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KONINKLIJKE AKADEMIE VAN WETENSCHAPPEN
- TE AMSTERDAM.

l

PROCEEDINGS OF THE MEETING
'of Saturday April 20, 1901.

DG

Translated from: Verslag van de gewone vergadering der Wis- en Natuurkundige
8 ) g 3 g

Afdeeling van Zaterdag 20 April 1901, DI. IX).

CoxtoNTs: Prof. H. A, Lorewtz: “Borrzyaxy’s and Wien's Laws of radiation”, p. 607. —
Prof. 1L Kamsruxen Oxxes and H. I Fraxcs Hynopuax: “Isothermals of diatomic
gases and their binary mixtures. I. Plezometers of variable volume for low tempera-
tures”, p. 621, (with 2 plates). — Drof H. Kamerringx Oxves: “On pe Heex's
experiments about the ecritical state”, p. 628. — Prof J. D. vAx DER WaaLs: “The
equation of state and the theory of eyclic motion® III, p. 643. — Prof. J. L. C. SCuROEDER
vax pER Kork: “On hardpess in minerals in connection with cleavage” p. 655, —
Prof. J. C. Kaprrern: “On the luminosity of the fixed stars”, p. 658. — H. D.
Beverman: “On the influence upon respiration of the faradie stimulation of nerve
teacts passing through the internal capsula”, (Communicated by Prof. C. WINKLER),
(with 1 plate) p. 683. — Prof. H. Kamcriavar ONNEs: “On differences of density in
the necighbourhood of the ciitical state arsing from differences of temperature’s
p. 691, — Prof. Jax pr Vries: “Involutions on a curve of oider four with triple
point”. p. 696, — Dr. I. A, H. ScHREINEMAKERS: “Notes on equilibriz in ternary
systems”, (Communicated by Prof. J. M. vax BEMMELDN), p. 701. — Dr. P. K. LuLors:
“Substitution velocity in the case of aromatic halogen-nitroderivatives”, (Communi-
cated by Prof. C. A. LosRy DE BruxX), p. 715. — Dr. A. Sars: “On the progressive
change of the factor { as funetion of the coneentration”, (Communicated by Prof.
1I. W. Baxnus Reoznroox), p. 717,

The following papers were read:’

Physics. — DProf. H. A. LoreNTz: “BoLTzMANN’S and WIENs
Laws of Radiation.”

(Read Tebruary 28, 1901)

The theoretical proof of the laws, to which BoL1zZMANN?) and
Wien2) have been led by the application of thermodynamics to the
Phenomena of radiation may be made to depend directly on the
equations of the electromagnetic field, a method which has the

D] BBLTZMANN, Wied, Aun, Bd. 22, p. 291; 1884,
%) Wi, Derliner Sitz, Bevichte, 1593, p. 55,
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advantage that the notion of “rays” of light and heat-is almost
wholly avoided.

i

§ 1. Let us consider a space, enclosed by walls that are per-
fectly reflecting on the inside, and containing a ponderable body M,
the remaining part being occupied by aether. In this medium we
shall then have a state of radiation, the nature of which is determined
by the temperature T' of the body M; in virtue of this state the
acther will exert on the reflécting walls a certain pressure, the
amount of which for unit area we shall denote by p. Let v be
the volume within the enclosure. It may be enlarged or diminished
by a displacement of the walls. We shall also suppose that by
some means or other heat may be imparted to the body M.

Now, choosing v and T’ as independent variables, and denoting
by & the energy of the whole system, we shall have

ds ., . [0¢E
dQ:§Wu+($+p>w

for the heat that is required for the infinitesimal change, determined

d
by dT and dv, and, by the rule that -j—? is an exact differentjal,

d¢ _0p
% TP= 5

Here the first term represents the energy of the aether per unit
volume, which we shall call U.* Indeed, if we increase the volume
v, keeping the temperature constant, the ponderable body will remain
in the same state (the pressure p exerted on this body by the sur-
rounding acther will not be altered, being a function of 7 alone);
the increment of & will therefore be the energy contained in the
new part that is added to ». Ilence

d
U+p=T£H.... ¢

!
\

the last term containing an ordinary differential coefficicnt, because
p is independent of ».
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§ 2. We shall combine this result with the simple relation

1
p:-S—U. . . . . . . . . (2)

which we now proceed to prove. To this effect we remember in
the first place that the energy per unit volume is given by %)

1

‘We shall therefore wrife

1

U—_-znvzsﬂ-sﬂfg, N )

the horizontal bars indicating mean values with respect to place
and time, which we might calculate by computing in the first place
the mean values for all points of a certain space, and by taking
then, for a certain lapse of time, the mean of these space-means.
In this it is to be understood that the dimensions of the space in
question and the length of the lapse of time have to be large, as
compared with the wave-length and the fime of vibration.

If we confine ourselves to such mean values, the forces acting on
the walls may be regarded as due to a stafe of stress in the aether.
If @, B and y are the direction-cosines of the normal # of an
element of surface, the first component of the stress on this element
will be

_ —_ 1 e =
X,;=27v V2(2bzb,,—-abg’)+§(2 ‘f?'):'f?n—a‘pg);

Le, this will be the force in the direction of 0X, exerted by the
part of the medium which lies on the side of the element, indicated
by the normal #.

Now, the state of radiation we are considering has the same
Properties in all directions. From this it follows that there are no
tangential stresses and that the normal stress is the same for all
directions of the element of surface. It is given by

e ——— e

1) The notation is the sume as in my »Versuch einer Theorie der electrischen und
Optischen [rscheinungen in bewegten Korpern”, from which memoir I have also
borrowed several formulne.

41%
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But, in an isotropic state,

Therefore:

and

In comparing this formula, in which the negative sign indicates
a pressure, with (3), we arrive at the relation (2).
In virtue of this the equation (1) now takes the form: _

au
AU=T—,
ar

and so we find the Jaw, cnunciated by Borrzmixy, that the energy
U per unit volume is proportional to the fourth power of {he

absolute temperature.

§ 3. If the volume v is increased, the system will do an external
work and a larger volume of aether will be filled with the
energy of radiation; for Dboth reasons the temperature of the
body M will sink, if the operation is conducted adiabatically. We
may also, before incicasing the volume, remove the body Af; in
this case we start from a volume v of aether in the particular statc
of radiation that corresponds to the temperature 7', and we get new
states by letting the walls recede with a velocity which we shall
suppose to be ecxtremely small in comparison with the velocity of
light. Now Wiey has shown in the first place, by a train of
thermodynamical reasoning, that these new states, of smaller energy-
density than the original ome, are precisely such as can be in
equilibtium with ponderable bodies of temperatures lower than T
Using Bortzmaxny’s law, we may express this as follows: After
having diminished, by means of an adiabatic expansion, the eneigy
per unit volume fiom U to U, we shall have arrived at a state
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of radiation which may be in equilibrium with a ponderable body

of the temperature
4 ——
UI
T = T]/-b—.

This theorem, which T shall here admit without further discussion,
enables us to determine the relation between the states of radiation
corresponding to the temperatures 7' and TI". Tor this purpose it
will only be necessary to compare the states of the aether before
and after the expansion. This is the second part of the proof given
by WiEN, and it is this part we shall present in a modified form
by applying the well known equations of the electromagnetic field
to the phenomena 1n the aether within the receding walls. If we
suppose the expanding enclosure to remain geometrically similar to
itself, the problem may be treated by the introduction of a suitable
set of new variables. In seeking for these, I have kept in mind the
substitutions that had proved of use in the theory of aberration, a
theory in which we have hkewise to do with moving ponderable
bodies. Of course there is a difference between the two cases; in
the problem of aberration the velocity is the same for all bodies
concerned, whereas, in the question now under consideration, it is
unequal for different points of the enclosures.

§ 4. T shall suppose the dilatation of the walls to be equal in
all directions, and to have the same amount in equal infinitely small
times. This may be expressed by assuming

s=a e, y=y'ed, z==2e®, . . . . . (4

with a constant value of @, as the relation between the coordinates
¢, 4, # of a point of the walls at time ¢, and the coordinates
¥, ', & of the same point at the instant =0, at which we
begin to consider the phenomena. Indeed, the velocities are by (4)

ar, ay, Az . . . . o« o« o« . (9)

during the time d¢ the linear dimensions will theicfore be changed
in the ratio of 1 to 1 - adt.

As to the constant @, we shall take il so small that the velocities
() are extremely small in comparison with the velocity of light.
Notwithstanding this we may, by sufficiently increasing ¢, assign to
the factor ¢* any value we like.
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After having assumed for the walls the formulae (4), it is natural
to replace the coordinates x, 7, 2 of any point of the enclosed space
by the new variables

gd=mme—t, §f —mye—at, =ze—at. , . . . (0)

The fourth independent variable, the time 7, will likewise be
replaced by a new one. For this we take?)

1
t'z—_?(l—e—at)—z_“ﬁ(xz+y2+z‘~’)e~—af. C e M

f
The dependent variables which occur in the equations of the
electromagnetic field are now to be considered as functions of
2, o', 2, ¢. In doing so, we have to use the relations

I R

am_— oz Ve at"

o __ .0 o .3

G= T T e
9 9 az d

— el e . — —at

az 33’ V2 at” i

a?

? 3
gt [lb T m @ )] —

—areT0 — — qye— — — aze—1 —,

N ¢
o oy’ a2’ @

The variables which serve to determine the state of the aether
are Ba, by bz Dav £y, H:. We shall replace these by the quantities

1

2y Dy, Dy DYy By D, which are defined by the following equations®)

\
1 As regards the last term, this value of # is an imitation of the expression for
the “lccal time™, which I have intioduced into the theory of aberration (I e. p. 49).

%) The latter texms in these equations coriespond to similar teims in the equations
of the theory of aberration, -
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a

a

47 V2

by = 3_-2“t b"q/ —_— (Z J:Jx — ":32)1 « s . (10)

a
z=e—2at b'z— m(m ‘@,7/ _".7/“:33:)’

$r =20 HY fdna(yd, —ebdy),
Hy=e-2a Hy L dma(zd,—ad)l . . . . (11)

D=2 O L dma(rd, — ydy)

It must be kept in mind that the coefficicnt o is very small.
Let Z be the largest value of any dimension of the system daring
the interval of time we wish to consider. Then, by our assumption,

al

|4

%f, c—;‘;, Ci;- will be of the same
order of magnitude. Hence, if we neglect quantities which, compared
with other terms in the same equation, are of the order =2, we
may omit in (9) the term containing o® By this, the relation

becomes

has a very small value x; evidently,

._a_ — g—at %_ az e——at.ﬁ._ay e—ati_ az e—at i . . (9’)

o XS o XN

We may add that for vibratory disturbances of the natural state
of the acther, the operations 3%’ %, ga; are comparable to %—%,
ag regards the order of magnitude of the result, and that H is of
the same order as Vb. From this it follows that, in the equations
(8), (9, (10) and (11), all terms containing the factor @ are of the
order #, relatively to the terms in which @ does not oceur. Similarly,
attentive consideration of the formulae that will be deduced in the
next article shows that, in comparison with the terms without
a, all those which contain the factor @® are of the order »2. We
shall. therefore neglect all terms in which ¢® appears.
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§ 5. The first equation of motion is: -

00: 0%y, % gy

oy 9z o¢
Putting for H, and H, the values (11), we find for its left-hand
side: .
3D 89y ddy b
—2at [ €% ey S ) -
e (ay ag)—{—‘ina(.ﬂay yay b¢)
ddz  0bs
—4na<z—a;———:v—é—z- -i—ba,)
Since \
dgb: | 9, | db. -

— —=0
Ty e
we may also write for it

) st (B ),

and, if we neglect terms with @2,

——2at<a§’; %) —8mae—2at y, —

ad's b’ o'z )

—4nae—3“f(w-a—~—|— a,+ =) (13)

Again, using the same simplification,

9w d_ w3

ay—e oy V23’

d d az o

— = 11 S s

E g V2ot
09, 99y (a.fg'z _@)_ﬁ( 9= 3y
dy dz oy’ 0 P2\’ 3¢ ot )
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09y 09"
% 3

, as appears from (11). The expression

In the last term of this equation, may be replaced

052
ot

by e2a 38-‘;?y and e2at

(13) therefore becomes

sw (a;; _ _a%_ )— (s aas:: . aaify )

' v’y ob'z b’y
—8nae-2“‘t&y—4nae—3"¢(w 5 +y % +z ag,). (14)

The right-hand side of (12) is, by (10),

—_ —

3% 7\ T ot

o', a (,/ 0H: 00y ),

—8mae—2ad, J 420t

or, if (9') is taken into account,

ab'y

t'

—8mae2ad, -4dge-3a

i

ab':C ab,x ab'.r
—tmaen(s Tty P e )
a aJ:?z . a@y
“"‘m(-”_aa —a ) .. 1B

Finally\ we shall find, instead of (12), after division by e—3at,

] o '
a@z__ BQJ — 47 gd

ayl 2z - of

The other equations may be treated in the same way and all
relations between the new variables will be found to be of the same
form as those between the original ones.

§ 6. We have also to attend to the “surface conditions at the
walls, These latter will be perfectly reflecting, if made of a substance
of infinite specific inductive capacity, and then, if the wallis af rest,
the tangential components of the dielectric displacement in the
adjacent aether will be zero. Therefore, if

-10 -



( 616 )
Fye=0 .. ... .. (16

1s the equation of the wall, we shall have

e on O OF oF
boityibemgiigrig « oo - - (D)

In examining the phenomena of aberration, I have had occasion
to consider the conditions that have to be fulfilled at the surface
of separation of two bodies. These latter were supposed to move
with a common velocity p, and it was found that all equations,
the surfacc conditions as well as those for the interior of the bodies,
might, by an appropriate choice of new variables, be reduced to the
form that holds in the case of bodies at rest. Instead of the
dielectric displacement with the components

bx, by’ b: [ . . . . . . . . (18)

a new vector with the components

b, + Z”—V—z(})v/ Dz — vz Hy)s

1
by -+ 475W(p: Dz — Pa D), e ()
bs + =572 (P2 Dy — ¥y D)

was introduced. Hence, it will be this new vector, whose tangential
components must vamish at a moving perfectly reflecting surface.

Let us apply this rule fo an element of the walls of the expand-
ing enclosure. The velocity-components p,, py,, p: must now be
replaced by ¢z, ey, ez Using at the same time the formulae (10),
we find for the expressions (19)

e—2atd, g—2al b'y, e—2atd,,
It thus appears that the vector
e—2at !

must be perpendicular to the wall. The vector b must be s0

-11 -
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likewise, so that, if at any moment
Pl(2,9,2) =0
is the equation of the walls, we shall have

iy b, =00, O OF
bx.by.bz__a.;.gy—. % (20)

Now, if at the instant £ =0, the walls coincide with the surface
determined by (16), the equation at any later time will be

F(,y,2y =0,

where
o —=ze—ot y=ye— ot Fd=ze— 2

agreeing with (4). Thus:
F' (z,y,'2) = F (2,3, #'),
and, if we differentiate for a constant ¢,

o 3F W _or oF or
de '~ dy 0z B 3y 9’

s0 that the surface conditions become

F oF dF
b'x:b'y:b'z—-@-—' a—: or

=5 5 5 (21)

On the right-hand side of this formula, a', ¥, 2' occur in exactly
the same manner as #, ¥, 2 in the formula (17).

§ 7. If the enclosure were permanently in the position it occu-
Pies at the time ¢ == 0, by, by, b; Dy Hyy H: would be cerlain
functions of z,y, 2, ¢, say

b = @ (0 3y 2 t) H» = x1(2) 3 2 8), ebees o (22)

/
these will satisfy both the equations of the field and the surface
tonditions (17).

-12 -
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Now, from all that has been said, it appears that the values
Y= (&, ¥, & ) B = p (Y, 2 ), eten. . (29)

will be a solution of the equations of the field, taken conjointly
with the conditions (21), we have found for the receding walls,
We have thus got expressions representing the state of the aether
during the expansion.

Now, we shall especially consider the state of things, existing at
the moment when the dimensions have become

et — [
times what they wcre originally. A definite value of this coefficient
k may be reached in a shorter or a longer time, this depending on
the value of a. We shall however consider the limit to which the
state of the aether tends, if, while we keep % fixed, ¢ is continually
increased and @ continually diminished. By (10) and (11) we shall
have ultimately

! J”f
b:ﬁ, alld {D:ZE;

therefore, at the limit,
1 z y z 1 roy oz
bx —_ ‘Zz ¢1 (76 [ Z y _k: [ t') [] .rpx = Z’z zl (']‘c, 70, _k [ t’) y etc. R (24)

As to the variable #, it is related to ¢ in a somewhat complicated
manner; the relation between the differentials takes however the
simple form

' - dt
oL = ~di.
i k

It is easily scen that the function (24) will satisfy the surface
conditions such as they are for walls that are kept at rest. This
is what we might have expected. By sufficiently diminishing the
velocity of the walls, we make the system pass through a series
of successive states that may, each of them, be regarded as a state
of equilibrium. By WIEN’s principle (§ 3) we know already that
each of these states might continue to exist if the enclosure contained
a ponderable body of a definite temperatuze.

-13 -
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The series starts with the state (22), with which (24) coincides
if k= 1; it then passes to increasing values of %.

We shall denote by T the temperature of a ponderable body that
may be in equilibrium with (22), and by 1" the corresponding
temperature for (24).

§8. Let us now compare the states (22) and (24). At first sight
there is a difficulty in as much as the variables ¢ and ¢ have
widely different values. It is to be borne in mind, however, that the
state (22) is a stationary one; i. e. all particulars that may be
deduced from observation are independent of the time .

We may therefore begin by choosing the instant for which we
wish fo consider the state (24); a definite value having in this way
been assigned to %, we may give an equal value fo the time ¢ in
(22). In other words, we shall compare the quantities (24) with
the values

= (@5 t), Sa=X1(y5t) ete, o . . (20)

the latter state existing in a certain space S, and the former in a
space S, whose dimensions are % times as great.

The values of b and $ in corresponding points of § and §' are

; 1 .
to each other as 1 to 7 and the cnergy per unit volume will be
v

in (24) k! times smaller than in (25). llcnce, remembering Bovrrz-
MANN's law,

Z“

R 1)

In examining the phenomena, represented by (25), it may be
convenient to decompose, by means of FOURIER’s theorem, or other-
wise, the values (25) into functions of x,7,2 of a less complicated
form. After having accomplished such a decomposition for (25), a
similar development of (24) may at once be written down. For
instance, if

¥ (219 2, 1)

iIs one of the parts of b, in (25), the corresponding part in (24)
will be
) t').

kl [

f 1 &y
P ¢ (f' e

-14 -
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There is also a simple relation between the space-variations in
the two cases. Let P @ and P’ @' be corresponding lines in S and
S'. Then, if we denote by # one of the components of d or £H, and
by #up, ng, Mp, g its values in the points considered, we shall

have

Ng—"p__Ng—"Np
np np ’

-

i.e. the relative variations along corresponding lines will be equal.
From this it is immediately seen that, if one of the parts into

which we have decomposed (25) is characterized by a definite wave-

length [, the corresponding part of (24) will have a wave-length

U'— k.

Thercfore
LU="7:T, . . . . .. .. @)

i. e. corresponding wave-lengths in the two states are to each other
in the inverse ratio of the temperatures.

We have already spoken of the ratio between the values of the
energy per unit volume. We may add that this ratio, equal to that
of the fourth powers of the temperatures, does not only hold for the
really existing states of motion, but also for the parts into which
these may be decomposed in the way that bas been indicated. If,
in the state corresponding to the temperature 7', there is a certain
amount of emergy w per unit volume, depending on the vibrations
whose wave-lengths lie between certain limits, and if, in the
state for which the temperature is 7", »' is the energy per umit
volume due to the vibrations of corresponding wave-lengths, we
shall have

wou = T e,

This equation, taken together with (27), is the expression of the
Jaw of WIEN.

-15-



