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The conic Qg lying in the plane & of C, belongs six times to
the section of = and .

Moreover as each bisecant of Ry lying in & determines a conic
Q; of = this surface is of order 4 X 2 4 6 X 2 - 10 = 30.

Through the point Sk of R; lying in D ten conics @y of =y,
pass, viz. the four conics determined by the chords SxS; and the
conic Q to be counted six times containing all the points S . So
R; is a tenfold curve.

If G, breaks up into two right lines 7 and = intersecting each
other in I the locus consists of the cubic surface IZ5 belonging
to P and the surface ¥y; formed by the conies &g resting on ! and
m. And now according to 12. the curve B; is a ninefold curve of Py
and according to 7. a single curve on I73; so in accordance with
what was mentioned above it is a tenfold curve of Zg; = ¥y + 11s.

As Gy and R; have « poinis in common, we find in a similar
way that the conics Qp which meet C; in two points not situated
on E; form a surface of order ¥, (4—a) (5—«), where R; isa curve
of multiplicity /g (4—n) (5—c), C, being a (4—a)-fold line.

14. We shall still determine the number of conics Q, resting
on the e-conic Gy, the f-conic D, and the y-conic E,.

The surface I's of the conics Q,, cutting R; in P and P',and G,
have (6—«) points in common. So R; is a (6—ea)-fold curve of the
locus of the conic Qg passing through P and meeting Cy; so this
sarface is of order 3 (6—c).

Of its sections with Dy a number of (6 —a)(6—/3) are not situated
on K, which proves that B; is a (6—a)(6—f)-fold curve of the
surface of the conics Q resting on Cy and Dj; so this latter surface
18 of order 3 (6—«)(6—~/3).

Consequently there are (6—a)(6—/3) (6—y) conics Q,, having @
point in common with each of the conics Cgy Dy, E,.

In particular any three comics Q, are cut by ome conic Qy only.

Physics. — “The cooling of a current of gas by sudden change
of pressure.”” By Prof. J. D. VAN DER 'WaALs.

If a gas stream under a consiant high pressure is conducted
through & tube, so wide that we may neglect the internal frietion,
and this stream is suddenly brought under a smaller pressure, either
by means of a tap with a fine aperture, or, as in the experiments
of Lord KELvIN and JOULE by means of a porous plug, the




( 380 )

temperature of the gas falls. For a small difference in pressure of
the gas before the tap and the gas behind the tap the amount has
been determined by the experiments of KELvin and JourLe. They
represent the cooling 73—} for air in the empiric'formula:

Py—ps
Ty—Ty =k .
1 72

By means of the equation of state we calculate for this cooling 1),
again on the supposition that p;, and p, are small:

2 278 2a
.—-T _— - — — .
h—Th=— o <1+at1 b) <p1 pﬁ)

In this formula p; and p, are expressed in atmospheres, m is the
molecular weight, ¢, the specific heat at a constant pressure for the

gas in a rarefied state.
If in the equation of state a is a funection of the temperature,

273
7 We should find, if 73 and T,

and is to be represented by a

do not differ much, and p, and p, are small:

2 273 273 \2
=Ty = — [930( T ) —b] (Pz_m) .

m 0P 1

It is still doubtful, which of those two formulae better represents
the observations of KrLviy and JOULE. If is remarkable how dif-
ferent a value we find for this cooling, as for everything which
relates to quantities of heat, if a is a function of the temperature.
The accurate knowledge of this process has of late proved to be
more necessary than before, as LINDE has applied this process for
obtaining very low temperatures and as in LiNDy's apparatus this
way of expansion is made use of to obtain liquid air.

Let us represent the energy per unity of weight of the gas under
the pressure p; by & . Let the specific volume be v, and the tem-
perature 77. For-the gas under the pressure p, we represent these
quantitics by &, vay T3. Then the process is represented by the
formula:

& 1PV — Pt =& N ¢
or

1) Die Coutinuitit ete., Ilte Auflage Seite 123.
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g+pv = &4pvy

With the symbol » =&+ pv chosen by GIBEBS, we may represent
the process shortly by

X1= o «

The vis viva of the progressive motion may be neglected, if
the velocity of the motion is small. Moreover the section of the
tube before- and after the tap may be chosen in such a way, that
the velocity may be considered as invariable. We may therefore
represent by e the thermodynamic energy of a gas, being in
equilibrium.

. 0 0
From the equation: (i—)T= T (-é-% D— » we find, if we assume

BT . af(T)

as equation of state: p = —7 2

e=p(D——[7(D)— 1D .

The meaning of ¢ (7') we find from ¢, = (a:d%) , from which
follows :
! o n
=g (T)+ U—Tf () .
The meaning of ¢'(T') is therefore the value of the specific heat
ab v=oo, which we shall represent by ¢ _ . If we think the

substance in a very rarefied state to consist of molecules, which
do not change with the temperature, we may put ¢ =¢'(T) =

constant and so @ (7')==Tc¢_ . The quantity & is:

a !
6= T oo —-;[f(T)— Tf (T)] .
If we write:
al (72l b a 1

the value of y becomes as follows:
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R AU, o
X =(6v=w+R)1—;;[2f(l)— Tf (T)] + BRI
or
' a 10l 1 l7ud b
e

Making use of this value of z, we deduce from ;1= ys the
following formula:

g 2l — a rn Y ! g — ]?le )_
e (N—Ty) = ?"T‘)I—Pf(ll)—' Zlfv('ll)] b |
a : ' RTgb
- gg[zf(zz)—" T (Tz)}—‘ m—

If we want to keep e and b at the value which they have in
the equation of state, in which the pressure of one atmosphere is
chosen as the unity of pressure and the volume which the unity
of weight of the gas occupies under that pressure and at 0° as
unity of volume, this last formula assumes the following form:

2 a RTb
o (Ti=To)= 218 L [2f (1) — 1/ (1) ] == —
m N v—0b
2 @ RTyh
—Zorg (&l sy — T 7 _ 22,
o 218 = 2@ — T (B |~
RT,b
Let us think vy so great that the quantities 2 and -—112—; or
Yg Uy —
1 -9 ty) b
U+l J{ + o) may be neglected, then the cooling is
Vg — b ?
determined by the value which l [2f(£f1)-—T1 F(1 J—- RTlipossess-
" v

es. If at given 73 we make the value of v; pass through all the
values from v =o to vy =6, and if we think 7; chosen in
such a way that:

@ [2AI) =T @) ] > A+ QA =0 (1 + ey,
the value of the expression :

=leramy—nray |- 2

Ul—b
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will begin with zero; then this expression will obtain a positive
value, which rises to a maximum; after which it will diminish
again and after having passed through zero, it may even become
negative.

It appears from this vemark, that at a given value of 7} we
may give to v, and so also to p; such a value that the cooling
has its maximum value; or in other words there is a most advanta-
geous value for p; in LINDE's apparatus. The existence of such a
most advantageous value follows of course by no means from the
approximated empirie formula of Lord KELVIN and JouLE, which
is generally used to explain the LiNDE-process. Yet the existence of
a most advantageous way of working has been observed, but it is
ascribed to a quite different cause. So we read in ,La liquéfaction
des gaz. J. CAURO, pag. 33" about this what follows: ,Comme
,la production frigorifique de P'appareil dépend de la différence de
.pression p, —p, avant et aprés |’écoulement et que, d’un autre
;c0té, le travail de compression est fonction du quotient de ces

A . p] . . N
,Mémes pressions ——), il est clair, que l'avantage est d’avoir une

Pz
,grande différence de pression, mais en méme temps un rapport

,aussi faible que possible entre ces mémes pressions.”

In this phrase very great importance is attached to the quantity
of heat, which is developed when the gas, returning under the
pressure py, is again compressed to its original pressure p; — and
this heat is in fact, considerable, and the more considerable the
sinaller py is at given pi. It is even greater than the heat which
is annihilated when the pressure is lowered o po. But in the appa-
ratus of LIXDE the arrangement is such, that the devcloped heat is
given out in quite a different part of the apparatus, from that where
the cold is produced; and the gas heated by compression loses this
heat before it reaches the cooling-spiral, so for instance by passing
through the cooling mixture, which serves to dry the gas. And
if this were not sufficient for taking away the heat which is pro-
duced by compression, it would not be difficuls to find more effica-
cious means.

But in the quoted phrase the usual mistake has been made,
against which I will warn here, viz. to put the cooling proportional
to (p1—pg) — or to expect ab any rate that the cooling will always
Increase with the increase of p; — ps.

In order to find the condition which must be fulfilled that the
cooling be maximum, we may consider y; as function of 7} and p,
and g, as function of 7y and pg. The value of 7} we think as
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being given; also the value of p,. We_get from: -
1= Xe B
Ixn aZz
dp, d
8p1> (81’) Iz
It T, is to be a minimum and thelefore the conling a mayimum,

then‘ (-aa—'ﬂ) and  therefore also ( ) must be 0.

P17 T
Therefore: ‘ -
an’:'] a (pl U]) ‘
4 | ==
avl )T.' [ o, ]E—O
a ‘A B ! , —_ RTI i

If « is thought to be constant, this e‘quation becomes :

\ ‘ ‘ 'Ea (1+a)(1'—b)(1+at1)
: n® " (v — )
| . . 273 : : |
If, however, a is taken as ‘a —5 88 Cravsius does for CO, we
find: | | o
L ¢ (14 a1 —5) (14 a)?

S O

Tn order to avoid Ileedl(.,bb calou]dtlunb, I bhd“ in wlmt fUllOWb
only examine the wnsequeuceb if a lb put cunbtcmt
Then we find: ,
< ) 24 o 27' T,
n—=b/ " (+a(l—b)(+aey & T

If -we had s0uoht the valve of », for Wlnch the value of pv is a
minimum, we had obtained ; o

o\ o27 T,

=0/ 8 Ti
- From this appears that the value v;, for which a maximum value

is ohtained, is the same as that for which pv has a.minimum valu@
at a tempeérature equal to half 7, .
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If we had calculated the. value of v, for which the cooling is 0,

b
always on the suppos1t10n tha ;}-‘i and - - may be neglected,
2 s — 0. S

we shoul_d nave found::

" 8. 21T,
n—b (1+a)(1—b)b(1—{-—at1) "z T1

whlle we obtaln for the value v, for wh1ch Yy has again the _
limiting value k7. : ‘

{;' . a ‘ 27 T,

o= b (1+a)(1—b)b<1+at1> 1T

Here again' we. arrive at the result, that the value of vy, for,
which the cooling == 0, is the same as that for which pv has again

Do, T
the llmltmg value at a temperature of —2~1

'l‘hrou0h this remark we are able to conclude also to the circum-
stances of the discussed coolmg, if we know the course of pv.
Thus we find both the minimum product of pv and the value of-

27
pr=RT at v =g if T= 5 T — and we find the maximum cool-

ing and the 'eoelin'g =0 also if v=o0 at a temperature which has
twice' this value. This means for the product pv that if is found
greater than RT for every ﬁmte value of v — and for the cooling

27
that it is neg'a.tlve for every value of v. At T>— Tx the conse-

quence of the process, in which n= %2, will be that the gas is heated
when it flows out.'As for hydrogen we may put T=40° the gas
will be heated at 7> 270° so this. must have been the cese in the
experiment of Lord KELVIN and JouLE!). As the experiment was
made at ¢=17° or 7= 290° only a slight increase of temperature
may have been observed, if.we have determined the 'imits of the
temperature correctly. If @ is comsidered as a function of the tem-
Perature, -these limits are rendered by other ratios. But the existence
of such a limit of the temperature is beyond doubt.

When 7 is lowered, the value of v becomes smaller, as well for
the maximum cooling, as for the limit between coohng and heating.

) S¢e also Kansruinaic ONNES, Verslug Kou, Akad. Febr. 1895.

o 28
Proceedings Royal Acad. Amsterdsm. Vol, LL '
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If we put e.g. T=2 T, which is the case for air that is cooled
somewhat below 0° centigrade, we find for the value of » for the
maximum cooling 2,25, and for the value of » for a cooling = 0

27
an amount = 3 b. For T'=7T, these values have decreased to'

27
555 and 53 b,

By elimination of I we find for the locus of the points of maxi-
mum cooling in the p,v diagram:

a ¢2v—-—3b
b v? )

p =
1 .
If we put —=¢ (density), we find the parabola :
p:-—z— (29— 30¢%,

1
which yields p=10 for ¢=20 and for ¢ = 7 The maximum

col ™o

. . . a
value of p, which is found for 0= 571 18 equal to 57 O to

9py. For air (which we treat here for simplicity’s sake as a
single substance) this minimum pressure amounts to 9 X 39 = 351
atmospheres.

To the existence of such a parabola for the points, where pv has
a minimum value, has been concluded by BELTRAMI from the obser-
vations concerning pv of AMAGAT.

For the points, for which the cooling = 0, we find:

2v—D
2

. a
P=T

or

p= % (2 ¢—b ¢?). -

So also a parabola in the p, ¢ diagram.
By elimination of », we get a relation between p, and 7}, which
has the following form :

4 T 4T
p1:27px[1——'- ][3]/__ _1].

27 T, 27 T,
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We find the maximum value of p; at 7= 8 7}, and as has been
mentioned before, it is equal to 9 p,. So for air 9 X 39 = 351.

For T=217, we find p; = 504 atmospheres, and for

7= T, py =100 ,

The constant value which has been chosen in the apparatus of
LINDE, may be considered as an arithmetical mean of the most ad-
vantageous pressure at the beginning and that at the end of the process.

But -at the same time we may conclude from the circumstance
that p; is a function of 73, that an apparatus, which would work
theoretically perfectly, should be able to regulate the pressure p;
according to the temperature which reigns in the inner spiral.

The numeric values of the pressure, and the limits of the tem-
perature which have been found, will be different according to the
equation of state which is used. But though we cannol warrant the
absolute accuracy of the numeric values in consequence of the in-
accuracies of the equation of state, yet we may prove, that from
every equation of state, which properly accounts for the course of
the product pv, as found experimentally, the existence of a pressure,
for which the cooling is equal to 0, follows, and so also the existence .
of a pressure, for which the cooling has a maximum value. For as
long as pyvy < pyvy, the resulting external work will promote
cooling. This influence is greatest for a pressure, at which piv; has
a minimum value. If p; v, is again equal to p; v, the cooling has
the same valuc as it has in case of perfectly free expansion. Bunt
if the pressure s still higher, p;v; rises above py v, and approaches
infinitely to a limiting value which is , so that every cooling
which would be the immediate result of free expansion, may be
neutralized by that of py vy — py v, Only if we should assume also
an infinite value for the cooling caused by free expansion, the above
reasoning would not be convineing. But then, nobody will assume ihis.

‘We may represent the maximum cooling in the following simple
form

o 2 273 2a (b 2
1~ = — P ) ”
ore
' 2 273 2 | L 1)
Ty ly = e e — — — . -
1 2 mo b | 27 T,
or
—— g
Ty—Ty = 27 T ‘1___ iil
Zm('p( 27 T}

28*

-10 -
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From this we find at T) = 2 T, the value 55°

Properly speaking we ought to subtract a certain amount from
this 55°, because the opposed p, may mot be neglected. Let us put
it at 0,265 X 20. Then we may at T} =2 Tx put the cooling at
50°, if the opposed pressure amounts to 20 atm. aund p; has the most
advantageous value. According to the approximating formula we should
find somewhat more than 75°.

For decreasing values of 7) the maximum value increases, as

§ e ith T
57 i, § increases with 7.
If we write:
T—T, 27 sl_‘ PN
Ty 2me, a7 T, )
. o T I, —T
it appears that if - - hes the same value, ——— has also the same

7, 7,
value for all gases for which me, has the same value, and this is
the case for all those whose molecules contain two atoms.
If we write:

mop (T,—Tg) _ 27§, V‘ T

T, 9 { 97 Ty §

we conclude, that at the same value of %— the heat annihilated by
b

the expansion is for all substances an equal fraction of Ty of Ty,

and so of the vis viva of the progressive motion.

It need scarcely be observed that if the expansion could bave
taken place in an adiabatic way, the cooling would have been much
more considerable.

From the equation of state:

(+3) ()=,

follows for the course of the isentropic line:

(+3) (=y=c.

b
Cp
By elimination of p we find T (v —d)*—! = (i,

in which # represents the value of ( ) at infinite rarefaction.

-11 -
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If we take ) =2 T and for v, the value for the greatest cooling
according to the process ¥ =¥, 80 v; =2,2, and for v, a value,
which corresponds to p; =20 atm., then even by this one expansion
the air would have been cooled already far below the critical point.
Lord RAYLEIGH has already pointed out, that the process of LINDE
might be improved by causing the expanding gas to perform more
work. It remains therefore desirable to find an arrangement, by
which the expansion approaches more nearly an isentropic process
than is the case in the apparatus of LiNDE.

Physics. — Prof. J. D. vaN pEr WaaLs presents for the proceed-
ings a communication of Mr. H. Hursuor at Delft, on:
“The direct deduction of the capillary constant o as a surface-
tension.”

The amount of the capillary tension and the capillary energy, as
found by Prof. van DER WaaLs in his Théorie Thermodynamique
de la capillarité, may also be determined directly. The existence of
capillary tension is undoubtedly the consequence of molecular attrac-
tion. Therefore we shall have to examine the influence of molecular
attraction in the capillary layer, i.e. we shall have to determin:
the value of the molecular pressure for an arbitrary point of the
capillary layer. The equation of state gives a¢® for the value of
the molecular pressure; the equation of state, however, comprises
only those cases, in which the distribution of matter is homogencous.
As the molecular pressure is the direct consequence of the attraction,
which the particles exercise on one another and is therefore deter-
mined in a point by the condition of the smroundings, it may be
expected that for not homogeneous distribution of matter the molecular
pressure in different directions will have different values. The
existence of capillary tension is to be ascribed to the fact, that in the
capillary layer the molecular pressure in the direction of the surface
of the liquid is different from that in the direction normal to the
surface.

‘When the matter is homogencously distributed the molecular
pressure per surface element do is equal to the force with which
all the matter on one side of the plane in which do is situated,
attracts in the direction towards this plane the material cylinder with de
as base, situated on the other side of the plane. In the eapillary
layer we can also define the molccular pressurc.in the same way.
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