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the corresponding quantities 0 and 1) by d; and 0, and by &
&, then we have, neglecting the molecules which surround a point
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Prof. LorENTZ?) has deduced, that & (his quantity ) is inver-
sively proportional to the root of the temperature. And though both
the way in which I have arrived at the, conclusion that the ab-
sorption is inversely proportional to the third power of the tempe-
rature, and that in which Prof. LorenTz found that it is inversely
proportional to the root of the temperature, are but rough approxi-
mations yet these results differ too much, to attribute this only to
the neglections.

Therefore an incorrect assumption must have been made some-
where. And if so I should doubt in the first place the correctness
of the assumption, that for all internal motions the increase of the
energy must be proportional to the energy of the progressive molion.
I should therefore suppose that in collisions there are influences
felt which cause the energy of the internal motions, which bring
about radiation, to increase more at a rise of the temperature than
the energy of the progressive motion of the molecules.

Mathematics. — “On rational twisted curves”. By Prof.
P. H. ScrouTE.

1. Let P, P, Py, Py, ... be successive points of agiven twisted
curve #; then we may consider the centre of circle P Py B lying in
plane P; Py Py as well as that of sphere P, P, P P;. When the
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points taken on the curve coincide in a same point P, the limit of
the first point is the centre C, of the circle of curvature, that of
the second point the centre S, of the sphere of curvature, i.e. the
centre of spherical curvature of R in P. If P describes the given
curve R, then G, and S, describe twisted curves related to R, of
which the latter is also the cuspidal edge of the developable enve-
loped by the normal planes of R; this locus of centres Sy of spherical
curvature may be indicated by the symbol R; .

From the wellknown theorem according to which the line of inter-
section ¢ of two planes «, /3, perpendicular to the intersecting lines
e and b, is a normal to the plane y of these lines a and b, ensues
that reversely the osculating planes of R are also perpendicular to
the corresponding tangents of Rs. These osculating planes of E
however, not passing at the same time through the points of con-
tact of the corresponding tangents of R, , are mnot normal planes
of Rs;and so the relation between the curves B and X is generally
not reciprocal. A wellknown striking example derived from trans-
cendent twisted curves, where this reciprocity really exists, is the
helix or curve formed by the thread of a screw; moreover for this
curve the two loci of the points ¢, and §, coincide.

Let us go a step farther and suppose that Py, Py, Py, Py Py
are successive points of a given curve E, which is contained in a
four-dimensional space, but not in a three-dimensional one, which
curve we therefore call a “wrung curve”’; then besides the centres
of the circle and sphere of curvature the centre- H, of the hyper-
sphere of curvature appears, which is the limit of the hypersphere
P, B, Py P, Py, when the five determining points coincide in point P
of the given curve. A third locus has then to be dealt with, and
so we can extend these considerations to a space with any given
number of dimensions.

In the following pages we wish to deduce the characteristics of
the locus R of the centre of hyperspherical curvature of the highest

rank in relation with the genmeral rational wrung .curve K of
degree n, which ¢s contained in a space with s dimensions but ot
in a space with s—1 dimensions.

9. “The row of characteristic numbers from class to degree of
the locus R of the centres of hyperspherical curve of the highest

¢rank belonging to the general rational wrang curve in R; is

“3n—2 2Bn—38), 3@n—4, ... s@n—s—1)"




( 423 )

To prove this we represent R; by the equations

wl‘:a“—i, (Z':—.- 11 2, LR 8) . . . . . (1)

on rectangular axes, where the symbols &y @y . . « & and v in-
dicate polynomia of degree #-in a parameter 1.
If the equations
ot [

—_— —— .=1 2.:.
> ¢+Va (@ y < s)

represent the result of the division of the s polynomia e; by ¥, where
the s quantities e are independent of ¢ and the & mew polynomia
fB; contain ¢ in the degres n—1 at most, then it is clear that the
transformation of the system of coordinates to parallel axes corres-
ponding to the formulae

a; =& + ai (=1, 2, ... 9)
simplifies the original representation (1) of R; into

gi:ﬁ, G=242...8 .+ . -« (3
v
We repeat that this simplification consists in the fact that the s
polynomia /3; ascend only {o the degree n—I in ¢
If moreover /'; and »' represent the differential-coefficients of /3
and v according to ¢, then

v @ — i) G= E @ — BB - - ®)

=1

represents the normal space with s—1 dimensions of R in the point
(2) with the value ¢ of the parameter.

This equation is of degree 3n—2 in ¢ which proves what was
asserted. For the envelope of a space of s—1 dimensions, the equation
of which contains a parameter to the degree & has for character-
istic numbers:

b 2(h—1), 8(k—2) ... s(k—s+1)
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By means of the general theorem now proved we find from n = 2
to » = 10 the following table for the general rational twisted curve
of minimum order:

s=p=2... 4, 6,
s=n=23... 7, 12, 15,
s=n=4...10, 18, 24, 28,
=n=25...13, 24, 33, 40, 45,
s=n=16...16, 30, 42, 52, 60, 66,
s=qn=7...19 36, 61, 64; 75, 84, 91,
s=n= 8 ...22 42, 60, 76, 90, 102, 112, 120,
s=n=9...25 48, 69, 88, 105, 120, 133, 144, 153,
s=n=10...28 54, 78, 100, 120, 138, 154, 168, 180, 190.

The first line of this table says that the evolute of a general
conic is a curve of class four and order six, the second that the

locus R; of the general skew cubic RS is a twisted curve of class
seven, rank twelve and order fifteen, etc.

If as usual we copsider the coefficients u), ug ug . . . . us of the
equation & =0,((=12, ... 5) as the tangential coordinates
of the space with s—1 dimensions represented by that equation, we
find from (3) for the normal space

v (B v — fiv) G=12...59, . &

U == — [}

iimww—mm

which representation of R in space of s dimensions is dualistically

opposite to that given for R; . We write it in the abridged form:

-
wi = — t=242,...8 . « « « . . (9

Tq

3. The degree of the equation (3) or that of the forms = of (B),
all in ¢, can lower itself in particular circumstances. These, appa-
rently of five kinds, can be reduced to the following two cases:

). The equation » =0 has equal roots.
b). The equations i =0, (i=12,...s) have common equal
roots.
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We shall now consider the influence of each of those suppositions
on the class of the locus 12,

Jo, If t=1¢, is a &-fold root of » =0, this value is at the same
time & &—I1-fold root of »'=0 and each of the forms = of (5), and
so (3) too, is divisible by (¢—t,)¥—1. The curve £; is then of class
3n—k—~1.

1
By the substitution of ¢t — ¢, = - the case of the #-fold root ¢, of

v =0 assumes an apparently different form., It iransforms the
equations (2) inta

E="1 G=12...9, .« « . . 6

where the s forms 9, represent polynomia of degree » in ¢ without
constant term, whilst « contains ¢ to the degree a—4% only; so
it leads to the case that g =0, considered as an equation of
degree =, possesses a k-fold root ¢'=o. Then the s forms
(i =1,2,...9) of (5) become polynomia of degree 3n — 2k — 1
in ¢, whilst 7, ascends to degree 3n—%— 1 in t'. Then the cor-
responding equation (3) is also of degree 8n—%— 1 in ¢ and so
Ry remains of class 3n — k— 1 as it should do.

In passing we draw attention to the fact that the degree of 4 being
lower than = it will be impossible to lower at the same time the
degree of all the s polynomia 9, by a transformation of coordinates
to parallel axes, as this would include at the same time the possi-

bility to lower the order of R .
The particular case treated here refers to the position of the

points of R; at infinity. If » is divisible by (t—t,)% the point at
infinity of the curve belonging to ¢ will count % times among the
n points of intersection of the curve with the space ab infinity with
s—1 dimensions containing all points at infinity of the space with
s dimensions.

So we find for s=n=23:

“The class of the locus Rs of a skew ellipse or a skew
hyperbola is seven, whilst this number passes into six with the
parabolic hyperbola and into five with the skew parabola.”

What we find here agrees with the wellknown resulls for
s=n= 2 Although through any point P of the plane of an ellipse

or hyperbola four normals of this curve pass, we can fall from this
31
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point three mnormals only on the parabola, as the line connecting
P with the point P, at infinity of the parabola must be consi-
dered as an improper normal. Any point P of space is situated in
seven normal planes of a skew ellipse or skew hyperbola, but only
in six normal planes of a parabolic hyperbola and in five normal
planes of & skew parabola, as the plane through the connecting line
PP, of P with the point of contact P_ at infinity with the plane
V. at infinity, perpendicular to the tangeni p_ of the eurvein P
represents one improper normal plane for the last but one, and the
coincidence of two improper normal planes for the last.

Of course the particularity treated here can appear more than
once. If » =0 contains the roots ¢,, &, ... . ¢, respectively
k1, kyy . . . kp times, where each of the p quantities % exceeds unity,

?
the class of Rj is represented by 3n4p — 2 — Elk,.
1=

3b. If t==1¢, is a common &-fold root of the s equations /3, = 0, then
this value is at the same time a common %—i-fold root of the s
cquations /¥, =0 and the s forms of , (3) are divisible by
(t—t)%—1, whilst %, contains the factor (¢—#)%%—1; then again (3)
is divisible by (¢—¢#,)*—! and the curve R is of class 8n — & — 1.

1
By the substitution of t—¢, = , the case treated here presents

tl
itself in an apparently different form. It leads to the equations (6,
whete now the s forms y, represent polynomia of degree a — & - 1
in ¢ without constant term and g is a general form of degree =
in t. Regarded as equations of degree » in ¢, the s cquations y, =0
contain the common ;—I-fold root ¢ = o and the common simple
root t'=0. The s terms 7,,(i=1, 2, ... s) become polynomia of
degree 3an —k— I in ¢, whilst 7, ascends only to degree 3n—2k—1
in #. The corresponding equation (3) is then as above of degree
In—k—1.

Apparently besides the cases tieated up till now where the
equation (3) lowers its degree, another entirely new case can be
pointed out, namely that where the s + 7 equations 2'=0, v'=0
have a common #-fold root t==¢. It is easy to see however
that this apparent new case forms but a special case of what
was treated above. If we start from the equations (1), because after
all we shall directly have o transform the coordinates to parallel
axes, then we have

= — )=k, (=1, 2...5), ¥ =(— t)tpbt-1,
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when the s symbols @&+ and ¢ —L—1 repicsent polynomia of
degree n—k—1 in t. From this cnsues by integration

= (=t L n—A=D by, (=1, 2, . . 1 ), ¥ == (t—ty o1 a0 —H=1)-2,

in which the quantities §, and b, denote constants. So the trans-
formation of coordinates to parallel axes characterized by the formulae

b
a1=§z+gi, (=1,2 ...
0

finally gives
(t_._gl)l,-}-l /’1’1(" )]
- v

&

, (=1,2...5),

by which wo alight on the case that the s equations e, =0 be-
longing to (1) have a common # - 1-fold root ¢, whilst » moreover
after being dimimshed by a constant quantity b, is divisible by
{t— £y)e+1,

The particularity treated here appears only in the case when

the curve B¢ has singular points of a definite character. So
the simplest case of a common double root # of the s equations

(=0 implies that the origin of each of the spaces of coordinates

&=0 repiesents two of the = puints of intersection with R; , which

with a view to the equality of the values of the parameter belonging

{o those points only then takes place when X shows a cusp in
this point. We see at the same time that we have not generally
enough enunciated the case sub 32). For from this appears that the

particularity will come in as soon as R has a cusp anywhere. So
the case sub 8%) ought to run: “Theequations ¢, =0, ({=1,2,...9)
have common equal roots or a transformation of coordinates to
parallel axes can call forth this paiticularity.”

Of course the case may present itself that 4 15 a common equal
root of the s equations /3, = 0, but that the degree of multiplicity
in relation to those equations differs. If ¢ is a k;-fold root of 3; = 0,
a kyfold root of Bp =0, ete, then for & we must take the smallest
nuimber &..

If it happens p times that a transformation of coordinates to
parallel axes implies the particulaity indicated here, and if
by &gy oo &y arve the smallest nambers % for each of the correspond-

31*
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?
ing values ¢, &y - - « & of ¢ then 3n4-p—2 — = &, will indicate

1=1

the clasg of Rj.

4. In the preceding number we have dealt with the class of
Ry only, without taking the other characteristic numbers into
consideration. We now immediately add that the rule according to
which the envelope of a space with s—I dimensions, the equation
of which contains a parameter to degree %, is characterized by the
numbers

k, 20k — 1), (I s (k— s+ 1)

in general needs some modifications as soon as one of the above-

mentioned particular cases appears. In the very simplest case of the

parabola we find e, g. for the characteristic numbers, class and order,

of the evolute 3 and 3, but not 8 and 4 as might be expected for

k==3. So in general in each of the particular cases treated here the

numbers k 2 (k--1), 3(k — 2), ete. must be treated as upper limits.
In a following paper we shall revert to this last point.

Physiology. - *“ Lipolytic ferment in asciles-liquid of mun’.
(Remarks on the resorption of fat and on the lipolytie function
of the blood). By Dr. H. J. HAMBURGER.

(Read January 27, 1900.)

In an essay published in the year 1880 Casul) has contradicted
the opinion that the emulsion of fat already takes place in the intestinal
lumen. TFor he was never successful in separating an emulsion
from the contents of the intestines by centrifugal force. And he
did not much wonder at this: for the small intestine has an acid
reaction, and with acid reaction no fat-emulsion can be produced.

This opinion of CasH does not seem quite correct to me. Giving
to animals a meal containing much fat, HEIDENHAIN has found %),
and so have I myself many a time, that a creamy surface can
be taken off the mucosa of the small intestine, which, examined
microscopically, contains small fat-globules. Nevertheless this layer

r— e —m

1) Archiv f. Physiol, 1880, 8. 323,
%) Priuenr's Archiv. 1888, supplement, 8. 93,




