Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

J.P. van der Stok, Tidal Constants in the Lampong- and Sabangbay, Sumatra, in: KNAW, Proceedings, 2, 1899-1900, Amsterdam, 1900, pp. 178-189

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl) > 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

We get these equations, when for C_{1} we substitute $+q^{2}$ and $-q^{2}$ respectively in equation (4) and when we put $C_{2}=0$, and this proves that the solutions of (13) fulfil the condition in question.

In a further paper I hope to prove the two following theorems:
I. If in a region of space φ and v are functions of x, y and z, and v satisfies the three following conditions:
$1^{\text {st }} v$ and its differential coefficients with respect to x, y and z are everywhere continuous;
$2^{\text {nd }}$ with the exception of some points or surfaces in this space

$$
\frac{d^{2} v}{d x^{2}}+\frac{d^{2} v}{d y^{2}}+\frac{d^{2} v}{d z^{2}}=q^{2} v-4 \pi(A+B) \varrho ;
$$

$3^{2 d}$ the products $x v, y v, z v, x^{2} \frac{d v}{d x}, y^{2} \frac{d v}{d x}$ en $z^{2} \frac{d v}{d z}$ are nowhere infinite;
then v is the potential with respect to the point $, x, y$ and z of an agens, the density of which is φ, while the potential function is expressed by:

$$
\varphi(r)=\frac{A^{--q r}+B e^{q r} r}{r} .
$$

II. If the same conditions as in I hold for ϱ and v with this modification that $-g^{2}$ is substituted for q^{2} and $A \sin \alpha$ for $A+B$;
then v is the potential with respect to point x, y and z of an agens, the density of which is e, while the potential function is expressed by

$$
\varphi(r)=\frac{A \sin (q r+\alpha)}{r} .
$$

Hydrography. - Tidal Constants in the Lampong- and Sabanybay, Sumatra. By Dr. J. P. van der Stok.
I. Telok Betong.
a. From April 23,1897 to April 22,1898 tidal observations have been made in the Lampong bay on the road of Telok Betong, situated in $5^{\circ} 27^{\prime}$ Lat. S. and $105^{\circ} 16^{\prime}$ Long. E. at the 6 hours of 8 and $10 \mathrm{a} . \mathrm{m}$., noon 2, 4 and $6 \mathrm{p} . \mathrm{m}$.

As in the eastern parts of Sunda-strait the normal (i. e. oceanic) tides of the Indian Ocean must show a more or less gradual trans-
ition to the peculiar tidal regime of the Java-sea, the cotidal lines rum here very near to each other, by which reason two places, situated at no great distance may show very different tidal constants. For such stations a simple interpolation with respect to intensity or time of occurrence is not allowed, and the determination of the characterising constants is of great importance because it is the only way of obtaining exact data concerning the manner in which tidal waves progress and mutually interfere.

The observations have been made at the request of Major J. J. A. Molier of the Topographical Service, who wanted an exact determination of the general water-level in the bay in behalf of the Topographical Survey of South-Sumatra.
b. The constants of the partial tides M_{2}, O and N have been computed in the ordinary way by arrangement of the records according to the different periods; the constants of the other tides S_{1}, S_{2}, K_{1}, $K_{2}, S a, S s a$ and the value of the general mean W have been calculated by means of the monthly means. The problem, therefore, consisted in computing 15 quantities from 73 equations in the simplest and most advantageous manner; it would have been a tedious work to apply directly to this problem the method of the l. sq. and the results would not have been more accurate than by using the following abbreviated method.
c. The constants of the tides S_{1} and S_{2}, as also the general mean value W, are deduced from the 6 equations given by the hourly means taken over the whole year.
These equations are for the given hours:
(1) 8 a.m. $=W+S_{1} \cos \left(300^{\circ}-C_{1}\right)+S_{2} \cos \left(240^{\circ}-C_{2}\right)$
(2) $10 n=W+S_{1} \cos \left(330^{\circ}-C_{1}\right)+S_{2} \cos \left(300^{\circ}-C_{2}\right)$
(3) noon $=W+S_{1} \cos C_{1}+S_{2} \cos C_{2}$
(4) 2 p.m. $=W+S_{1} \cos \left(30^{\circ}-C_{1}\right)+S_{2} \cos \left(60^{\circ}-C_{2}\right)$
(j) $4 "=W+S_{1} \cos \left(60^{\circ}-C_{1}\right)+S_{2} \cos \left(120^{\circ}-C_{2}\right)$
(6) $\quad 6 n=W+S_{1} \cos \left(90^{\circ}-C_{1}\right)+S_{2} \cos \left(180^{\circ}-C_{2}\right)$

Mean: $\quad W+0.644 S_{1} \cos \left(15^{\circ}-C_{1}\right)$.
By combination of (1) with (4), (2) with (5) and (3) with (6) S_{2} is eliminated, the result is:
(1) $+(4)=220.2$ c.M. $=2 S_{1} \sin \left(75^{\circ}-C_{1}\right) \sin 45^{\circ}+2 W$
(2) $+(5)=219.1 \quad n=2 S_{1} \sin \left(105^{\circ}-C_{1}\right) \sin 45^{\circ}+2 W$
$(3)+(6)=218.7 \quad,=2 \varsigma_{1} \sin \left(135^{\circ}-C_{1}\right) \sin 45^{\circ}+2 W$

These. three equations are satisfied by the values:

$$
W=111.17 \mathrm{cM} ., \quad S_{1}=2.70 \mathrm{cM} ., \quad C_{1}=207^{\circ} 8^{\prime}
$$

Substituting these values in equations (1), we find, on puiting:

$$
Y=S_{3} \sin C_{2}, \quad X=S_{2} \cos C_{2}
$$

$$
\begin{equation*}
X \quad=1.634 \tag{3}
\end{equation*}
$$

(6)

$$
\begin{equation*}
0.5 X+0.866 Y=12.731 \mathrm{cM} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
-0.5 x+0.866 Y=10.801 \tag{2}
\end{equation*}
$$

$0.5 X+0.866 Y=12.731$,
$0.5 X+0.866 Y=10.802$ " $X=1.636$,
and from these

$$
(1)+(2)+(4)+(5)=3.464 Y=47.065 ; Y=13.387 \text { c.M. }
$$

Substituting this value of Y in (1) (2), (4) and (5) we find:

$$
X=1.930 \mathrm{cM}
$$

and in (3) and (6)

$$
X=1.634 \mathrm{cM}
$$

The difference is small, but it points to a systematic error, e.g. in the assumption that the diurnal variation may be represented by only two periodic terms instead of by three or more, owing to the somewhat aperiodic description of the influence of land-and seabreezes.

As a final value we take:

$$
\begin{gathered}
X=\frac{1.930 \times 4+1.634 \times 2}{6}=1.832 \mathrm{cM} . \\
S_{2}=13.71 \mathrm{cM} . \quad C_{2}=82^{\circ} 20^{\prime} .
\end{gathered}
$$

d. With a view of calculating the constants of the tides K_{1} and P the following sums and differences of the monthly means are used.

	a	b	c		
	$(8)+(10)$	$(12)+(2)$	$(4)+(6)$	$a-b$	$a-c$
April	210.1	212.6	215.6	-2.5	-5.5
May	155.8	218.2	237.5	-62.4	-81.7
June	184.5	247.9	269.4	-63.4	-84.9
July	198.8	263.6	283.9	-64.8	-85.1
August	220.2	290.9	294.8	-70.7	-74.6

	a	b	c		
	a				
	$(8)+(10)$	$(12+(2)$	$(4)+(6)$	$a-b$	$a-c$
September	218.4	278.5	252.3	-60.1	-33.9
October	203.4	234.7	196.6	-31.3	6.8
November	206.4	212.0	170.4	-5.6	36.0
December	197.9	182.6	161.6	15.3	36.3
January	210.1	199.2	201.8	10.9	8.3
February	189.2	207.5	217.0	-18.3	-27.8
March	179.9	217.8	231.8	-37.9	-51.9
April	188.8	245.3	231.2	-56.5	-42.4
				(-42.1)	(-32.6)

The differences $(a-b)$ and ($a-c$) are independent of W, the general mean, of the annual and semi-annual variations and of disturbing influences as far as they may be considered to be the same at the different hours of the day or i. o. w. last for some days.

The influence of S_{1} and S_{2} is the same for every month, so that the periodic variation, which is evident in the differences, is caused exclusively by the tides K_{1}, P and K_{2}.

The figures in brackets -42.1 and -32.6 are obtained by combining the two values for the month of April in such a way that to each value is given a weight equal to the number of days of observation resp. 8 and 22.

The series is considered therefore to commence with May 1st, a fact which must be taken into consideration in applying the astronomical argument. Representing the single-periodic variation of the differences ($a-b$) and ($a-c$) by the expression:

$$
\left.\begin{array}{l}
a-b=A \cos 30^{\circ} x+B \sin 30^{\circ} x \tag{2}\\
a-c=A_{1} \cos 30^{\circ} x+B_{1} \sin 30^{\circ} x
\end{array}\right\}
$$

we find by the method of the 1 . sq.:

$$
\begin{array}{ll}
A=-26.58 & B=-28.68 \\
A_{1}=-51.88 & B_{1}=-25.62
\end{array}
$$

The influence of the tides K_{1}, P en K_{2} in the monthly mean values may be represented by the expressions:
(1) $\left.K_{1} R_{2} \cos \left(30^{\circ} x+315^{\circ}-C_{k}\right)+P R_{2} \cos \left(30^{\circ} x+75^{\circ}+C_{p}\right)\right)$
(2) $K_{1} R_{2} \cos \left(30^{\circ} x+345^{\circ}-C_{k}\right)+P R_{2} \cos \left(30^{\circ} x+45^{\circ}+C_{p}\right)$
(3) $K_{1} R_{2} \cos \left(30^{\circ} x+15^{\circ}-C_{k}\right)+P R_{2} \cos \left(30^{\circ} x+15^{\circ}+C_{p}\right)$
(5) $K_{1} R_{2} \cos \left(30^{\circ} x+75^{\circ}-C_{k}\right)+P R_{2} \cos \left(30^{\circ} x-45^{\circ}+C_{p}\right)$
(6) $K_{1} R_{2} \cos \left(30^{\circ} x+105^{\circ}-C_{k}\right)+P R_{2} \cos \left(30^{\circ} x-75^{\circ}+C_{p}\right)$

Mean. $0.644 K_{1} R_{2} \cos \left(30^{\circ} x+30^{\circ}-C_{k}\right)+0.644 P R_{2} \cos \left(30^{\circ} x+C_{p}\right)$

$$
\begin{align*}
& K_{2} R_{3} \cos \left(60^{\circ} x-90^{\circ}-C_{2 k}\right) \tag{1}\\
& K_{2} R_{3} \cos \left(60^{\circ} x-30^{\circ}-C_{2 k}\right) \tag{2}\\
& K_{2} R_{3} \cos \left(60^{\circ} x+30^{\circ}-C_{2 k}\right) \tag{3}\\
& K_{2} R_{3} \cos \left(60^{\circ} x+60^{\circ}-C_{2 k}\right) \tag{4}\\
& K_{2} R_{3} \cos \left(60^{\circ} x+150^{\circ}-C_{2 k}\right) \tag{5}\\
& K_{2} R_{3} \cos \left(60^{\circ} x+210^{\circ}-C_{2 k}\right) \tag{6}
\end{align*}
$$

From the formulae (3) we deduce:

$$
\begin{aligned}
a-b & =p\left\{K_{l} \cos C_{k}-P \cos \left(C_{p}+30^{\circ}\right)\right\} \sin 30^{\circ} t \\
& -p\left\{K_{1} \sin C_{k}+P \sin \left(C_{p}+30^{\circ}\right)\right\} \cos 30^{\circ} t \\
a-c & =q\left\{K_{1} \cos \left(30^{\circ}-C_{k}\right)-P \cos C_{p}\right\} \sin 30^{\circ} t \\
& +q\left\{K_{1} \sin \left(30^{\circ}-C_{k}\right)-P \sin C_{p}\right\} \cos 30^{\circ} t
\end{aligned}
$$

in which

$$
\begin{aligned}
& p=4 \times 0.966 \times 0.5 \times R_{2} \\
& q=4 \times 0.966 \times 0.866 \times R_{2}
\end{aligned}
$$

and R_{2} denotes the coëfficient of decrease, due to the fact that arerage values are used for a period of one month.

By equating the corresponding coëfficients of these equations and formulae (2) and putting:

$$
\begin{array}{ll}
Y=K_{1} \sin C_{k} & X=K_{1} \cos C_{k} \\
Y^{\prime}=P \sin C_{p} & X^{\prime}=P \cos C_{p}
\end{array}
$$

We find:

$$
\begin{aligned}
& A / p=-Y-X^{\prime} \sin 30^{\circ}-Y^{\prime} \cos 30^{\circ} \\
& B / p=X-X^{\prime} \cos 30^{\circ}+Y^{\prime} \sin 30^{\circ} \\
& A_{1} / q=X \sin 30^{\circ}-Y \cos 30^{\circ}-Y^{\prime} \\
& B_{1} / q=X \cos 30^{\circ}+Y_{1} \sin 30^{\circ}-X^{\prime}
\end{aligned}
$$

which are satisfied by the values:

$$
\begin{array}{ll}
Y=12.25 \mathrm{cM} . & X=-11.14 \mathrm{cM} . \\
Y^{\prime}=-0.48 \quad & X^{\prime}=4.21 \\
K_{\mathrm{L}}=16.54 \mathrm{cM} . & P=4.24 \mathrm{cM} . \\
C_{k}=102^{\circ} \mathrm{I} 9^{\prime} & C_{p}=353^{\circ} 30^{\prime}
\end{array}
$$

In order to obtain a serviceable combination for the calculation of the constants of the tide K_{2}, the values

$$
a+b-2 c
$$

are formed.

In these values again the annual variations and the aperiodic disturbances are eliminated.

	$(a+b-2 c)$
May	-101.0 cm .
June	-106.4
July	-10.4
August	- 78.5
September	- 7.7
October	44.9
November	77.6
December	57.3
January	5.7
February	- 37.3
March	- 65.9
April	- 22.8

The double-periodic variation of these values, as computed by the method l. sq., may be represented by the expression:

$$
\begin{equation*}
27.575 \cos 60^{\circ} x-14.015 \sin 60^{\circ} x \tag{5}
\end{equation*}
$$

From (4) we find:
(1) $+(2)=a=2 K_{2} R_{3} \cos 30^{\circ} \cos \left(60^{\circ} x-60^{\circ}-C_{2} k\right)$
(3) $+(4)=b=2 K_{2} R_{3} \cos 30^{\circ} \cos \left(60^{\circ} x+60^{\circ}-C_{2 k}\right)$
(5) $+(6)=c=2 K_{1} R_{3} \cos 30^{\circ} \cos \left(60^{\circ} x+180^{\circ}-C_{2 k}\right)$

$$
\begin{equation*}
a+b-2 c=6 K_{2} R_{3} \cos 30^{\circ} \cos \left(60^{\circ} x-C_{2 k}\right) \quad . \quad . \tag{6}
\end{equation*}
$$

This equation shows that, by this method, the constants of K_{2} can be determined from a periodic formula in which the amplitude is about 5 times larger than the value which has to be calculated.

By equating the coefficients of (5) and (6) we find:

$$
\begin{array}{ll}
K_{2} \cos C_{2 k}=5.558 & K_{2} \sin C_{2 k}=-2.825 \\
K_{2}=6.24 \mathrm{~cm} . & C_{2 k}=333^{\circ} 3^{\prime}
\end{array}
$$

e. The average monthly values of the water-level are found by correcting the mean values as obtained by direct computation for the influence of the tides S_{1}, K_{1} and P. From formulae (1) and (4) it appears that (for the actual hours of observation) the correction due to the influence of S_{2} and K_{2} is nil ; that for the single periodieal tides is given by the average values of formula (1) and (3) and is to be applied with inversed signs.
(184)

Correction for		S_{1}	K_{1}	P	Correct. values
	cm.				cm .
May	101.9	1,70	2,27	-2.72	103.2
June	117.0	1.70	- 3.24	-2.50	113.0
July	124.4	1.70	- 7.88	- 1.62	116.6
August	134.4	1.70	-10.41	-0.31	125.4
September	124.9	1.70	-10.15	1.09	117.5
October	105.8	1,70	-7.17	2.20	102.5
November	98.1	1.70	-2.27	2.72	100.3
December	90.3	1.70	3.24	2.50	97.7
January	101.8	1.70	7.88	1.62	113.0
February	102.3	1.70	10.41	0.31	114.7
March	104.9	1.70	10.15	-1.09	115.7
April	109.7	1.70	7.17	-2.20	116.4
Mean	109.6	1.70			111.33

The corrected monthly means exhibit a principal maximum (low water) in August and a principal minimum (high water) in December; owing to the abnormal low value in May the position of the secondary extremes is doubtful.

The constants for $S a$ and $S s a$, computed from these data, therefore do not give more than a rather rough approximation of the actual state of affairs.

The following expression is found:

$$
W=111.33+5.54 \cos \left(30^{\circ} t-28^{\circ} 55^{\prime}\right)+9.48 \cos \left(60^{\circ} t-190^{\circ} 50^{\prime}\right)
$$

in which the origin of time coincides with May $16^{\text {th }}$.
As might have been expected the accordance between the observed and calculated monthly departures from the annual mean leaves much to be desired:

	Observed. cm.	Calculated. cm.
May	-8.1	-4.03
June	1.7	-0.37
July	5.3	7.71
August	14.1	11.56
September	6.2	5.81
October	$-8,8$	-5.83
November	-11.0	-13.73
December	-13.6	-11.45
January	1.7	-1.78
February	3.4	6.20
March	4.4	6.02
April	5.1	-0.11

A systematical investigation of the normal and abnormal motions of the mean water-level, if extended over a large area and over some years, might prove of great importance with respect to two interesting problems.

In the first place it would appear from such an inquiry that it will be always impossible to predict with great accuracy the absolute water-level at a given place even when the periodic terms of the tidal components are fully known; therefore it can be of no use to carry on the calculations in behalf of tidal prediction to an astronomical degree of accuracy; in the second place an inquiry into the aperiodic departures from the average normal values might lead to a better knowledge of the important and varying meteorological influences which prevail on the ocean, than by means of the incomplete and scattered observations taken on board ship.

It is not improbable that the variations of the water-level e.g. in the Gulf of Bengal and the Arabian Sea, which must be dependent on the "vis a tergo" in the Indian Ocean in and south of the area of the trade-winds, might give a clue to the prediction of the periods of drought to which the climate of India is subject.
f. In recapitulating the results obtained, it must be kept in mind that the zero-point of the tide-gauge is on the upper end, so that low figures denote bigh water. If positive numbers are to correspond with high, negative numbers with low water, the argument of the formulae must be augmented or decreased by 180° and the corrected monthly values subtracted from an arbitrary number.

After reduction to the conventional origin of time, application of the augmenting factor $1 / R$ to the amplitudes of the annual variations, reduction to average values of the constants in so far as they are dependent on the moon's declination and, finally, inversion of the sigu, the following tidal constants are found for Telol-Betong:

	Telok Betong.		Java's $4^{\text {th }}$	Point
	H	$\%$	H	$\%$
S_{1}	2.7 c.m.	27°	-	-
S_{2}	13.7	262°	12.8 c.m.	280°
M_{2}	32.1	222°	24.2	210°
K_{1}	15.5	269°	6.8	226°
O	7.8	265°	3.4	216°
F	4.2	231°	1.7	171° ?
N	5.6	192°	4.1	$.190^{\circ}$
K_{2}	5.3	246°	2.5	299°
$S a$	5.6	263°	1.4	220°
$S s a$	9.5	120°	5.6	149°
W	111.3		53.9	

Besides the constants for Telok-Betong these quantities are given also for the tidal station Jàva's $4^{\text {th }}$ Point, situated too in Sundastrait; they have been computed from a five-year series of observations.

A comparison between the data for the two places exhibit some important differences, whilst a look at the chart would show that their situation with respect to the tidal wave, progressing from the Ocean in the strait, is about the same.

For the differences of time, Telol-Betong minus Java's $4^{\text {th }}$ Point, we find:

$$
\begin{aligned}
& S_{2}-18^{\circ}=-0.6 \text { hours. } \\
& M_{2}+12^{\circ}=0.4 \\
& K_{1}+43^{\circ}=2.9 \\
& 0+49^{\circ}=3.5
\end{aligned}
$$

The single diurnal tides in the Lampong-bay therefore lag behind those near Java's $4^{\text {th }}$ Point in quite another way than the moon's semi-diurnal tide M_{2} and this again in another way than the semidiurnal solar tide S_{2}, which is in advance.

An estimation of the tides for the one place based on those of the other by assuming a constant difference of time - as is usually done along a coast - is therefore quite inadmissable here, as the differences of time are by no means constant, but variable according to the moon's phase and declination.
If we look: at the hindrance which Sumatra's most southerly neck of land offers to the free propagation of the mono-diurnal tide-wave from the Java-sea into the Lampong-bay, we should expect a stronger influence of the K_{1} wave near Java's 4th Point than on the road of 'Telok-Betong, but, on the contrary, the tide near the latter place may be regarded as twice as "monodiurnal" as the tide in the strait, as in shown by the proportion:

$$
\text { Ampl. } \begin{aligned}
\frac{K_{1}+0}{M_{2}+S_{2}} & =0,51 \text { near Telok Betong, } \\
& =0.28 \text { near Java's } 4^{\text {th }} \text { point, }
\end{aligned}
$$

This prevailing influence of the Java-sea on the tides in the bay does not, however, give an explanation of the peculiar fact, that the S_{2} tide in the bay causes high water earlier than in the strait proper, whereas the other tides occur later.

If we assume that the S_{2} wave finds its way into the bay in the same way as the other waves, it ought to have rather a retarding effect, because near Duizend-eilanden the kappanumber of S_{2} is 11°.

It is, therefore, as yet impossible to offer an explanation of this peculiar behaviour of the S_{2} tide and we can only state that spring and neap near Telols Betong occur 1,64, and at Java's $4^{\text {th }}$ Point 2,87 days after New and Full Moon and First and Last Quarter.

It must be remarked however, that the constants s_{2} near Java's $4^{\text {th }}$ Point are not quite exact owing to the faet that they had to be calculated from observations taken thrice daily, whilst (as appears from formulae (1)), for the complete determination of W, S_{1} and S_{2} at least̀ five independent - i. e. not 6 or 12 hour distant) data are required.

In calculating the S_{2} constants, therefore, it is assumed either that S_{1} is small with respect to S_{2}, or that the kappa-number of S_{1} (land- and seabreeze) is about 65° or 245°, in which case, for the hours of 9 a.m., 2 and 6 p . m., the influence of S_{1} disappears altogether.

In fact the seabreeze at most places causes high water about 4 or 5 p. m. and, with the exception of only a few places, e. g. Semarang, the amplitude of S_{1} is insignificant everywhere in the Archipelago.

The neglect of S_{1} therefore, cannot in most cases have. any appreciable influence on the determination of the S_{2}-constants and it is principially for this reason that, for the greater part of the tidal stations, the above mentiuned hours of observation have been selected.

In this special case, moreover, it is highly improbable that the kappanumbers of S_{2} for Java's $4^{\text {th }}$ Point would undergo a decrease if it were possible to correct for the neglect of S_{1}, because, if we assume for S_{1} the same kappanumber as near Telok Betong, viz. 27°, the kappanumber of $S_{\mathfrak{g}}$ becomes 285° instead of 280° so that the difference would increase rather than decrease.

The tides of long duration $S a$ and $S s a$ may be considered to run pretty well parellel if allowance is made for the fact that the constants have been calculated from observations made during different periods.

II. Sabang-bay.

In this bay of the isle of Weh or Waai situated north of Sumatra's most northerly point in $5^{\circ} 54^{\prime} \mathrm{N}$. Lat. and $95^{\circ} 20^{\prime}$ E. Long., tidal observations have been made since June $1^{\text {st }} 1897$ at the hours of 7 a.m., 11 a.m. and 4 p.m.

The results calculated from the first year-series may be given here and, for the sake of comparison, also the constants for the road of Oleh-leh.

As the hours of observation are not the same as those at which the observations have been made at Telok-Belong, new formulae had to be applied; the method however being essentially the same, the results of the computation only may be given here.

	Sabang.		Oleh-leh.	$\%$
	H	$\%$	H	$\%$
S_{2}	24.1 cM.	310°	13.3 cM.	329°
M_{2}	46.6	266°	23.0	285°
K_{1}	9.1	291°	6.3	318°
0	3.5	274°	2.3	323°
P	2.1	10°	$?$	$?$
N	8.3	265°	3.0	286°
K_{2}	4.9	312°	4.2	333°
$S a$	9.2	165°	8.8	65°
$S s a$	8.5	114°	6.8	145°
W	202.8			

The tidal constants for Oleh-leh have been computed from three series of observations made during three years from 1895 to 1898; it appears that the tide P is so small that it cannot be calculated with any degree of accuracy from the given data, which is proved by the fact that the three determinations for the different series widely differ.
No more importauce can be attached to the constants of P in Sabang-bay, because its argument cannot possibly be 10°, but must be somewhat smaller than 291°, the argument of K_{1}.
For the rest the conformity of the arguments of S_{z} and $K_{2,}, M_{2}$ and N, and the differences between those of S_{2} and M_{2}, K_{1} and O are to be considered as so many proves of the reliability of the results.
The influence of the wind cannot be determined, as for neither station a calculation of S_{1} can be effectuated from the available data; it cannot be of great importance because otherwise the difference between the arguments of S_{2} and M_{2}, which is $44^{\circ}=1.80$ days, i. e. quite normal, would be sensibly affected.
As, for all practical purposes, both tides may be considered as almost exclusively semi-diurnal, it is possible to assume a constant difference of time; this difference Oleh-leh minus Sabang is:
$S_{2} \quad 19^{\circ}=0.6$ hours,
$M_{2} \quad 19^{\circ}=0.7$,
$N \quad 21^{\circ}=0.7$ 》
$K_{2} \quad 21^{\circ}=0,7>$
so that the difference amounts to 42 minutes of time, whilst the amplitude may be assumed to be twice as large at Sabang - at least in the back parts of the bay - as on the road of Oleh-leh.

The mono- and semi-annual variations are for both places somewhat different; from the three series of observations at Oleh-leh it appears however that in these regions the monthly mean values of the sea-level widely differ for different years, so that a better agreement might be expected only if the observations extend over a long series or at least over simultaneous periods.

It is of some importance to remark that, whereas the semidiurnal tides at Sabang are nearly twice as strong as near Olph-leh, the mono-diurnal tides seem to be amplified in a far less degree.

This point, concerning the way in which both tides propagate and are enlarged or diminished, is of great importance for the understanding of the mechanism of tides and requires a thorough investigation.

With a view of elucidating this point tide-gauges ought to be established at the entrance and in the back parts of bays and estuaries: for these experiments however stations should be chosen where the mono-diurnal tides are better marked than al Sabang so that an accurate determination of the characteristic constants is possible.

An analysis of tides at different parts of a river in which a tidal wave of mixed description propagates would also afford useful data for this purpose.

Hydrography. - "On the relation between the mean sea-level and the height of half-tide." By H. E. De Bruyn.

The mean sea-level is the mean of the height of the water observed at short intervals i. e. every hour.

Observations have proved, that the mean of 3 -hourly observations does not practically deviate from this; in this way the mean sealevel in the years 1884-1888 has been determined by the Royal Geodetical Commission (Annual report of the Commission 1889).

Generally it is admitted that there is a constant difference, between

