oceedings 110yll1 Aoad. AmstorUtllll. Vol. UI. 



- 3 -

( 608 ) 
-

advantage that the notion of "rays" of light and heat-is a]most 
wholly avoided. 

§ 1. Let us eonsiuer a space, enelosed by walls that are per­
feetly reflecting on the inside, and eontainillg a ponderable_body M, 
the remaining part being oeeupied by aether. In tbis medium we 
shall then have a state of radiation, the nature of whieh is determined 
by the temperature T of the body ..LY; in vü'tue of this state the 
aetber wilt exert on the refléeting wa lIs a certain pressure, the 
amount of which for unit area we sball denote by p. Let v be 
the volume within the enclosure. It may be eularged or diminished 
by a displacement of the walls. We shall aIso suppose that by 
some means or other heat may be imparted to the body M. 

Now, ehoosing v and T as independent variables, and denoting 
by E the energy of the whole system, \\'e shall have 

aE ,,(aE ) 
dQ = o.7,d.7 + OV + p dv 

for the heat that is J'oquil'ed for thc infinitesimal change, determilled 

hy dT and dv, and, by the rule that d'1~ is an exact diffel'ential, 

OE _ Tap 
ov + p- 01'° 

Here thc fil'st term l'ppl'c:-;enhl the enorgy of tho aethcr per unit 
volume, which we t:;hall call U.' lndeed, if we increase the volume 
v, keeping the temperatul'e constant, the ponderabIe body willremain 
in thc samo state (the pressure p cxel'ted on this body by the sur­
rounding aether will not be aJterod, being a function of T alone) ; 
the illcrement of f will thcl'efore be the enel'gy contained in the 
new part that is addcd to v. Henoe 

u+ ",dp 
P = J. d'l'" • • • • • • • (1) 

the last term cOl1tainiug' all ordinary differel1tial coefficient, because 
p is independent of v. 
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§ 2. We sllaH combine this result with tbe simple relation 

1 
p=-u 

3 
• • • • • (2) 

wbich we now proceed to prove. To this effect we remember in 
the first pI ace that tbe energy per unit volume is gi ven by 1) 

We shall therefore write 

_ 1-
(J = 2 n V2 b2 + 8 n .p2, . • • • • • (3) 

the horizontal bars indicating mean valnes with respect to plaee 
and time, which we might calculate by computing in tbe first place 
the mean values for all points of a certain space, and by taking 
then, for a certain lapse of time, thc mean of these space-means. 
In this it is to be understood that the dimensions of the space in 
question and the length of the lapse of time have to be large, as 
compared with the wave-length and the time of vibration. 

1f we confine ourselves to such mean values, the forces acting on 
the walls may be regarded as due to a state of stress in the aether. 
Ir a, (i and rare the dil'ection-cosines of the normal n of an 
element of surface, the first component of the stress on this element 
will be 

i.e., this wiJl be the force in the direction of OX, exerted by the 
part of the medium which lies on the side of the element, indicated 
hy the normal n. 

Now, the state of radiation we are considering has the same 
properties in all directions. From this it follows that there are no 
tangential stresses and that tbe normal stress is tbe same for aU 
directions of the element of surface. It is given hy 

1) The notation is tbe sUlUe as in my ) Versueh einer 'l'heorie der eleotrisohen und 
optisehell Erseheinungeu in bewegten Kórpern", from whieh lIlemoir I luwe also 
borrowed several formu!ae. 

41* 
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But, in an isotl'opic state, 

~rhcrcforo: 

and 
2 _ 1_ 

XJ., = --11: V2 tl2 __ - .~2. 
3 2411: 

In comparing this formuIa, in which the nogative slgn indicatos 
a pl'essltJ'e, with (3), wc arl'ive at tho relatioll (2). 

In virtue of this the equation (1) now t,tkes the form: 

rl
dU 

4 U= '1 dl" 

alld so we finu the Lnv, cnUlwiated hy BOLTZl\UNN, that thc enelgy 
U per unit volume is pl'oportional to the fOUl,th power of Ihe 
absolute temperature. 

-
§ 3. If the volume v is illcroascd, thc system will do an extcl'IHtI 

work and tt larger volume of aethel' will be fiUed with the 
energy of radiation; for uoth rcasons the tcmperature of the 
body ]1 will sink, if the operatioll is conducted adiabatically. We 
mayalso, bcfore inclCclsing the volume, remove thc body lJ[ i in 
this case wc e,tart from a volume v of aether in the particu]ar state 
of radiation tlw.t corresponds to thc tempemtul'c T, and we get new 
statcs by letting the wallR recede with a vclocity which we s11a11 
8uppose to be cxtremcly small in comparison with the velocity of 
light. Now '\V1EN has shown in the first place, by a train of 
thermodyna.mical reasoning, that these new states, of smaller energy­
density thJ.ll tbc original one, are. precisely such as can be in 
equiliblÎum '" ith panderabIe bodies of temperature& lawel' than T. 
Using BOUfZMANN'S luw, W~ may express this as follows: After 
having diminishe<l, by mcans of au ndiabatic expallsion, the eneIgy 
pOl' unit volumo fiom U to U', wc shall have arrived at a state 



- 6 -

( 611 ) 

of radiation Wllich may be in equilibrium with a pondemble body 
of the temperatul'e 

1
4/"Ti'" 

T'=TV -. 
U 

This theorem, which I shaH hore admit without fUl'thel' discussion, 
pnables us to detel'mine the relation bet ween the states of radiatioll 
corresponding to the temperatures Tand T'. For this pur pose it 
will only be neceósary to compare the states of the aethel' before 
and aftel' the expansion. rrhis is the second part of the proof given 
by WIEN, and it is this part wc shaH present in a modified form 
by applying the weil known equations of the electromagnetic field 
to the phenomena. lD the aetller within the receding walls. If w(' 
suppose the expanding enelOBure to remaln geometrirally similar to 
itself, the problem may be treaied by the introduction of a suitable 
set of new variables. In seeking for these, I have kept in mind tbe 
substitutions that had proved of use in the theory of aberration, a 
theory in which we have hkewise to do with moving ponderabIe 
bodies. Of course there is a difference between th(> two cases; in 
thc problem of aberration the velocity is the same for all bodies 
concerned, whereas, in the question now under considemtion, it is 
unequal for different points of the enclosures. 

§ 4. I shaH suppose the dilatation of the walls to be equal in 
all directions, and ta have the same amount in cqua.l infinitcly smaH 
times. This may be expressed by assuming 

x = x' e at, y = y' e at, Z = z' e at, . • . . (4) 

with a constant value of a, as the relation between the coordinates 
x, y, z of a point of the walls at time t, and the coordinatos 
x', y', z' of tho same point at the instant t = 0, at which wo 
begin ta consider tho phenomena. Indeed, the velocities are by (4) 

ax, ay, aZj • • • •• . (5) 

during the time d t the linear dimcnsiolls will thm cforc be changcd 
in thc ratio of 1 to 1 + adt. 

As to thc constant a, we shaH take iL sa small thnt the vclocities 
(5) are extrcmcly small in comparison with thc yelocity of light. 
Notwithstanding this -we may, by ~uffici(,lltly increasing t, assign to 
thc factor eat any value we likc. 
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Af ter havillg assumec1 for the walls the f01'lllUlae (4), it is natural 
to replace the coordinates x, y, z of ally point of the enclosed space 
by the new varia bles 

al' = x e-at, V' ::: ve-at, ::/ = ze-at, • . • (6) 

The fourth innependent variable, tho time t, will likewise be 
replaced by a new one. For tbis we take 1) 

Tbe dependent variables which occnr in the equations of the 
eJectromagnetic field are now to be considel'ed 8S functions of 
x', y', 2', t'. In doing so, we have to use the relations 

o ê1 _=e-at _ 
ax ax' 
o 0 -=e-at -

OV ov' 

a 0 -=e-at -
O.z oz' 

ax 0 
v~ e -at ot" 

av 0 
v~ e -at ot" 

az a --e-at _ 
V2 ot" 

o [a2 
] a - = e -al 1 + __ (x2 + y2 + z2) __ at 2 V2 at' 

a a a 
- aJ: e-at _ - ay e-at -, - az e-at -. 

OJ" ag az' 

(8) 

(9) 

The val'iables which serve to detcrmino thc state of the aetber 
are ha. by, ti::, -9a. -9?J' .~::. We sha11 l'cplace these by the qUèmtities 
b'~, b'y, b'z, -9':t, -9'", SJ:', which are defined by the following equations 2) 

\ 

1) As regards the bilt term, tllis vnJue of t' is fin imÎtation of the expression for 
the "leea1 time", whicll I have intJodllccd into the theol'y of nberrntion (1. c. p. 49). 

2) 'l'he latter telms in these equtltiol1s conespollcl to similal' tc.llllS in the E'qllotiollS 
of the theory of abet'rolÏon. 
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, a ( 
bx =e-2at b x - 411: V2 y{>z-z'!?y), 

1 a ) by = e- 2at by - --2 (z.pa; - x {>z, 
411: V 

.!?x = e- 2 at .p:x + 4 11: a (y bz - Z bY)'~ 

.py = e- 2at .py + 411: a (z ba. - x b.:), 

.pz = e- 2 at {>';:: + 4 n a (x by - Y bx). 

• • • (10) 

• • • • (11) 

It must be kept in mind that tbe coefficiont a is very smal!. 
Let l be the largest value of any dimension of tbe system dUIing 
tbe interval of time we wisb to consider. Tben, by our assumptioll, 

al 

V 

axayaz. 
bas a very smaH value x; evidently, V' V' V W1U be of tbe same 

order of magnitude. Hence, if we neglect quantities whicb, compared 
with other terms in the same equation, are of the order ,,2, we 
may omit in (9) the term containing a2• By this, the relation 
becomes 

a a a 0 a - = e -at -- all! e-at - - ay e-at - - az e-at -. • • (9') at at' a.c' oy' az' 

We may add that for vibratory disturbanoes of the natural state 
. 0 0 a 1 a 

of the aether, the opel'CttJons ox' oy! OZ are comparable to V at ' 
ns regards the order of magnitude of the l'esult, and that {> is of 
tbe same order as Vb. From this it followR that, in tbe equations 
(8), (9'), (10) nnd (11), nll terms rontnining the factor a are of the 
order x, relatively to the tel'ms in wbioh a does not occur. Similarly, 
attentive oonsideration of the formulae that wiU be decluced in tho 
next artiele shows that, in comparison with the terms without 
a, all those which contain the fantor a2 are of the order ,,2. Wo 
shal1 therefore neglect all terms in which a2 appears. 
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§ 5. The Brst equation of motion is: 

o.pz _ o.py __ 4 ".,. Obx• ( ,. ••••••• 12) oy oz ot 

Putting for .py aDd .pz the values (11), we find for its left-hand 
side: 

( 
ODx obz- ) 

- 4rca z--a;- + bx • oz az 

Since 

obx + oby + ob", = 0, 
ox oy oz 

wo may a180 write for it 

(
o.p';: o.p'y) (ODX obx Obx) 

e- 2at ----- -8rcabx-4rca x - +y- +z- , 
DY az ax oy oz 

and, if we neglect terms with aZ, 

(
a.p'z o'~'ZJ) e- 2at - - ---.:!.. _ 8 na e- 2 at b'x-oy oz 

ob'x ob'x Ob'x) 
-4nae-aat(x-+v-+z- . ... (13) ox' oy' oz' 

Again, using tho same simplification, 

o 0 az 0 _-o-at ___ _ 

OZ - oz' V 2 ot' 

a.p'., _ a.p'IJ = e- at (a.p'z _ a'~'!I) _ ~ (1 a·D':: _ z O.p'y ) 
oy oz oy' oZ' V2 Y ot ot' 
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'1 ",' '1 If..'z 
In the last term of this equation, o~.lJ and o~~ may be replaeed 

by e2at °a~Y and e2at o~z , as appears from (11). The expression 

(13) therefore beeomes 

e-3at (O~'z _ a~'y) _ ~(y aJ);,: -z a~!I) _ 
ay' oz' V2 at at 

, (ab'x ob'x ob'x ) -8nae- 2at b:r-4nae- 3rrl ,1'--+V--+z-- . (14) 
ax' aV' az' 

The right-hand side of (12) is, by (10), 

, ob/z a (a~;,: a~11 ) 
- 8 nae- 2rrt ba. + 4ne- 2nt ---- y---z--' at V2 at at' 

or, if (9') is taken into account, 

8 2 bI 4 a b'x - nar at x+ ne- 3nt---
at' 

(
ab/x ab/x ab/ot" ) 

- 4nae- 3nt x--+y--+z-- -, ax' oy' az' 

_ ~(11 O~z _.,. a.py ) 
V2 iJ at - at .. . . (15) 

Finally we shall find, instead of (12), af ter division by e- 3at , 
\ 

'rhe other equations may be treated in the same way and all 
l'elations between the new variables will be found to be of the samo 
farm as those between the ol'iginal ones. 

§ 6. We have a,]so to attend to the -snrfaee conditions at tlJ€l 
walls. These lat tel' wiJl be perfectly J'cflecting, if made of a Bubstanee 
of infinite specifie inductive capacity, and then, if the wall is at rest, 
the tangential eompanents of the dieleetric displacement in the 
adjacent nethel' will bo zero. Thol'efore, if 
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F (a!, y, z) = 0 . • • • . • . (16) 

is the eqnation of tho wall, we sha11 have 

aF aF aF 
bx : bll : bz = a$ : ay : äZ' . . . . . (17) 

In examining the phenomena of aberration, I have had ocrasion 
to consider the conditions that have to be fulfilled at the surface 
of separation of two bodies. These latter were supposed to move 
with a commOll velocity p, and it was found that all equations, 
the surface conditions as weIl as those for the interior of thc bodies, 
might, by an appropriate choice of new variables, be reduced to the 
form that holds in the case of bodies at rest. Instead of the 
diclectrw displacemont with tho compollcnts 

• • • • . . (18) 

a now vector with the components 

• • • (19) 

was introduced. Rence, it WiJl be this new vector, wbose tangential 
components must valllsb at a moving perfectly reflecting surface. 

Let us apply this rule to an element of the walls of thc expand~ 
ing enclosure. The velocity-components Pa., Py, p;: must now bo 
replaced by ct x, a y, a z. Using at thc same time the formulae (10), 
we find for tbe expressions (19) 

It thus appears that thc vectut 

e- 2at b' 

must be perpendicnlar to tbe walI. The vector b' must be so 
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likewÎse, so tb at, if at any moment 

F' (x, y, z) = 0 

is the equation of the walls, we shall have 

bI • b' • b' x. Y' z 
aF' aF' aF' 

= ax : Oy: az . . . . . (20) 

Now, if at the instant t -= 0, the walls eoincide with the surfaee 
determined by (16), thc equation at any later time will be 

F (x', y', z') = 0, 

where 
x' = x e- a t, y' = y e- at, z' = z e- at, 

agreeing with (4). Thus: 

F' (x, y,'z) = F(x',y', z'), 

and, if we differentiate for a constant t, 

BO that tbe surface conditions become 

b' , b' aF aF aF 21) 
x:b y : z=-a':-a':;-;" .... ( 

J) '!I uZ 

On the right-hand side of this formula, x', y', z' occur in exactly 
the same manner as x, y, z in the formula (17). 

§ 7. If the enclosure were permanently in the position it occu­
pies at the time t = 0, b:t, by, ti .. , .Px, .\?y, .\?Z would be ('ertain 
functions of x, y, z, t, say 

bx = PI (.T, y, z, t), .p,. = Xl (x, y, z, t), etc.;. • (22) 

I 
these will satisfy both the equations of the field and the surface 
conditions (17). 



- 13 -

( 618 ) 

Now, from all that has been smd, it appears that the values 

b'x = CPI (al, y', <r', t'), {>'/,' = Xl (x', y', z', t'), etc •.•. (23) 

wil! be a solution of tbc equations of the field, taken conjointly 
with the eonditions (21), we have found for the reeeding walls. 
We have thus got expressioDs reprcsenting the state of the aetbel' 
during the expansion. 

Now, we shall espeeial1y eon si der 1he state of things, existing at 
the moment whcn tbe dimensions have beeome 

eat = Ic 

times what they were originally. A definite value of this coeffieient 
k may be reaehcd in a shorter or a longer time, this depending on 
tbe value of a. We sball however cOTIsider tbc limit to whieh thc 
state of tbe aethe1' tonds, if, while we keep k fixed, t is eontinually 
inercased and a eOlltinually diminished. By (10) and (11) wo shall 
have ultimately 

b' ~' 
b = 2' alld .p= - j k 1.2 

therefore, at the limit, 

1 ( x Y Z I ) 1 ( .r y Z ,) 
bx = Jc2 cp} k' k'k' t ,.px = Ic2;(1 Ic' Ic' k' t ,etc. (24) 

As to the variabIe t', it is related to t in a somewhat eomplirated 
manner j the relation bet ween thc differentials takes ho wever the 
simple form 

1 
dt' = -dt. 

lc 

It is easily seen that the function (24) wHl satisfy the surfacc 
conditions sueh as they are for walls that are kept at rest. This 
is what we might have expected. By suffieiently diminishing tbc 
velocity of the wa]]s, we make the system pass through a series 
of succossive sta.tes tbat may, eaeh of thcm, be l'ega rded as a statc 
of equilibl i Ull1. By WIEN'S principle (§ 3) we knowalready that 
eaeh of these states might continue ta E'xist if tho enclosure contained 
a ponderabIe body of a definite temperatule. 
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Thc series start:; with the state (22), with whieh (24) coincidcs 
if Ic = 1; it then passes to increasing values of Ic. 

We shall donote by T the tempcrature of a ponderabIe body that 
may be in equilibrium with (22), and by rp' the corresponding 
temperature for (24). 

§ 8. Let us DOW compare the states (22) and (24). At fil'st sight 
there is a difficulty in as much flS the variables t nnd t' have 
wjdely different values. It is to be borne in mind, however, that the 
state (22) is a stational'y one; i. e. all pal'ticulars that may be 
deduced from observation are independent of the time t. 

We may therefol'e begin by choosing the instant for which we 
wish to consider the state (24) i a definite value having in this way 
been assigned to t', we may giye an equal value to the time t in 
(22). In other words, we bhall compure thc quantities (24) with 
the values 

bt = r{lJ (.r, y, ::, t'), 'P.1. = /.} (.r, y, z, t'). etc.,. • • (25) 

the latter f:,tate existing in ft cel'tain space S, anel the former in a 
space S, whosc dimenbions me k times as great. 

The yalues of band Sd in corresponding' point':. of /:) and S' are 
1 . 

to each other as 1 to k2 ' and thc cnelgy per Ulllt volume wIlI be 

in (24) Ir} times smaller than III (25). lIcDce, remembering BOL'fZ­

MANN'S law, 

l' 
'1."- -

- k' . • (26) 

In examllllDg the phenomena, represented by (25), it may be 
convenient to decompose, by means of FOURIER'S theot'em, or other­
wise, the values (25) into fUllctions of X,?}, z of a less complicated 
form. After having aecomplÎished sueh a decomposition for (25), a 
similar development of (24) may at once be written down. For 
instance, if 

lIJl (.'!', y, z, t') 

IS one of tho parts of b~ in (25), thc corre~pollding part in (24) 
wiJl be 

1 ( J; !J Z ,) 

k2 1/-'1 k' k' k' t • 
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There is also a simple relation between the space-variations in 
the two cases. Let P Q and P' Q' be corresponding lines in S and 
S'. Then, if we denote by 'YJ one of the components of b or ~, and 
by IIp, 'Y/o.l YJp'l YJo.' its values in tbe points considered, we sball 
have 

170. - 'Y/p _ 170.' - 'Y/p, • - , 
'Y/p 'YJp' 

1. e. the relative val'iations along corresponding lines will be equal. 
From this it is immediately seen that, if one of the parts into 

which we have decomposed (25) is eharacterized by a definite wave­
length l, the corresponding part of (24) will have a wave-length 

l' = kl. 

Therefore 
l: l' = 1" : 1~ • • • • • • • • (27) 

i. e. conespondillg wave-Iengths in the two states are to each other 
in the inverse ratio of the tomperatures. 

vVo Jlave already spoken of the ratio between the values of the 
energy per unit volume. We mayadel that this ratio, equal to th at 
of tho fourth powers of tbe temperatures, does not only hold for the 
rcally existing states of motion, but also for the parts into which 
these may be decomposed in the way that has been inc1icated. If, 
in the state corresponding to tbe temperature :P, thore is a certain 
amount of energy u per unit volume, dependillg on the vibrations 
wboso wave-lengths lie bet ween certain limits, and if, in the 
state fol' w hich the tem perature is T', u' is the ellCl'gy per unit 
volume due to the vibrations of cOlTesponding wave-lengths, we 
shall have 

rrhis equation, taken together with (27), is the expression of the 
Jaw of WIEN. 


