Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

Johannes Diderik van der Waals, The cooling of a current of gas by sudden change of pressure, in: KNAW, Proceedings, 2, 1899-1900, Amsterdam, 1900, pp. 379-389

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

The conic Q_{2} lying in the plane Φ of C_{\swarrow} belongs six times to the section of Σ and Φ.

Moreover as each bisecant of R_{5} lying in $\boldsymbol{\Phi}$ determines a conic Q_{2} of Σ, this surface is of order $4 \times 2+6 \times 2+10=30$.

Through the point S_{k} of R_{5} lying in Φ ten conics Q_{2} of Σ_{30}, pass, viz. the four conics determined by the chords $S_{l} S_{l}$ and the conic Q_{2} to be counted six times containing all the points S_{k}. So R_{5} is a tenfold curve.

If C_{2} breaks up into two right lines l and m intersecting each other in P the locus consists of the cubic surface I_{3} belonging to P and the surface ${ }^{2} F_{27}$ formed by the conics Q_{2} resting on l and m. And now according to 12 . the curve R_{5} is a ninefold curve of Ψ_{27} and according to 7. a single curve on Π_{3}; so in accordance with what was mentioned above it is a tenfold curve of $\Sigma_{30} \equiv \Psi_{27}+\Pi_{3}$.

As C_{2} and R_{5} have a points in common, we find in a similar way that the conics Q_{2} which meet C_{2} in two points not situated on R_{5} form a surface of order $3 / 2(4-\alpha)(5-\alpha)$, where R_{5} is a curve of multiplicity $1 / 2(4-\alpha)(5-\alpha), C_{2}$ being a (4- α)-fold line.
14. We shall still determine the number of conics Q_{2} resting on the α-conic C_{2}, the β-conic D_{2} and the γ-conic E_{2}.

The surface Γ_{3} of the conics Q_{2}, cutting R_{5} in P and P^{\prime}, and C_{2} have ($6-\alpha$) points in common. So R_{5} is a ($6-\alpha$)-fold curve of the locus of the conic $Q_{\mathcal{L}}$, passing through P and meeting C_{2}; so this surface is of order $3(6-\alpha)$.

Of its sections with D_{2} a number of $(6-\alpha)(6-\beta)$ are not situated on R_{5}, which proves that R_{5} is a $(6-\alpha)(6-\beta)$-fold curve of the surface of the conics Q_{2} resting on C_{2} and D_{2}; so this latter surface is of order $3(6-\alpha)(6-\beta)$.

Consequently there are $(6-\alpha)(6-\beta)(6-\gamma)$ conics Q_{2}, having a point in common with each of the conics C_{2}, D_{2}, E_{2}.

In particular any three conics Q_{2} are cut by one conic Q_{2} only.

Physics. - "The cooling of a current of gas by sudden change of pressure." By Prof. J. D. van der Waals.

If a gas stream under a constant high pressure is conducted through a tube, so wide that we may neglect the internal friction, and this stream is suddenly brought under a smaller pressure, either by means of a tap with a fine aperture, or, as in the experiments of Lord Kelvin and Joule by means of a porous plug, the
temperature of the gas falls. For a small difference in pressure of the gas before the tap and the gas behind the tap the amount has been determined by the experiments of Kelvin and Joule. They represent the cooling $T_{1}-T_{2}$ for air in the empiric formula:

$$
T_{1}-T_{2}=k \frac{p_{1}-p_{2}}{T_{1}^{2}} .
$$

By means of the equation of state we calculate for this cooling ${ }^{l}$), again on the supposition that p_{1} and p_{2} are small:

$$
T_{1}-T_{2}=\frac{2}{m} \frac{273}{c_{p}}\left(\frac{2 a}{1+\alpha t_{1}}-b\right)\left(p_{1}-p_{2}\right)
$$

In this formula p_{1} and p_{2} are expressed in atmospheres, m is the molecular weight, c_{p} the specific heat at a constant pressure for the gas in a rarefied state.

If in the equation of state a is a function of the temperature, and is to be represented by $a \frac{273}{T}$, we should find, if T_{1} and T_{2} do not differ much, and p_{1} and p_{2} are small:

$$
T_{1}-T_{2}=\frac{2}{m} \frac{273}{c_{p}}\left[3 a\left(\frac{273}{T_{1}}\right)^{2}-b\right]\left(p_{2}-p_{1}\right)
$$

It is still doubtful, which of those two formulae better represents the observations of Kelvin and Joule. It is remarkable how different a value we find for this cooling, as for everything which relates to quantities of heat, if a is a function of the temperature. The accurate knowledge of this process has of late proved to be more necessary than befure, as Linde has applied this process for obtaining very low temperatures and as in Linde's apparatus this way of expansion is made use of to obtain liquid air.

Let us represent the energy per unity of weight of the gas under the pressure p_{1} by ε_{1}. Let the specific volume be v_{1} and the temperature T_{1}. For the gas under the pressure p_{2} we represent these quantities by $\varepsilon_{2}, v_{2}, T_{2}$. Then the process is represented by the formula :

$$
\begin{equation*}
\varepsilon_{1}+p_{1} v_{1}-p_{2} v_{2}=\varepsilon_{2} \tag{1}
\end{equation*}
$$

or

[^0]$$
\varepsilon_{1}+p_{1} v_{1}=\varepsilon_{2}+p_{2} v_{2}
$$

With the symbol $\chi=\varepsilon+p n$ chosen by Gribs, we may represent the process shortly by

$$
x_{1}=\chi_{2} .
$$

The vis viva of the progressive motion may be neglected, if the velocity of the motion is small. Moreover the section of the tube before- and after the tap may be chosen in such a way, that the velocity may be considered as invariable. We may therefore represent by s the thermodynamic energy of a gas, being in equilibrium.

From the equation: $\left(\frac{\partial \varepsilon}{\partial v}\right)_{T}=T\left(\frac{\partial p}{\partial T}\right)_{v}-p$ we find, if we assume as equation of state: $p=\frac{R T}{v-b}-\frac{a f(T)}{v^{2}}$:

$$
\varepsilon=\varphi(T)-\frac{a}{v}\left[f(T)-T f^{\prime}(T)\right] .
$$

The meaning of $\varphi(T)$ we find from $c_{v}=\left(\frac{\partial \varepsilon}{\partial T}\right)_{v}$, from which follows:

$$
c_{v}=\varphi^{\prime}(T)+\frac{a}{v} T f^{\prime \prime}(T) .
$$

The meaning of $\varphi^{\prime}\left(T^{\prime}\right)$ is therefore the value of the specific heat at $v=\infty$, which we shall represent by $c_{v=\infty}$. If we think the substance in a very rarefied state to consist of molecules, which do not change with the temperature, we may put $c_{v=\infty}=\varphi^{\prime}(T)=$ constant and so $\varphi(T)=T{ }^{T} c_{v=\infty}$. The quantity ε is:

$$
\varepsilon=T c_{v=\infty}-\frac{a}{v}\left[f(T)-T f^{\prime}(T)\right] .
$$

If we write:

$$
p v=R T+R T \frac{b}{v-b}-\frac{a}{v} f\left(T^{\prime}\right),
$$

the value of x becomes as follows:

$$
\chi=\left(c_{v=\infty}+R\right) T-\frac{a}{v}\left[2 f\left(T^{\prime}\right)-T^{\prime}\left(f^{\prime}\right)\right]+R T^{\prime}-\frac{b}{v-b}
$$

or

$$
\chi=\underset{p=0}{c} T^{\prime}-\frac{a}{v}\left[2 f(T)-T f^{\prime}\left(T^{\prime}\right)\right]+R T \frac{b}{v-b}
$$

Making use of this value of χ, we deduce from $\chi_{1}=\chi_{2}$ the following formula:

$$
\begin{aligned}
& c_{p}\left(T_{1}-I_{2}^{\prime}\right)=\left\{\frac{a}{v_{1}}\left[2 f\left(T_{1}\right)-T_{1} f^{\prime}\left(T_{1}\right)\right]-\frac{R T_{1} b}{v_{1}-b}\right\}- \\
&-\left\{\frac{a}{v_{2}}\left[2 f\left(T_{2}^{\prime}\right)-T_{2} f^{\prime}\left(T_{2}\right)\right]-\frac{R T_{2} b}{v_{2}-b}\right\}
\end{aligned}
$$

If we want to keep a and b at the value which they have in the equation of state, in which the pressure of one atmosphere is chosen as the unity of pressure and the volume which the unity of weight of the gas occupies under that pressure and at 0° as unity of volume, this last formula assumes the following form:

$$
\begin{aligned}
c_{p}\left(T_{1}-T_{2}\right)=\frac{2}{m} 273\{ & \left\{\frac{a}{v_{1}}\left[2 f\left(T_{1}\right)-T_{1} f^{\prime}\left(T_{1}\right)\right]-\frac{R T_{1} b}{v_{1}-b}\right\}- \\
& -\frac{2}{m} 273\left\{\frac{a}{v_{2}}\left[2 f\left(T_{2}\right)-T_{2} f^{\prime}\left(T_{2}\right)\right]-\frac{R T_{2} b}{v_{2}-b}\right\}
\end{aligned}
$$

Let us think v_{2} so great that the quantities $\frac{a}{v_{2}}$ and $\frac{R T_{2} b}{v_{2}-b}$ or $\frac{(1+a)(1-b)\left(1+\alpha t_{2}\right) b}{v_{2}-b}$ may be neglected, then the cooling is determined by the value which $\frac{a}{v_{1}}\left[2 f\left(T_{1}\right)-T_{1} f^{\prime}\left(T_{1}\right]-\frac{R T_{1} b}{v_{1}-b}\right.$ possesses. If at given T_{1} we make the value of v_{1} pass through all the values from $v_{1}=\infty$ to $v_{1}=b$, and if we think T_{1} chosen in such a way that:

$$
a\left[2 f\left(T_{1}\right)-T_{1} f^{\prime}\left(T_{1}\right)\right]>(1+a)(1-b)\left(1+\alpha t_{1}\right) b
$$

the value of the expression :

$$
\frac{a}{v_{1}}\left[2 f\left(T_{1}\right)-\eta_{1} f^{\prime}\left(T_{1}\right)\right]-\frac{R T_{1} b}{v_{1}-b}
$$

will begin with zero; then this expression will obtain a positive value, which rises to a maximum; after which it will diminish again and after having passed through zero, it may even become negative.

It appears from this remark, that at a given value of T_{1} we may give to v_{1}, and so also to p_{1} such a value that the cooling has its maximum value; or in other words there is a most advantageous value for p_{1} in Linde's apparatus. The existence of such a most advantageous value follows of course by no means from the approximated empiric formula of Lord Kelvin and Joule, which is generally used to explain the Linde-process. Yet the existence of a most advantageous way of working has been observed, but it is ascribed to a quite different cause. So we read in "La liquéfaction des gaz. J. Cauro, pag. 33" about this what follows: „Comme ${ }_{\text {„la }}$ production frigorifique de l'appareil dépend de la différence de ${ }_{n}$ pression $p_{1}-p_{2}$ avant et après l'écoulement et que, d'un autre ño ôté, le travail de compression est fonction du quotient de ces "mêmes pressions $\left(\frac{p_{1}}{p_{2}}\right)$, il est clair, que l'avantage est d'avoir une „grande différence de pression, mais en même temps un rapport "aussi faihle que possible entre ces mêmes pressions."
In this phrase very great importance is attached to the quantity of heat, which is developed when the gas, returning under the pressure p_{2}, is again compressed to its original pressure p_{1} - and this heat is in fact, considerable, and the mnre considerable the smaller p_{2} is at given p_{1}. It is even greater than the heat which is amihilated when the pressure is lowered to η_{2}. But in the apparatus of Linde the arrangement is such, that the devoloped heat is given out in quite a different part of the apparatus, from that where the cold is produced; and the gas heated by compression loses this heat before it reaches the cooling-spiral, so for instance by passing through the cooling mixture, which serves to dry the gas. And if this were not sufficient for taking away the heat which is produced by compression, it would not be difficult to find more efficacious means.

But in the quoted phrase the usual mistake has been made, against which I will warn here, viz. to put the cooling proportional to ($p_{1}-p_{2}$) - or to expect at any rate that the cooling will always increase with the increase of $p_{1}-p_{2}$.

In order to find the condilion which must be fulfilled that the cooling be maximum, we may consider χ_{1} as function of T_{1} and p_{1} and χ_{2} as function of T_{2} and p_{2}. The value of T_{1} we think as
being given; also the value of p_{2}. We get from:

$$
\begin{aligned}
\chi_{1} & =\chi_{2} \\
\left(\frac{\partial \chi_{1}}{\partial p_{1}}\right)_{T_{1}} d_{p_{1}} & =\left(\frac{\partial \chi_{2}}{\partial T_{2}}\right)_{p_{2}} d T_{2}
\end{aligned}
$$

If T_{3} is to be a minimum and therefore the conling a maximum, then $\left(\frac{\partial \chi_{1}}{\partial p_{1}}\right)_{T_{1}}$ and therefore also $\left(\frac{\partial \chi_{1}}{\partial v_{1}}\right)_{T_{1}}$ must be 0 .

Therefore:

$$
\left(\frac{\partial \varepsilon_{1}}{\partial v_{1}}\right)_{T_{1}}+\left[\frac{\partial\left(\mu_{1} v_{1}\right)}{\partial v_{1}}\right]=0
$$

or

$$
\frac{\boldsymbol{a}}{v_{1}^{2}}\left\{2 f\left(I_{1}\right)-Z_{1} f^{\prime}\left(T_{1}\right)\right\}=\frac{R T_{1}}{\left(v_{1}-b\right)^{2}} .
$$

If a is thought to be constant, this equation becomes:

$$
\begin{equation*}
\frac{2 a}{v_{1}^{2}}=\frac{(1+a)(1-b)\left(1+\alpha t_{1}\right)}{\left(v_{1}-b\right)^{2}} \tag{1}
\end{equation*}
$$

If, however, a is taken as $a \frac{273}{T}$, as Clausius does for CO_{2} we find:

$$
\frac{3 a}{v_{1}^{2}}=\frac{(1+a)(1-b)\left(1+\alpha t_{1}\right)^{2}}{\left(v_{1}-b\right)^{2}} .
$$

In order to avoid needless calculations, I shall in what fullows only examine the consequences if a is pat constant.

Then we find:

$$
\left(\frac{v_{1}}{v_{1}-b}\right)^{2}=\frac{2 a}{(1+a)(1-b)\left(1+\alpha t_{1}\right)}=\frac{27}{4} \frac{T_{x}}{T_{1}}
$$

If we had sought the value of v, for which the value of $p v^{\text {' is a }}$ minimum, we had obtained:

$$
\left(\frac{v^{\prime}}{v^{\prime}-b}\right)^{2}=\frac{27}{8} \frac{T_{\varkappa}}{T_{1}} .
$$

From this appears that the value v_{1}, for which a maximum value is oltained, is the same as that for which $p v$ has a minimum value at a temperature equal to half T_{1}.

If we had calculated the value of v_{1} for which the cooling is 0 , always on the supposition that $\frac{a}{v_{2}}$ and $\frac{b}{v_{2}-b}$ may be neglected, we should have found:

$$
\frac{v_{1}}{v_{1}-b}=\frac{2 a}{(1+a)(1-b) b\left(1+\alpha t_{1}\right)}=\frac{27}{4} \frac{T_{x}}{T_{1}},
$$

while we obtain for the value v_{1}, for which $p v_{1}$ has again the limiting value $K I_{1}$:

$$
\frac{v^{\prime}}{v^{\prime}-b}=\frac{a}{(1+a)(1-b) b\left(1+a t_{1}\right)}=\frac{27}{4} \frac{T_{x}}{T_{1}^{\prime}}
$$

Here again we arrive at the result, that the value of v_{1}, for which the cooling $==0$, is the same as that for which $p v$ has again the limiting value at a temperature of $\frac{T_{1}}{2}$.

Through this remark we are able to conclude also to the circumstances of the discussed cooling, if we know the course of $p v$.

Thus we find both the minimum product of $p v$ and the value of $p v=R T$ at $v=\infty$ if $T=\frac{27}{8} T_{\kappa}-$ and we find the maximum cooling and the cooling $=0$ also if $v=\infty$ at a temperature which has twice this value. This means for the product $p v$ that it is found greater than $R T$ for every finite value of v - and for the cooling that it is negative for every value of v. At $T>\frac{27}{4} T_{x}$ the consequence of the process, in which $\chi_{1}=\chi_{2}$, will be that the gas is heated when it flows out. As for hydrogen we may put $T=40^{\circ}$, the gas will be heated at $T>270^{\circ}$, so this must have been the case in the experiment of Lord Kelvin and Joule ${ }^{1}$). As the experiment was made at $t=17^{\circ}$ or $T=290^{\circ}$, only a slight increase of temperature may have been observed, if we have determined the limits of the temperature correctly. If a is considered as a function of the temperature, these limits are rendered by other ratios. But the existence of such a limit of the temperature is beyond doubt.

When T is lowered, the value of v becomes smaller, as well for the maximum cooling, as for the limit between cooling and heating.

[^1]Proceedings Royal Acad. Amsterdam. Vol. IL.

If we put e.g. $T=2 T_{x}$, which is the case for air that is cooled somewhat below 0° centigrade, we find for the value of v for the maximum cooling $2,2 b$, and for the value of v for a cooling $=0$ an amount $=\frac{27}{19}$ l. For $T=T_{x}$ these values have decreased to $5 / 3 b$ and $\frac{27}{23} b$.

By elimination of T we find for the locus of the points of maximum cooling in the p, v diagram:

$$
p=\frac{a}{b}-\frac{2 v-3 b}{v^{2}} .
$$

If we put $\frac{1}{v}=\varrho$ (density), we find the parabola:

$$
p=\frac{a}{b}\left(2 \varrho-3 b \varrho^{2}\right)
$$

which yields $p=0$ for $\varrho=0$ and for $\varrho=\frac{2}{3} \frac{1}{b}$. The maximum value of p, which is found for $\varrho=\frac{1}{3 b}$, is equal to $\frac{a}{3 b^{2}}$ or to $9 p_{\chi}$. For air (which we treat here for simplicity's sake as a single substance) this minimum pressure amounts to $9 \times 39=351$ atmospheres.

To the existence of such a parabola for the points, where pu has a minimum value, has been concluded by Beltrami from the observations concerning $p v$ of Amagat.

For the points, for which the cooling $=0$, we find:

$$
p=\frac{a}{b} \frac{2 v-b}{v^{2}}
$$

or

$$
p=\frac{a}{b}\left(20-b \varphi^{2}\right)
$$

So also a parabola in the p, o diagram.
By elimination of v_{1} we get a relation between p_{1} and T_{1}, which has the following form:

$$
p_{1}=27 p_{x}\left[1-\sqrt{\left.\frac{4}{27} \frac{T}{T_{x}}\right]}\left[3 \sqrt{\left.\frac{4}{27} \frac{T}{T_{x}}-1\right]} .\right.\right.
$$

We find the maximum value of p_{1} at $T=3 I_{x}$, and as has boen mentioned before, it is equal to $9 p_{x}$. So for air $9 \times 39=351$.

For $T=2 T_{x}$ we find $p_{1}=304$ atmospheres, and for
$I=T_{\mathrm{k}} \quad p_{1}=100 \quad$,
The constant value which has been chosen in the apparatus of LINDE, may be considered as an arithmetical mean of the most advantageous pressure at the beginning and that at the end of the process.

But at the same time we may conclude from the circumstance that p_{1} is a function of T_{1}, that an apparatus, which would work theoretically perfectly, should be able to regulate the pressure p_{1} according to the temperature which reigns in the inner spiral.
The numeric values of the prossure, and the limits of the temperature which have been found, will be different according to the equation of state which is used. But though we cannot warrant the absolute accuracy of the numeric values in consequence of the inaccuracies of the equation of state, yet we may prove, that from every equation of state, which properly accounts for the course of the product $p v$, as found experimentally, the existence of a pressure, for which the cooling is equal to 0 , follows, and so also the existence. of a pressure, for which the cooling has a maximum value. For as long as $p_{1} v_{1}<p_{2} v_{2}$, the resulting external work will promote cooling. This influence is greatest for a pressure, at which $p_{1} v_{1}$ has a minimum value. If $p_{1} v_{1}$ is again equal to $p_{2} v_{2}$, the cooling has the same value as it has in case of perfectly free expansion. But if the pressure is still higher, $p_{1} v_{1}$ rises above $p_{2} v_{2}$, and approaches infinitely to a limiting value which is ∞, so that every cooling which would be the immediate result of free expansion, may be neutralized by that of $p_{1} v_{1}-p_{2} v_{2}$. Only if we should assume also an infinite value for the cooling caused by free expansion, the above reasoning would not be convincing. But then, nobody will assume this.

We may represent the maximum cooling in the following simple form :

$$
\eta_{1}^{\prime}-q_{2}^{\prime}=\frac{2}{m} \frac{273}{c_{p}} \frac{2 a}{b}\left(\frac{b}{v_{1}}\right)^{2}
$$

or

$$
T_{1}-T_{2}=\frac{2}{n_{1}} \frac{273}{c_{p}} \frac{2 a}{b}\left\{1-\sqrt{\frac{4}{27}-\overline{T_{1}}} T_{x}^{-}\right\}^{2}
$$

or

$$
T_{1}-T_{2}=\frac{27 T_{k}}{2 m c_{p}}\left\{1-\sqrt{\frac{4}{27} \frac{T_{1}}{T_{k}}}\right\}^{2} .
$$

From this we find at $T_{1}=2 T_{x}$ the value 55°.
Proporly speaking we ought to subtract a certain amount from this 55°, because the opposed p_{2} may not be neglected. Let us put it at $0,265 \times 20$. Then we may at $T_{1}=2 I_{x}$ put the cooling at 50°, if the opposed pressure amounts to 20 atm . and p_{1} has the most advantageous value. According to the approximating formula we should find somewhat more than 75°.

For decreasing values of T_{1} the maximum value increases, as $\left\{1-\sqrt{\frac{4}{27} \frac{T_{1}}{T_{\varkappa}}}\right\}^{2}$ increases with T_{1}.

If we write:

$$
\frac{T_{1}-T_{2}}{T_{\kappa}}=\frac{27}{2 m c_{p}}\left\{1-\sqrt{\frac{4}{27} \frac{T_{1}}{T_{x}}}\right\}
$$

it appeass that if $\frac{T_{1}}{T_{x}^{-}}$has the same value, $\frac{T_{1}-T_{2}}{T_{x}^{\prime}}$ has also the same value for all gases for which $m c_{p}$ has the same value, and this is the case for all those whose molecules contain two atoms.

If we write:

$$
\frac{m c_{p}\left(T_{1}-T_{2}\right)}{T_{\varkappa}}=\frac{27}{2}\left\{1-\sqrt{\left.\frac{4 T_{1}}{27 T_{k}}\right\}^{2}}\right.
$$

we conclude, that at the same value of $\frac{T_{1}}{T_{x}}$ the heat annihilated by the expansion is for all substances an equal fraction of T_{k} of T_{1}, and so of the vis viva of the progressive motion.

It need scarcely be observed that if the expansion could have taken place in an adiabatic way, the cooling would have been much more considerable.

From the equation of state:

$$
\left(p+\frac{a}{v^{2}}\right)(u-b)=R I^{\prime}
$$

follows for the course of the isentropic line:

$$
\left(p+\frac{a}{v^{2}}\right)(v-b)^{x}=c
$$

in which $\%$ represents the value of $\left(\frac{c_{p}}{c_{v}}\right)$ at infinite rarefaction.
By elimination of p we find $T(v-b)^{x-1}=C_{1}$,

If we take $T_{1}=2 T_{k}$ and for v_{1} the value for the greatest cooling according to the process $\chi_{1}=\chi_{2}$, so $v_{1}=2,2 b$, and for v_{2} a value ${ }_{4}$ which corresponds to $p_{2}=20 \mathrm{~atm}$., then even by this one expansion the air would have been cooled already far below the critical point. Lord Rayleigh has already pointed out, that the process of Linde might be improved by causing the expanding gas to perform more work. It remains therefore desirable to find an arrangement, by which the expansion arproaches more nearly an isentropic process than is the case in the apparatus of Linde.

Physics. - Prof. J. D. van der Waals presents for the proceedings a communication of Mr. H. Hulshof at Delft, on :
"The direct deduction of the capillary constant σ as a surfacetension."

The amount of the capillary tension and the capillary energy, as found by Prof. van der Waals in his Théorie Thermodynamique de la capillarité, may also be determined directly. The existence of capillary tension is undoubtedly the consequence of molecular attraction. Therefore we shall have to examine the influence of molecular attraction in the capillary layer, i.e. we shall have to determin ${ }^{3}$ the value of the molecular pressure for an arbitrary point of the capillary layer. The equation of state gives $a \varrho^{2}$ for the value of the molecular pressure; the equation of state, however, comprises only those cases, in which the distribution of matter is homogencous. As the molecular pressure is the direct consequence of the attraction, which the particles exercise on one another and is therefore determined in a point by the condition of the suroundings, it may be expected that for not homogeneous distribution of matter the molecular pressure in different directions will have different values. The existence of capillary tension is to be ascribed to the fact, that in the capillary layer the molecular pressure in the direction of the surface of the liquid is different from that in the direction normal to the surface.

When the matter is homogeneously distributed the molecular pressure per surface element $d o$ is equal to the force with which all the matter on one side of the plane in which $d o$ is situated, attracts in the direction towards this plane the material cylinder with $d o$ as base, situated ou the other side of the plane. In the capillary layer we can also define the molecular pressure. in the same way.

[^0]: ${ }^{\text {1 }}$) Die Continuität etc., IIte Auflage Seite 123.

[^1]: ${ }^{1}$) See also Kamehlinge Onnes, Verslag Kon. Akad. Felor. 1895.

