Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

J. de Vries, On twisted quintics of genus unity, in: KNAW, Proceedings, 2, 1899-1900, Amsterdam, 1900, pp. 374-379

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'
16. Values of the diferential quotients used in the preceding articles.

The following formulac may serve for the various differential quotients used in the preceding equations.
(For the meaning of the letters see fig. 1).

$$
\begin{aligned}
& \frac{\partial \chi}{\partial A}=-\frac{\cos D \cos O}{\sin \lambda} \\
& \frac{\partial \chi}{\partial D}=-\frac{\cos \delta \sin \chi}{\cos D \sin \lambda} \\
& \frac{\partial \lambda}{\partial A}=-\cos \delta \sin \chi \\
& \frac{\partial \lambda}{\partial D}=-\cos O
\end{aligned}
$$

where x, λ and O-are to be computed by

$$
\begin{aligned}
& \sin \lambda \sin \chi=\sin (\alpha-A) \cos D \\
& \sin \lambda \cos \chi=\cos (\alpha-A) \cos D \sin \delta-\sin D \cos \delta \\
& \sin \lambda \sin O=\sin (\alpha-A) \cos \delta \\
& \sin \lambda \cos O=-\cos (\alpha-A) \cos \delta \sin D+\sin \delta \cos D .
\end{aligned}
$$

A few observations of Prof. Jan de Vries and Prof. J. A. C. Oudemans were answered by the lecturer.

Mathematics. - "On twisted quintics of genus unity." By Prof. Jan de Vries.

1. By central projection a twisted curve of order five and genus unity can be transformed into a plane curve of order five with five nodes. Consequently in each point of space meet five chords or bisecants of the twisted curve R_{5}.

If the centre of projection is taken on R_{5} a curve of order four with two nodes is obtained. From this ensues that through each point of R_{5} two trisecants may pass.
2. The bisecants that meet a given right line l form a surface
A, on which l is a fivefold line. Ten chords lying in every plane through l the scroll A is of order fifteen.

Besides the fourfold curve R_{5} the scroll A contains a double curve of which we shall determine the order.

If the points $A_{i}(i=1,2,3,4,5)$ lie in a plane with l then the fifteen points $B \equiv\left(A_{i} A_{k}, A_{l} A_{m}\right)$ belong to the above mentioned curve.

In order to find how many points B are lying on l we assign the point common to l and $A_{i} A_{l}$ to the points common to l and the right lines $A_{l} A_{m}, A_{m} A_{n}$ and $A_{n} A_{l}$; hereby we create a correspondence $(15,15)$ between the points of l. Two corresponding points only then coincide when a point B lies on l. In the correspondence there are still thirteen other points which differ from B agreeing with such a point; so B represents two coincidences. Hence l contains fifteen points B and the above mentioned double curve is of order thirty.
3. If l has a point S in common with R_{5} then Λ_{15} breaks up into the quartic cone, with centre S, standing on R_{5} and into a surface A_{11}, on which R_{5} is a threefold curve, l remaining a fivefold line. Moreover by a very simple deduction it is shown that now the double curve is of order eight.
4. If l becomes a bisecant b the surface Λ_{15} contains two quartic cones. The remaining scroll A_{7} has the fourfold line b and the double curve R_{5}. The double curve (B) disappears here.

By assigning each of the three points of R_{5} lying with l in the same plane to the chord connecting the other two, the chords of the scroll Λ_{7} are brought into projective relation with the points of R_{5}.

So any plane section of \mathcal{A}_{7} is, just as R_{5}, of genus unity and must have fourteen nodes or an equivalent set of singularities. This curve has five double points on R_{5} and a fourfold point on b. Evidently the missing three double points can only be represented by a threefold point derived from a threefold generalor of A_{7}, i.e. from the trisecant of the twisted curve.

So a bisecant will be cut only by one trisecant.
5. As b meets in each of its points of intersection with the curve two trisecants, the trisecants of R_{5} form a scroll T_{5} of order five of which R_{5} is a double curve. Evidently T_{5} can have no other double curve, so this surface is also of genus unity.

Two bisecants meet a trisecant t in each of its points whilst each plane through t contains a chord. All these bisecants form a cubic scroll λ_{3} with double director t. The single director u is evidently a unisecant of R_{5}. On the scroll \mathcal{A}_{11} determined by u of course t is a part of the above mentioned double curve.

Each of the double points of the involution determined on u, by the generators of Λ_{3} procures coinciding chords; consequently u is the section of two double tangent planes.
6. A conic Q_{2} having five points in common with R_{5} is not intersected by a trisecant in a point not lying on R_{5}, for in its points of intersection with R_{5} it has ten points in common with T_{5}. The surface Γ formed by the conics Q_{2}, the planes of which pass through the line c, is intersected by each trisecant in three points; so Γ is a cubic surface.

The right line c meets five trisecants lying on Γ_{3}, hence also five bisecants belonging to this surface. As c is intersected by the conic Q_{2} of Γ_{3} in an involution, there are two counics Q_{2} touching it. When c becomes a unisecant then its point S on R_{5} is a double point of Γ_{3}. Besides 0 still five right lines of Γ_{3} pass thrcugh S, two of which, are trisecants; the remaining three must be bisecants completed to degenerated conics Q_{2} by the other tisecants resting on c.

If c becomes a chord, Γ_{3} has two double points, each of which supports two bisecants belonging to Γ_{3} and two trisecants also lying on the surface. If finally c is a trisecant, Γ_{3} becomes the above mentioned surface A_{3}.

So: All conics Q_{2} intersecting two times a given right line form a cubic surface.
7. The conics Q_{2} passing through any given point P form a cubic surface I_{3} with double point P.

For only one conic Q_{2} passes through P and the point S on R_{5}, as $P S$ is a single line on the cubic surface Γ_{3} determined by $P S$. From this ensues that R_{5} is a single curve of the surface η_{3}, so that this is intersected by a trisecant in three points. And as a right line through P has in general with only one conic Q_{2} two points in common, one of which is lying in P, P is a double point of 17_{3}.

On this surface lie the five bisecants meeting in P, moreover the five trisecants by which they are completed to conics. The quadratic cone determined by these five chords intersects Π_{3} in a right line p, on which the mentioned trisecants rest; so p has no point in
common with R_{5}. Moreover any given right line through P determining only one conic Q_{2} of Π_{3}, the planes of the conics Q_{2} on η_{3} must form a pencil; the planes of the above mentioned degenerated conic Q_{2} pass through p, so p is the axis of the pencil. The remaining ten right lines of Π_{3} are evidently unisecants of R_{5}.
8. The axis p determined by P cannot belong to a second surface $I I_{3}$, for the five trisecants resting on p determine together with p the bisecants intersecting each other in P.
If P lies on R_{5}, p is quite undeterminate.
The point P being taken on a trisecant t, through that point two bisecants pass forming with t conics Q_{2}; the axis p coincides with t, which follows as a matter of course from this, that I_{3} becomes the surface \mathcal{L}_{3} belonging to $t_{\text {r }}$
9. If P describes the right line a_{1}, the locus of the axis p is a cubic scroll Δ_{3}, of which a_{1} is the linear director. For if P^{\prime} and $P^{\prime \prime}$ are the points common to a_{1} and Q_{2}, then this conic lies on the surface $\Pi_{3}{ }^{\prime}$ and $\Pi_{3}{ }^{\prime \prime}$ belonging to P^{\prime} and $P^{\prime \prime}$; so its plane contains the corresponding axes p^{\prime} and $p^{\prime \prime}$.

To Δ_{3} evidently belong the five trisecants resting on a_{1}; in the points common to R_{5} and these trisecants R_{5} is cut by Δ_{3}. They moreover meet the double director a_{2} of Δ_{3}.

These trisecants lie at the same time on the scroll $\Delta_{3}{ }^{\prime}$ having a_{2} as linear director; on this surface a_{1} is the double director.

The right lines a_{1} and a_{2} correspond mutually to one another. If a_{1} is itself an axis, each plane through this right line contains only one axis p differing from a_{7}. In that case the surface Δ_{3} becomes a scroll of Cayley and a_{3} coincides with a_{1}.
In the correspondence (a_{1}, a_{2}) each axis is consequently assigned to itself. This also relates to all trisecants, as each of these must be regarded as an axis of each of its points.
10. The five trisecants cut by a_{1} and by a_{2} also lie on the surface Γ_{3} determined by a_{1}; so this contains the right line a_{2} as well.
Therefore both axes p^{\prime} and $p^{\prime \prime}$ lying with a_{1} in a plane ω cut each other in the point O common to a_{2} and the conic Q_{2} determined by ω.

From the mutual correspondence between a_{1} and a_{2} we conclude that Γ_{3} also contains all the conics Q_{2}, the planes of which pass through a_{2}. Five bisecants belonging to Γ_{3} rest on a_{2}.

If according to a well known annotation we call the five tri-
secants consecutively $b_{3}, b_{4}, b_{5}, b_{6}$ and c_{12}, then the five bisecants resting on a_{1} are indicated by $c_{13}, c_{14}, c_{15}, c_{16}$ and b_{12}, and a_{2} meets the bisecants $c_{23}, c_{24}, c_{25}, c_{26}$ and b_{1}.

It is casy to see that the remaining ten right lines of Γ_{3} viz. $a_{3}, a_{4} . a_{5}, a_{0}, c_{34}, c_{55}, c_{36}, c_{45}, c_{46}, c_{56}$ have each one point in common with R_{5}.
11. Let P be any point of the conic Q_{2} meeting a_{1} in P^{\prime} and $P^{\prime \prime}$. Now the axes p and p^{\prime} must intersect each other on Q_{2}; so p will pass though the point $O_{\text {_common to }} p^{\prime}$ and $p^{\prime \prime}$.

Consequently the axes p lying in a plane ω pass through a point O of conic Q_{2} determined by ω.

As O has been found to describe the line a_{2} if ω revolves about a_{1}, O and ω are focus and focal planc in relation to a linear complex of rays of which a_{1} and a_{2} are conjugate lines, the axes p and the trisecants t being rays.
12. The conics Q_{2} which cut R_{5} in P and P^{\prime} forming a cubic surface, a right line l having a points in common with R_{5} meets the ($3-\alpha$) conics Q_{2} through P and P^{\prime}.

So R_{5} is a $(3-\alpha)$-fold curve of the surface Φ, containing the conics Q_{2} which pass through P and rest on l. As a trisecant can meet none of those conics in a point not on R_{5}, Φ is a surface of order $3(3-\alpha)$.

Of the $3(3-\alpha)$ points common to Φ and the β-secant on $\beta(3-\alpha)$ lie on R_{5}. The remaining $(3-\alpha)(3-\beta)$ points of intersection determine as many conics Q_{2} resting on l and on m and passing through P as well.

From this we conclude again that all the conics Q_{2} cut by l and m will form a surface Ψ, on which R_{5} is a ($3-\alpha$) ($3-\beta$)-fold curve. Then however Ψ must be a surface of order $3(3-\alpha)(3-\beta)$.

If we now notice that a γ-secant n is cut by Ψ in $(3-\alpha)(3-\beta) \gamma$ points lying on R_{5}, thus in $(3-\alpha)(3-\beta)(3-\gamma)$-points not lying on this curve, it is evident that three right lines having respectively α, β and γ points common with R_{5} determine (3- α) (3- β) (3- 1) conics Q_{2} resting on these lines.

So any three bisecants meet one conic Q_{2} only.
13. Let C_{2} be a conic having no point in common with R_{5}.

The surface Π_{3}, with its duable point P on C_{2}, cuts this curve still in four points P^{\prime}; consequently C_{2} is a fourfold curve of the locus Σ of the conics Q_{2}, each having two points in common with C_{8}.

The conic Q_{2} lying in the plane Φ of C_{\swarrow} belongs six times to the section of Σ and Φ.

Moreover as each bisecant of R_{5} lying in Φ determines a conic Q_{2} of Σ, this surface is of order $4 \times 2+6 \times 2+10=30$.

Through the point S_{k} of R_{5} lying in Φ ten conics Q_{2} of Σ_{30}, pass, viz. the four conics determined by the chords $S_{l} S_{l}$ and the conic Q_{2} to be counted six times containing all the points S_{k}. So R_{5} is a tenfold curve.

If C_{2} breaks up into two right lines l and m intersecting each other in P the locus consists of the cubic surface I_{3} belonging to P and the surface ${ }^{2} F_{27}$ formed by the conics Q_{2} resting on l and m. And now according to 12 . the curve R_{5} is a ninefold curve of Ψ_{27} and according to 7 . a single curve on Π_{3}; so in accordance with what was mentioned above it is a tenfold curve of $\Sigma_{30} \equiv \Psi_{27}+\Pi_{3}$.

As C_{2} and R_{5} have a points in common, we find in a similar way that the conics Q_{2} which meet C_{2} in two points not situated on R_{5} form a surface of order $3 / 2(4-\alpha)(5-\alpha)$, where R_{5} is a curve of multiplicity $1 / 2(4-\alpha)(5-\alpha), C_{2}$ being a $(4-\alpha)$-fold line.
14. We shall still determine the number of conics Q_{2} resting on the α-conic C_{2}, the β-conic D_{2} and the γ-conic E_{2}.

The surface Γ_{3} of the conics Q_{2}, cutting R_{5} in P and P^{\prime}, and C_{2} have ($6-\alpha$) points in common. So R_{5} is a ($6-\alpha$)-fold curve of the locus of the conic $Q_{\mathcal{Z}}$, passing through P and meeting C_{2}; so this surface is of order $3(6-\alpha)$.

Of its sections with D_{2} a number of $(6-\alpha)(6-\beta)$ are not situated on R_{5}, which proves that R_{5} is a $(6-\alpha)(6-\beta)$-fold curve of the surface of the conics Q_{2} resting on C_{2} and D_{2}; so this latter surface is of order $3(6-\alpha)(6-\beta)$.

Consequently there are $(6-\alpha)(6-\beta)(6-\gamma)$ conics Q_{2}, having a point in common with each of the conics C_{2}, D_{2}, E_{2}.

In particular any three conics Q_{2} are cut by one conic Q_{2} only.

Physics. - "The cooling of a current of gas by sudden change of pressure." By Prof. J. D. van der Waals.

If a gas stream under a constant high pressure is conducted through a tube, so wide that we may neglect the internal friction, and this stream is suddenly brought under a smaller pressure, either by means of a tap with a fine aperture, or, as in the experiments of Lord Kelvin and Joule by means of a porous plug, the

