Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

J. de Vries, On Orthogonal Comitants, in:

KNAW, Proceedings, 2, 1899-1900, Amsterdam, 1900, pp. 485-494

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

Mathematics. - "On Orthogonal Comitants". By Prof. Jan de Vries.

If we regard x_{1} and x_{2} as the coordinates of any point P with respect to the rectangular axes $O X_{1}$ and $O X_{2}$, the binary form

$$
\begin{array}{r}
a_{x}^{n} \equiv\left(a_{1} x_{1}+a_{2} x_{2}\right)^{(n)} \equiv a_{n, 0} x_{1}^{n}+n a_{n-1,1} x_{1}^{n-1} x_{2}+\binom{n}{2} a_{n-2,2} x_{1}^{n-2} x_{2}^{2}+ \\
\cdot
\end{array}
$$

is represented by n lines through O, containing the points for which the form a_{x}^{n} disappears.

If ξ_{1} and ξ_{2} are the coordinates of P with respect to the rectangular axes $0 \Xi_{1}$ and $0 \Xi_{2}$, between the quantities x_{1}, x_{2} and ξ_{1}, ξ_{2} exist relations of the form

$$
\begin{array}{ll}
x_{1}=\lambda_{11} \xi_{1}+\lambda_{12} \xi_{2}, & \xi_{1}=\lambda_{11} x_{1}+\lambda_{21} x_{2} \\
x_{2}=\lambda_{21} \xi_{1}+\lambda_{22} \xi_{2}, & \xi_{2}=\lambda_{12} x_{1}+\lambda_{22} x_{2}
\end{array}
$$

If by these substitutions the form a_{x}^{n} is transformed into α_{ξ}^{n}, we have

$$
a_{x}=a_{1}^{\prime} x_{1}+a_{2} x_{2}=\left(a_{1} \lambda_{11}+a_{2} \lambda_{21}\right) \xi_{1}+\left(a_{1} \lambda_{12}+a_{2} \lambda_{22}\right) \xi_{2},
$$

so

$$
\begin{aligned}
& \alpha_{1}=\lambda_{11}^{\prime} a_{1}+\lambda_{21} a_{2}, \\
& \alpha_{2}=\lambda_{12} a_{1}+\lambda_{22} a_{2} .
\end{aligned}
$$

This proves that the symbolical coefficients a_{1}, a_{2} and α_{1}, α_{2} are transformed into each other by the same substitution as the variables x_{1}, x_{2} and ξ_{1}, ξ_{2}.
2. In order to obtain comitants, i. e. functions of $a_{1}, a_{2}, x_{1}, x_{g}$ that are invariant with respect to the indicated orthogonal transformations, we can start from the covariants

$$
x_{1}^{2}+x_{2}^{2} \quad \text { and } \quad\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}
$$

representing the square respectively of $O P$ and of the mutual distance of two points P and Q, being therefure absolute comitants.

The second covariant can be replaced by
Proceedings Royal Acad, Amsterdam. Vol. II.
(486)

$$
\left(x_{1}^{2}+x_{2}^{2}\right)-2\left(x_{1} y_{1}+x_{2} y_{2}\right)+\left(y_{1}^{2}+y_{2}^{2}\right) \equiv x_{x}-2 x_{y}+y_{y}, \quad:
$$

whilst from the relation

$$
\left(x_{1} y_{2}-x_{2} y_{1}\right)^{2}=\left(x_{1}^{2}+x_{2}^{2}\right)\left(y_{1}^{2}+y_{2}^{2}\right)-\left(x_{1} y_{1}+x_{2} y_{2}\right)^{2},
$$

or

$$
(x y)^{2}=x_{x} y_{y}-x_{y} y_{x}
$$

ensues that the covariant (xy) is related to the covariants x_{x} and $x_{y} \equiv y_{x}$.
Now from these three absolute comitants follows immediately the invariant character of the symbols

$$
a_{a}, \quad a_{b} \quad \text { and } \quad(a b) .
$$

According to the above these absolute invariant symbols are connected by the relation

$$
(a b)^{2}=a_{a} b_{b}-a_{b}^{2}
$$

So for the construction of orthogonal comitants we can dispose of the symbols

$$
a_{a}, \quad a_{b},(a b), a_{x},(a x), x_{x}, x_{y}, \quad(x y) .
$$

Evidently linear invariants can be generated only by the symbol a_{a} and present themselves only in the study of forms of even degree.

Consequently the form $a_{x}^{2 n}$ possesses the linear absolute invariant ${ }^{1}$)

$$
a_{a}^{n} \equiv a_{2 n, 0}+n a_{2 n-2,2}+\binom{n}{2} a_{2 n-4,4}+\ldots+a_{0,2 n} .
$$

3. The quadratic form

$$
a_{x}^{2} \equiv a_{20} x_{1}^{2}+2 a_{11} x_{1} x_{2}+a_{02} x_{2}^{2}
$$

furnishes the invariants

$$
\begin{aligned}
& a_{a} \equiv a_{20}+a_{02}, \\
& a_{b}^{2} \equiv a_{20}^{2}+2 a_{11}^{2}+a_{02}^{2},
\end{aligned}
$$

[^0](487)
$$
(a b)^{2} \equiv 2\left(a_{20} a_{02}-a_{11}^{2}\right),
$$
united by the relation found above.
Whilst $(a b)^{2}=0$ points to the coinciding of the two lines indicated by $a_{x}^{2}=0, a_{a}$ disappears when those lines are at right angles.

If c is the tangent of the angle formed by the two lines, their angular coefficients satisfy the relation

$$
\left(\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right)^{2}=c^{2}
$$

or

$$
4\left(a_{20} a_{02}-a_{11}^{2}\right)+c^{2}\left(a_{20}+a_{02}\right)^{2}=0,
$$

or
or at last

$$
2(a b)^{2}+c^{2} a_{a} b_{b}=0,
$$

$$
\left(c^{2}+2\right)(a b)^{2}+c^{2} a_{b}^{2}=0
$$

So the invariant a_{b} disappears when $c^{2}=-2$.
4. By the interpretation of the substitution $x_{y}=0$ or

$$
y_{1}: y_{2}=x_{2}:-x_{1}
$$

follows immediately that the covariant

$$
(a x)^{2}
$$

disappears for two lines which are at right angles to the lines representing a_{s}^{2}.

The covariant

$$
(a, x) a_{x}
$$

changes only its sign by the substitution $x_{y}=0$.
So ($a x$) $a_{x}=0$ represents two orthogonal lines.
Indeed the sum of the coefficients of x_{1}^{2} and x_{2}^{2} is equal to zero.
If $a_{11}=0$, so that the lines of a_{x}^{2} lie symmetrically with respect to the axes of coordinates, we have

$$
(a x) a_{x} \equiv\left(a_{20}-a_{02}\right) x_{1} x_{2}
$$

This proves that the covariant $\left(a_{x}\right) a_{x}$ furnishes the bisectors of the angles of the lines $a_{x}^{2}=0$.

This result is confirmed by the following consideration :
By the equations

$$
a_{x} a_{y}=0 \quad \text { and } \quad x_{y}=0
$$

the pairs of lines are indicated lying respectively harmonically with the lines $a_{x}^{2}=0$ and with the isotropical lines $x_{x}=0$.

And now these two involutions have the pair of rays in common of which the equation is obtained by eliminating y between

$$
a_{1} a_{x} y_{1}+a_{2} a_{x} y_{2}=0 \quad \text { and } \quad x_{1} y_{1}+x_{2} y_{2}=0
$$

So the equation

$$
(a x) a_{x}=0
$$

represents the orthogonal lines separating $a_{x}^{2}=0$ harmonically.
5. If we put

$$
a_{b} a_{x} b_{x} \equiv g_{x}^{2},
$$

then with a view to the equivalence of the symbols a and $b_{\text {, }}$ we have

$$
g_{x} g_{y}=a_{b} a_{x} b_{y}
$$

and

$$
g_{x}(g x)=a_{b} a_{x}(3 x)
$$

But from the identical relation

$$
a_{a} b_{x}-b_{a} a_{x}=(a b)(a x)
$$

follows

$$
(g x) g_{x}=a_{a}(b x) b_{x}-(a b)(a x)(b x) .
$$

The second term of the right member disappearing identically and $(b a x) b_{x}=0$ representing the bisectors of the angles of the lines $b_{x}^{2}=0$, the covariant

$$
a_{b} a_{x} b_{x}
$$

furnishes two lines having in common with the lines of a_{x}^{2} the axes of symmetry.

At the same time it is evident that the form $a_{b} a_{x}(b x)$ does not give a new covariant.

It is clear that $a_{b}\left(a_{l}\right)(b x)$ represents the lines at right angles to $a_{b} a_{x} b_{x}=0$.
6. To two quadratic forms a_{x}^{2} and j_{x}^{2} belong the simultaneous invariants

$$
(a f)^{2}, \quad a_{j}^{2} \equiv f_{a}^{2}, \quad(a f) a_{f}
$$

As is known the first disappears when the two pairs of lines separate each other harmonically.

Under the condition (af) $a_{f}=0$ the lines determined by (af) $a_{x} f_{x}=0$ are perpendicular to one another.
These right lines being the double rays of the involution $a_{x}^{2}+\lambda f_{x}^{2}=0$, the equation (af) $a_{f}=0$ indicates that the pair of lines $a_{x}^{2}=0$ and $f_{x}^{2}=0$ have common axes of symmetry.

This is confirmed by the following consideration. We have

$$
\text { (af) } a_{f}=\left(a_{20}-a_{02}\right) f_{11}-a_{11}\left(f_{20}-f_{02}\right)
$$

If $f_{11}=0$, the invariant disappears when at the same time $a_{11}=0$ or $f_{20}=f_{02}$, i. e. when the two pairs of rays have common bisectors or when one pair of rays consists of the isotropical lines.

From the expression found above for the tangent of the angles of a pair of lines follows readily that the invariant

$$
(a b)^{2} f_{f} g_{g}-(f g)^{2} a_{a} b_{b}
$$

disappears, when these pairs of lines can be brought to coincidence by the rotation of one of them.
7. When the equations

$$
\begin{aligned}
& a_{x}^{2} \equiv a_{20} x_{1}^{2}+2 a_{11} x_{1} x_{2}+a_{02} x_{2}^{2}=0, \\
& (f x)^{2} \equiv f_{02} x_{1}^{2}-2 f_{11} x_{1} x_{2}+f_{20} x_{2}^{2}=0
\end{aligned}
$$

have a root $x_{1}: x_{2}$ in common, one of the lines $a_{x}^{2}=0$ is at right angles to a line of $f_{x}^{2}=0$. So the resultant of these equations must furnish a simultaneous invariant.

Proceedings Royal Acad. Amsterdam, Vol. II.

By elimination of $x_{1}: x_{2}$ we find

$$
\left(a_{20} f_{20}-a_{02} f_{02}\right)^{2}+4\left(a_{20} f_{11}+a_{11} f_{02}\right)\left(a_{02} f_{11}+a_{11} f_{20}\right)=0
$$

By_ a simple computation this expression is reduced to the symbolic form

$$
a_{f}^{2} b_{g}^{2}-2(a b)(f y) a_{f} b_{y}=0
$$

where $a_{x}^{2} \equiv b_{x}^{2}$ and $f_{x}^{2} \equiv g_{x}^{2}$.
If in the preceding equations we put $a_{20}=0$, then we have $f_{02}=0$ or $a_{02}^{2} f_{02}+4 a_{02} a_{11} f_{11}+4 a_{11}^{2} f_{20}=0$. In the former-case a line of a_{x}^{2} is at right angles to a line of f_{x}^{2}. In the latter case the substitution $a_{02}=2 i a_{11}$ furnishes the condition

$$
-f_{02}+2 i f_{11}+f_{20}=0
$$

from which ensues that one of the two isotropical lines belongs to each of the pairs; then again a line of a_{x}^{2} is at right angles to a line of J_{x}^{2}.

The consideration of the orthogonal pair of rays of the involution

$$
a_{x}^{2}+\lambda f_{x}^{2}=0
$$

leads to a simultaneous covariant.
This pair is indicated by

$$
\left(a_{1}^{2}+\lambda f_{1}^{2}\right)+\left(a_{2}^{2}+\lambda f_{2}^{2}\right)=0
$$

or by

$$
a_{a}+\lambda f_{f}=0
$$

so by

$$
f_{f} a_{x}^{2}-a_{a} f_{x}^{2}=0
$$

8. It is a matter of course, that to the cubic form

$$
\underset{x}{a^{3}} \equiv a_{30} x_{1}^{3}+3 a_{21} x_{1}^{2} x_{2}+3 a_{12} x_{1} x_{2}^{2}+a_{03} x_{2}^{3}
$$

belong only invariants with an even number of symbols, i. e. of even degree in the coefficients.

Setting aside the forms $(a b) a_{b}^{2}$ and $(a b)^{3}$ which disappear identically, we have the invariants

$$
\begin{aligned}
(a b)^{2} a_{b} & =2\left(a_{30} a_{12}-a_{21}^{2}-a_{12}^{2}+a_{03} a_{21}\right), \\
a_{b}^{3} & =a_{30}^{2}+3 a_{21}^{2}+3 a_{12}^{2}+a_{03}^{2} .
\end{aligned}
$$

From the identity $(a b)^{2}+a_{b}^{2}=a_{a} b_{b}$ evidently follows

$$
a_{a} a_{b} b_{b} \equiv(a b)^{2} a_{b}+a_{b}^{3}
$$

For $a_{30}=0$ and $a_{03}=0$ we have

$$
a_{b}^{3}=3\left(a_{21}^{2}+a_{12}^{2}\right) \text { and }(a b)^{2} a_{b}=-2\left(a_{21}^{2}+a_{12}^{2}\right),
$$

so

$$
2 a_{b}^{3}+3(a b)^{2} a_{b} \equiv 2\left(a_{30}^{2}+3 a_{30} a_{12}+3 a_{03} a_{21}+a_{03}^{2}\right)=0 .
$$

Reciprocally the disappearing of this invariant indicates that two lines of $a_{x}^{3}=0$ are at right angles to each other. For, if by a rotation of the axes of coordinates a_{x}^{3} is transformed into

$$
3 \alpha_{21} \xi_{1}^{2} \xi_{2}+3 \alpha_{12} \xi_{1} \xi_{2}^{2}+\xi_{2}^{3},
$$

which implies that one of the lines is represented by $\xi_{2}=0$, then the angular coefficients of the remaining lines are connected by the relation $m_{2} m_{3}=3 \alpha_{21}$. The above named invariant being transformed into $3 \alpha_{21}+1$, its disappearing produces the relation $m_{2} m_{3}+1=0$, by which two perpendicular lines are indicated.

9. The comitant

$$
a_{y} a_{x}^{2}=0
$$

determines the polar of a_{x}^{3} with respect to the line $y_{1}: y_{2}=x_{1}: x_{2}$, or, what comes to the same thing, the double lines of the cubic involution of which $(x y)=0$ is a threefold ray and $a_{x}^{3}=0$ forms a group.

For the double rays of the involution
(492)

$$
(x y)^{3}+\lambda a_{x}^{3}=0
$$

are determined by

$$
\left|\begin{array}{cc}
(x y)^{2} y_{2} & , a_{x}^{2} a_{1} \\
-(x y)^{2} y_{1} & , \\
a_{x}^{2} a_{2}
\end{array}\right|=0,
$$

or by $a_{y} a_{x}^{2}=0$.
In connection with this consideration the covariant of Hesse

$$
(a b)^{2} a_{x} b_{x}
$$

furnishes two lines forming the threefold elements of a cubic involution of which $a_{x}^{3}=0$ is a group.

The lines of Hesse are orthogonal, when the invariant $(a b)^{2} a_{b}$ is equal to zero.
The lines $a_{y} a_{x}^{2}=0$ are orthogonal when the covariant $a_{a} a_{y}$ disappears, i. e. when we have

$$
y_{1}: y_{2}=a_{2} a_{a}:-a_{1} a_{a} .
$$

By substitution into $b_{y} b_{x}^{2}=0$ we find that the pair of rays in question is indicated by

$$
\text { (ab) } a_{a} b_{x}^{2}=0
$$

The lines of Hesse are the double elements of the involution

$$
(a b)^{2} a_{x} b_{y}=0 .
$$

If $y_{1}: y_{2}$ is replaced by $c_{2} c_{c}:-c_{1} c_{c}$, it is evident that the covariant

$$
(a b)^{2}(b c) c_{c} a_{x}
$$

deternines the ray conjugate in this involution to the ray $a_{a} a_{y}=0$.
Evidently the orthogonal pair of rays of this involution is indicated by

$$
(a b)^{2} a_{x}(b x)=0 .
$$

So this must correspond with (ab) $a_{a} b_{x}^{2}=0$, which indicates according to the above the same pair of rays. By applying the identity $(a b)(a x)=a_{a} b_{x}-b_{a} a_{x}$, we find $(a b)^{2} b_{x}(a x)=(a b) a_{a} b_{x}^{2}-(a b) b_{a} a_{x} b_{x}$, where the third covariant disappears identically.
10. The biquadratic form

$$
a_{x}^{4} \equiv a_{40} x_{1}^{4}+4 a_{31} x_{1}^{3} x_{2}+6 a_{22} x_{1}^{2} x_{2}^{2}+4 a_{13} x_{1} x_{2}^{3}+a_{04} x_{2}^{4}
$$

has, beside the above mentioned invariant

$$
h \equiv a_{a}^{2} \equiv a_{40}+2 a_{22}+a_{04}
$$

and the well known invariants

$$
i \equiv(a b)^{4} \quad \text { and } j \equiv(a b)^{2}(a c)^{2}(b c)^{2}
$$

the quadratic invariants

$$
\begin{gathered}
m \equiv a_{b}^{4} \equiv a_{40}^{2}+4 a_{3 l}^{2}+6 a_{22}^{2}+4 a_{13}^{2}+a_{04}^{2} \\
l \equiv(a b)^{2} a_{b}^{2} \equiv 2 a_{22}\left(a_{40}-2 a_{22}+a_{04}\right)-2\left(a_{31}-a_{33}\right)^{2} .
\end{gathered}
$$

In consequence of the identity $(a b)^{2}+a_{b}^{2}=a_{a} b_{b}$ we have

$$
(a b)^{4}+2(a b)^{2} a_{b}^{2}+a_{b}^{4}=a_{a}^{2} b_{b}^{2},
$$

so that we have also

$$
i+2 l+m=l^{2} .
$$

If we put $a_{40}=0$ and $a_{04}=0$, then

$$
\begin{aligned}
& h=2 a_{22} \\
& i=2\left(3 a_{22}^{2}-4 a_{31} a_{13}\right), \\
& j=6\left(2 a_{91} a_{22} a_{19}-a_{22}^{3}\right),
\end{aligned}
$$

so

$$
3 h^{3}=6 i h+8 j .
$$

Consequently the invariant

$$
8(a b)^{2}(a c)^{2}(b c)^{2}+6(a b)^{4} c_{c}^{2}-3 a_{a}^{2} b_{b}^{2} c_{c}^{2}
$$

disappears when the four lines $a_{x}^{4}=0$ contain two pairs at right angles.
11. Ternary forms can be represented by cones the top of which is situated in the origin of three axes of coordinates perpendicular to one another.
Hene too it is evident that by a rotation of the axes of coordinates the symbolical coefficients a_{k} of the form

$$
a_{x}^{n} \equiv\left(a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}\right)^{(n)}
$$

undergo the same substitution as the coordinates.
So the comitants

$$
\begin{gathered}
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}, \quad x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}, \\
\left(x_{1} y_{2}-x_{2} y_{1}\right)^{2}+\left(x_{2} y_{3}-x_{3} y_{2}\right)^{2}+\left(x_{3} y_{1}-x_{1} y_{3}\right)^{2}, \\
\left|\begin{array}{lll}
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3} \\
z_{1} & z_{2} & z_{3}
\end{array}\right|
\end{gathered}
$$

furnish the invariant symbols

$$
a_{a}, \quad a_{b}, \quad\left(a_{1} b_{2}\right)^{2}+\left(a_{2} b_{3}\right)^{2}+\left(a_{3} b_{1}\right)^{2}
$$

and

$$
(a b c)
$$

For quadratic cones we immediately find the orthogonal invariants

$$
\boldsymbol{a}_{a} \equiv a_{11}+a_{22}+a_{33}, \quad \Sigma\left(a_{11} a_{22}-a_{12}^{2}\right) \text { and }(a b c)^{2}=\Sigma \pm a_{11} a_{22} a_{33} .
$$

[^0]: ${ }^{1}$) The existence of this invariant was proved by Mr. W. Mantel by means of an infinitesimal transformation (Wiskundige Opgaven, Dl. VII, p. 148).

