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whilst the differential equation for v reduces to

i
9z dr

Let ¢ be an arbitrary function of #,7,2. We shall now find

= alo' [ (a?:‘;z T g?) +Bamr3J T aa.:t;z]
9z

The differential cquation s + g =0, for which may be written

2
B d0'=0,
dr dy

possesses as intermediate integrals

do a()

2 +Paz = f (),
ds

C=2 g =)

where f denotes an arbitrary function.
These results differ in form only from those formerly communi-

cated sub V.

Mathematics. — “Or the locus of the centre of hyperspherical
curvature for the normal curve of n-dimensional space”. By
Prof. P. H. ScHOUTE.

At the close of the preceding paper we have pointed out that the
characteristic numbers of the locus of the centre of hyperspherical
curvature are lowered if some of the points of the given rational
curve lying at infinity coincide. At present we wish to trace fora
special case the amount of those lower numbers, viz. for the case where

Y . [
the given curve is the “normal curve” Ny of the #-dimensional space
8, , in which it is situated. It is known that this curve is represented
on rectangular coordinates by the equations
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where ¢ is again the parametervalue of the “point ¢ of the curve.

The quintic » of the preceding paper being unity here, v =0
considered as an equation of degree » has here » infinite roots, from
which ensues that the » points at infinity of the curve coincide in a
single point, the point at infinity of the ry-axis. As an introduction
to the general case of an arbitrary =, let us first however consider
the case n =3 of the skew parabola.

1. If to avoid indices we write for the rectangular coordinates
of a point of S; as is customary #, y, 2z instead of «,, ay, a3, the
skew parabola is represented by

\

z==t, y=#, z2=. . . . . . . (2
The equation of the normal plane in the point ¢ is
g—t -+ 2t(y—1?) + 36 (e—18) =0,
or classified according to ¢
35 4+ 26 — 3288 + (12t — z2=0. . . (8)

This equation being of degree 5 in ¢, five normal planes of the
skew parabola pass through any given point and so the locus R;is
of order five, as was formerly found.

The equation of the developable enveloped by the series of normal
planes is found by eliminating ¢ out of (8) and its differential coeffi-
cicnt according to ¢ This is immediately veduced to the elimination
of ¢ between the two cubic equations

418 —9z +4(1-8y)t —b6x=0
185284+ 12(10y—7?+ 832 x—8) i+ 4(1-2y)=0

by which is found by means of the wellknown method of elimination

4 , -9z , 4-8y , -5z 0 ) 0

0, 4 , -9z , 4—-8y , -5z , 0

0, o, 4 , -9z , 4-8y, —-bz
185z, 120y —84, T5x—24, 4—8y , o , 0 =0
0, 185z , 120y—84, V5z—2, 4-8y, 0

0, 0 , 18z , 1%0y—84, 75z —24, 48y
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So the developable referred to is of degree six; so six is the
rank of R;.

By solving #, y, = out of (3) and its first and second differential
coefficients according to ¢ we find

z=288( 98+
o1-gy=8euse+a L, . ... .. @
2=2t (5841

from which ensues that the curve R, is of degrce five. So, instead
of 5, 2(6—1), 8(5—9 or 5, 8 9, the characteristic numbers of R are
5,6, 5 °

In passing we can remark here, that the normal plane

2@ Px— 3ty La)=1080 +1475-+888+¢ . . . . ()

of the curve Z; in the point ¢ is parallel, as it should be, to the

plane of curvature
B8Pz 18ty —2=0

of the skew parabola in the point ¢ The equation (5) being of degree
seven in ¢ the locus R's, belonging to R, as original curve, is of
class seven. This agrees with the general result obtained in the pre-
ceding paper. For the number 3»—2, here 13, must be diminished
by four on account of the particularity sub ¢ and by two on account
of the éarticularity sub?). For, » being a constant, the quintic
equation »=0 has five cqual infinite roots; moreover the three
equations o'y =0, &'y =0, &' =0 have the factor 75/ 1 in
common, in conneclion with which the curve R's proves to contain
two conjugate complex cusps.

2. The method followed here for n=2& not being so easy to
apply to the space S, we shall try to find another way, where that
drawback does not present itself. To do so we must recall in
mind the proof of the theorem formerly used, according to which
the envelope of a space with n—1 dimensions, of which the equa-
tion, linear in the coordinates =; ({==1, 2, . . . n), contains a para-
meter ¢ to degree %, has the characteristic numbers

Ey 2(k—1), 3(k—2)y...... (n—1) (k—n + 2),

where it is taken for granted t\hat k >n—2, as otherwise the last
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envelope contains either a morefold infinite number of points and
is then not a curve, or — in case it really consists of a singly in-
finite number of points — it is situated in a space S,—1. Here
k is always 2n— 1.

The indicated proof can be given by means of the two following
considerations: -

o). The system of s-- 7 equations consisting of the equation of
degree %

fO=atkt+ a4+ ... aqttar=0

and its first, second. ... sth differential coefficients according to ¢ may
be replaced by a system of s 4 7 equations of degree #—sin 1, all ad-
mitting coefficients that are linear forms of the coefficients of 7 (£) = O.

b). The degree of the locus represented by s -+ 7 equations of degree
k—s in ¢, of which the coefficients are linear forms in the coordina-
tes #;(i=1, 2, ... n), i3 obtained by adding to the system n—s
entirely arbittary equations linear in the coordinates and by elimi-
nating the = coordinates between the so formed system of » 4~ 1 equa-
tions of which n—s do not contain ¢ The degree of the resulting
equation in ¢ is the order of the locus we were in search of.

The proof of these two lemmae is very simple. The first is but
an extension of a wellknown theorem of Eurer. If we transform
the equation f (#) = 0 by the substitution ¢ = -:)i into the homogeneous
form ¢ (s, v) =0, the s+ 1 indicated equations are

o’p 0 osp sep
s | Qus—ldw 7 Qus

And by following the method pointed out in the second lemma
we find the number of points common to the locus of n—s dimen-
sions, determined by the s-}-1 cquations of degree k—s and the space
Ss, being the intersection of any system of n—s spaces Sp—1.

If the condition is written down, that the eliminant of the system
of n+1 equations, linear in the = coordinates, disappears,we obtain
an equation of degree (s4-1)(k—s) in ¢, which proves the theorem.

3. It goes without saying that the lowering, which the charac-
teristic numbers of the locus R, belonging to the skew parabola
undergo, is closely connected with the particular structure of.the
equation. Tirst, this equation is not complete, for ¢* is lacking ;
secondly, sot all existing terms contain the three coordinates #, y, ¢
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in their coefficients. We shall first point out, that the latter pecu-
liarity explains the lowering appearing here even then, if we neglect
to avail ourselves of the simplification indicated in the lemma a); we
shall then show that the first particularity has no effect here.

By substituting in the eliminant of the system for each element
the number indicating its degree in ¢ and by representing the places
made vacant by differentiation by the symbol f, then in the three
cases s =0, 1, 2, appearing in the skew parabola, we have — inde-
pendent of the lacking of ¢* in (8) — to deal with the three symbolic
equations

0125 0125 0125
000 0 F 014 P01 4
=0, =0, =0,
0000 0000 Por o0 8
0000 0000 000 0

which really show that the corresponding equations in ¢ are respec-
tively of degree 5, 6, 5.

By substituting furthermore in the eliminant for each element the
term of the highest degree in ¢ wo then find omitting the first
case, clear enough in itself,

1 ¢t ©# 1 ¢t &
T 1 2& 5 T 1 2 54
= 0’ =0
o dy Gy Q  f 2 208
b]_ bg b3 b4 Gy O Q3 Oy

and now, taking the arbitrariness of the coefficients a, & of the equa-
tions of the planes S, into consideration, it is clear that the terms
of the highest degree \

A A 4

4y Oa 1t FAd
=8(t )l —ay |1 2 Bt |=—12a 85
b, b 9 5t
T 2 208
and the constant -terms
(as b4): 2“4
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of these equations cannot be expelled by applying the method of
~the first lemma or by making use of the lacking of # in (3),
by which equations f(®=0 ete. of still lower degree are obtained.
For, these operations correspond with the diminishing of the elements
of a row of the determinant indicated above by the' corresponding
elements of another now multiplied by a form in ¢, and by this
method of transformation, much in use with determinants, the degree
of the determinant in ¢ cannot be lowered. So it is only appa-
rently that by applying the first lemma the degree of the general
eliminant is lowered from

ic—}—(k——l)—{—...-|-(k-—s)=(2/k_s;(s+1) b (276—"2;)(84-1);

in reality the eliminant of the equations

f@® =0, g—é—:::O, .o E—}-i’:!“::O

is already of degree (s 4 1) (¥ —s), although judging by the form it
seems to be of a higher degree. On the other hand in the case of the
skew parabola

0125 012 8 0128

+ 01 4 >-'~014‘ 12382
==( passes into =0 and - =0,

0000 00 0 0,0 0 0

0000 0000 0000

if in succession we make use of the method of the first lemma or
of the two cubic equations used in the direct solution; so the deter-
minant remaind of degree six in ¢.

4, We are now able to treat the gemeral case completely, where
n and s < n are arbitrary and % is equal to 2» — 1. If as is custo-
mary we represent the analytical faculty

plp+n (p+2n...{p+@—10r}

by p9" the equation under investigation appears in the form
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1 H 2 s, ., . . el {21
1 2 Lm—s—Dp—t @—g) Pt ., w-D)?  (2n—1) 2
. o (p—g)llu——l 2y —g)sl1gin—s—1
aLI a],‘z C&],a « s+ . . a], n—s al’ Restl o o o . al,’l a]’ n41
aﬂ,l a2,2 a2,3 LI T T ag, H—5 a2, ﬁ—5+] « s e . ag, % ag’ n4l

Op—s,) Tn—32 Qn—s3 o o o Qu—s n—s Qp—s, i—s+l « o o« Up—s,n On—s, n41
1

By multiplying the second row by ¢, the third by ¢* ete. and the
s--1s¢ by ¢, the first s41 elements of each column assume the same
power of ¢. From this ensues that

m—s)+m—s+1)+ ...+ @r~1) + 2n—1

diminished by
1+24+ ... +s

or 2n—1+4s(n—s— ) indicates the degree of the equation, if the
terms of the highest degree and the constant term do not disappear.
The constant term is the product of the numbers 1, 2, 6, 24, . . , and
a determinant of coefficients aiz; so this does not disappear. And
taken together the terms of the highest degree 2n—1-+s(n— s—1)
have as coefficient the product of a determinant of quantities aix and

1 1 e o v s 1 I
n—s me—gtl. . ome=1 2n 1
* L] L] - L] - » L] L] ,
PN T R SR TR S R S .« » (%—-S)’l \'2""“8)"1

which is reducible to
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|-
1 1 L . . [ ] 1 1
n—8 wn—s4+1 . . . . n—1 21 1
n — 8)? m—s+12 . .. . m—12 @n -~ 1P
(1 ~ 8) n— s+ 1) n— 1y @Bn—1)¢
1

and this differs fiom zero, it being the product of all possible dif-
ferences of the s+21 numbeis n—s, n—s++1,....0—1, In—1
and no equal ones appearing among them. )

According to the final result obtained in this way the character-
istic numbers of the locus of the centre of hyperspherical curva-

ture R for the mormal curve &, are respectively
2n—1, 3n—38, 4n—7, 6n—13, 6n—21,....2n—1,

from which ensues that they do not change if taken in reversed order.
In particular we find for

oo

8
6,
9 7

g

-
-

2

3 5

¢ 9

5.... 9 12 18 12, 9
n= 6....11, 15, 17, 17, 15, 11

7.... 13 18, 21, 92, 21, 18, 13

8....15, 21, 25, 27, 27, 25, 21, 15

9....17, 24, 29, 52, 83, 82, 29, 24, 17

0....19 27, 33, 87, 89, 89, 37, 33, 27, 19.

With this the table inserted in the preceding paper referring to
the general rational skew curve of minimum degree can be compared.

Physics. — “Egquations tn which functions occur for different values
of the independent variable”. By J. D. vAN DER WAALS JR.
(Communicated by Prof. J. D. vaAN DER 'WAALS.)

§ 1. Let us imagine an electric vibrator at a distance » from a
reflecting plane. If we wish to construe the equation of motion of that
vibrator at the moment ¢ we shall have to take into consideration
that forces act on the vibrator, which it has given out itself and which
have then been reflected by the plane. ,These forces are determined



