Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

E. Cohen, Studies on Inversion. (first part), in: KNAW, Proceedings, 2, 1899-1900, Amsterdam, 1900, pp. 618-634

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl) > 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

(618)

$$\operatorname{Zn} + \frac{7}{A-7} (\operatorname{Zn} \operatorname{SO}_4, \operatorname{AH}_2 \operatorname{O}) + \operatorname{Hg}_2 \operatorname{SO}_4 \rightleftharpoons 2 \operatorname{Hg} + \frac{A}{A-7} \operatorname{Zn} \operatorname{SO}_4. 7 \operatorname{H}_2 \operatorname{O}.$$

liquid solid

and

$$\operatorname{Zn} + \frac{6}{a-6} \left(\operatorname{Zn} \operatorname{SO}_4, a \operatorname{H}_2 \operatorname{O} \right) + \operatorname{Hg}_2 \operatorname{SO}_4 \rightleftharpoons 2 \operatorname{Hg} + \frac{a}{a-6} \operatorname{Zn} \operatorname{SO}_4. \quad 6 \operatorname{H}_2 \operatorname{O}$$
liquid solid

in which A, or a, represents the number of mols. of water which accompany one molecule of $Zn SO_4$ in the saturated solution at the temperature of the cell.

3. It has been demonstrated that calculations based on the old view lead to utterly faulty results.

4. The value of E_c in the equation of GIBBS and v. HELMHOLTZ is calculated by means of the new equation. For the CLARK-normalcell in which undissolved Zn SO₄. 7 H₂O is present the calculation gave:

at 18° C. $E_c =$ **S1127** calories

whilst experimentally the value $E_c = \$1490$ calories was found or, the calculation gives as temperature-coefficient at 18°C.

whilst experimentally - 0,001207 Volt. was found. '

For the CLARK-cell containing undissolved Zn SO₄.6 H₂O, the calculation at 15° C. gives $E_c = 75159$ calories, whilst experiment gives $E_c = 75677$

Amsterdam, University Chemical Laboratory, April 1900.

Chemistry. — "Studies on Inversion" (First Part). By Dr. ERNST COHEN (Communicated by Prof. H. W. BAKHUIS ROOZEBOOM).

 γ^{-1}

1. A few years ago (1896) it was stated by RAYMAN and ŠULC in a paper 'on catalytic hydration by metals ¹), that when cane-sugar is dissolved in very pure water (conductivity 0.7×10^{-6}) and exposed in platinum vessels to temperatures over 80° C. a decided inversion takes place which proceeds with a steadily increasing velocity.

¹) Zeitschrift für phys. Chemie 21. 481 (1896).

(619)

From their rather extensive material I have taken the following table:

TABLE I.

Temperature 80°.

Time (in hours).	Rotation of the solution.	k.
0	11°.56	
8	11 .49	0.00025
14	, 11 .42	0.00029
26	10.89	0.00076
36	9.23	0.00203
48	4.95	0.00523
58	0.31	0.01032

I have calculated the velocity-constant k in the third column from the equation:

$$k = \frac{1}{t} l. \quad \frac{A}{A - x}$$

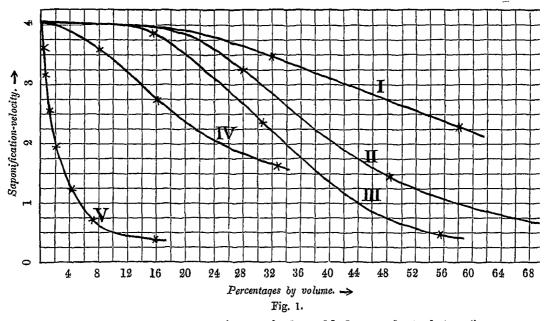
in which A represents the initial concentration of the inverted sugar solution and x the concentration at the time t.

I have taken it for granted in that calculation that RAYMAN and ŠULC have polarized their solutions at 25° C. Although they do not actually say so, I conclude such to be the case from a remark on p. 488 of their paper.

For the calculation of the end-rotation I have made use of the equation of HERZFELD¹) who states that every degree of right-handed polarisation of the original solution gives (0.4266-0.005 t) degrees of left handed polarisation at the temperature t° .

I have now made a further investigation of the peculiar phenomenon described by RAYMAN and ŠULC, in the laboratory of Prof. SVANTE ARRHENIUS at Stockholm to whom I wish here to express my hearty thanks for the great hospitality extended to me during my stay in Stockholm.

In the first place this article will deal with the method of working and the facts thus collected whilst in a future communication this material will be subjected to a closer calculation.


¹⁾ See E. O. von LIPPMANN, die Chemie der Zuckerarten (1895) S. 516.

2. If it be supposed that both cane-sugar and the products obtained by inversion *d*-glucose and *d*-fructose are of an acidic nature, then the qualitative action in the experiments of RAYMAN and ŠULC may be explained by assuming that the produced invert-sugar is a stronger acid than the originally present saccharose.

It was now my object to experimentally prove in the first place the correctness of that assumption. If it is correct then it must be assumed that by the action of pure water on saccharose two (stronger) acids are formed which as their amounts increase will accelerate the inversion.

That cane sugar behaves like an acid is shown by the researches of C. KULLGREN in ARRHENIUS' laboratory. He determined the influence exercised by different non-electrolytes on the saponification-velocity of ethyl acetate by sodium hydroxide at 20°.7 C.

His results are represented graphically in fig. 1. The abscissae

represent the concentrations of the added non-electrolytcs (in percentage by volume).

Curve I relates to the experiments with acetone.

" II	"	39	"	13	33	ethyl alcohol.
" III	"	»	"		"	methyl alcohol.
, IV	,,	"	"	>>	"	glycerol.
,, V	,,	"	**	39	3 y	saccharose

the ordinates the saponification velocities at 20°.7 C.

From this representation we see at once that glycerol and parti-

cularly saccharose enormously diminish the saponification velocity. Now, these are just the substances which form salts with Na OH according to the scheme:

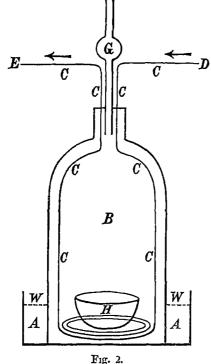
$$C_{12} H_{22} O_{11} + Na OH = C_{12} H_{21} O_{11} Na + H_2 O.$$

KULLGREN attributes the influence exercised by glycerol and saccharose to a chemical change in the above sense, showing plainly the acidic nature of cane-sugar.

If, on the strength of this view, the influence exercised by the addition of saccharose on the electrical conductive power of N_{40} NaOH solutions is calculated, a satisfactory agreement appears to exist between the calculation and the experiment as shown by the following table taken from KULLGREN.

TABLE II.

Relative


Percentage by volume	Conductiv	ity (at 20°.7 C.)
saccharose.	found.	calculated.
0	4.04	
0.533	3.06	3.32
1.058	2.79	2.36
2.11	2.12	2.33
4.20	1.63	1.78
7.00	1.26	1.31
15.87	0.78	0.73

3. I have now studied the influence which cane-sugar invert-sugar, d-glucose, d-fructose and finally mannitol exercise on the saponification-velocity of N_{40} ethylacetate by N_{40} NaOH. 25° was chosen as the temperature of the experiments.

Mannitol was also investigated in order to show once more that substances which do not yield salts exercise an influence of a quite different kind than those who do form such compounds.

The different solutions were mixed together in the well-known manner in 100 cc. flasks made of Jena-glass which were previously steamed. In every case the concentration of the ethyl acetate and of the lye was $N_{./40}$.

The flasks were suspended in a thermostat the temperature of which was constant within 0,03° (toluene-regulator and powerful stirring by means of HEINRICI hot air-motor). From time to time

(the chronometer showed a fifth of a second) 10 cc. were pipetted from the flasks and added to 10 cc. of standardised acid; the excess of acid was then titrated with N_{40} NaOH using phenolphthalein as indicator.

> The standard liquids were kept in large bottles and duly protected from the carbon dioxide of the air^{1}).

The preparation of lye free from CO_2 is generally done by allowing metallic sodium to liquefy under a jar in which a basin of water is placed. By following this method²) the preparation of, say, 1 litre of N. soda takes many days. I have, therefore, constructed a simple little apparatus which enables us to dissolve in a few hours 50 grams of sodium out of contact with the air. The apparatus may be put together by means of materials

which are found in every laboratory ³). (Fig. 2).

B is a jar (bottomless bottle) closed by a trebly-perforated cork. Through the hole in the centre passes a soda-lime tube G. Through both the other holes a thin copper tube enters (or leaves) the jar, which runs alongside the walls and is rolled circularly at the bottom (3 windings). Within the circle is placed a silver dish filled with metallic sodium cut up into small pieces. The jar with the dish is then placed into a crystallizing basin containing a little water so that the lower edge of the jar dips a few c.m. into the water. From a boiling-flask with a safety tube steam is passed through the copper tube the other end of which is connected with a waterairpump to remove condensed water.

Soon the jar gets filled with water vapour, hydrogen escapes through the soda-line tube and after a few hours, the sodium is completely liquefied and dissolved. Traces of carbon dioxide which may be present in the solution were removed by boiling the solution with a little Ba $(OH)_2$.

¹⁾ Compare SPOHR, Zeitschnift für phys. Chemie 2, S. 194 (1888).

²⁾ OSTWALD, Hand- und Hulfsbuch zur Ausfuhrung physiko-chemischer Messungen, S. 281.

³⁾ Compare ROSENTELD, Journ. fur pract Chemie N. F. 48 (1893) 599.

(623)

A. Experiments with saccharose.

4. Pure sugar candy was dissolved in water ¹), precipitated with alcohol (96 vol. proc.), washed with ether and then dried in vacuo ²). The ethyl acetate used in these and subsequent experiments was thrice redistilled and afterwards a N_{10} solution was made of it.

I investigated the influence of $N_{./5}$, $N_{./10}$, $N_{./20}$, $N_{./40}$ and $N_{./80}$ sugar solutions on the saponification-velocity. These were prepared by means of $N_{./21/2}$ stock solution which was preserved with camphor to prevent fungoid growth. In these as in all subsequent experiments the solutions were always prepared quite independently of each other whilst for each solution the velocity constant was determined 5 (or more) times. The mean of the two series thus obtained will be taken as the end figure.

When calculating the constant (k), the concentration at the first observation was considered as the initial concentration, so that the influence of the first errors becomes trifling. The constant follows from the equation ³):

$$k = \frac{C_1 - C_n}{C_1 C_n (t_n - t_1)}.$$

Before giving the results obtained on saponifying solutions to which saccharose had been added, I will first give some determinations made with purely aqueous solutions.

In all the following tables, t represents the time required for saponification in minutes, C_n the concentration of the lye (expressed in N/₄₀ NaOH); the third column contains the value $k C_1$.

	Т	A	ΒI	ĿĒ	E I	II.
N./40	ethy	l ac	etate	+	N./49	Na OH

Fust series				S	econd ser	105	
t	Cn	k C1		t	Cn	k C ₁	
2	7.29			2	720		
4	5.82	0.126		4	5.75	0 126	
6	4 90	0.122	k = 6,85	6	4.81	0 124	
8	4.18	0.124		ø	3.90	0 121	k == 6,88
10	3 63	0.126		12	3.18	0 126	
12	3.23	0.125		15	2 73	0.123	
	average	0.125			average	0.124	
			• ,	11	1 1.1		

') The water used in the experiments was distilled with particular care and freed from carbon dioxide by passing a current of air (free from CO_2) for 6 hours.

²) See E. O. von LIPFMANN, die Chemie der Zuckelaten (1895), S. 59.

³) See VAN 'T HOTT-COHLN, Studien zu chemischen Dynamik (1896), S. 13; ARRHLNIUS, Zeitschrift fu phys. Chemie 1. 112 (1887).

Proceedings Royal Acad. Amsterdam. Vol 11.

As the average of both series we, therefore, find k = 6,86 at 25°. By way of comparison we may put the figures of ARRHENIUS and SPOHR side by side:

ARRHENIUS ') found at 24°.7 (N./40 ethyl acetate + N /40 NaOH) 6.45 and 6.59 aver. 6.52SPOHR2) found at 25°.0 (N./40 ethyl acetate + N./4, NaOH)6.51

The found figure 6.86 at 25°.0 agrees very well with ARRHENIUS' figure 6.52 at 24°.7, if we consider that a difference in temperature of 0°.3 already influences the velocity of the reaction to the extent of about 6 pCt. ³).

TABLE IV.

 $N./_{40}$ ethyl acetate + $N/_{40}$ Na OH + $N./_5$ saccharose.

	First seri	ie.			Second series.			
t	Cn	kC1		t	Cn	kC_1		
10	6.43	-		10	6.45			
15	5.51	0.0333		15	5.55	0.0324		
20	4.85	326	k = 2,03	20	4.90	316	k = 1,99	
25	4.30	330		25	4.38	315		
35	3.58	318		35	3.53	330	`	
	average	0.0327			avera	ge 0.0321	_	

TABLE V.

 $N./_{40}$ ethyl acetate $+ N./_{40}$ Na OH $+ N./_{10}$ saccharose.

	First set	ies.			Second s	eries.	
t	Cn	kC_1	۱.	t	$\mathbf{C}\mathbf{n}$	kC ₁	
5	6.91			5	6.81		
10	5.45	0.0535		10	5.40	0.0525	
15	4.47	545	k = 3,14	15	4.45	530	k == 3,10
20	3.81	542		20	3.78	534	
25	3.30	547		25	3 33	522	
	averag	e 0.0542			averag	e 0.0528	-

1) ARRHENIUS, Zeitschrift für phys. Chemie J. 112 (1887).

²) SPOHR, ibid 2. 194 (1888).

ł

*) Studien zur chemischen Dynamik S. 129.

(625)

TABLE VI.

 $\rm N./_{40}$ ethyl acetate + $\rm N./_{40}$ Na OH + $\rm N./_{20}$ saccharose.

	First Series.				Second s	eries.	
t	Cn	kC_1		t	Cn	kC_1	
3	7.20			6	5.81	-	
7	5.52	0.076		9	4.90	0.0619	
9	4.91			13	4.02	635	k = 4,32
13	4.08	764	k = 4,26	17	3.43	630	
17	3.48	763	,		_		
	avera	ge 0.0766			averag	e 0.0628	

TABLE VII.

 $\rm N./_{40}$ ethyl acetate + $\rm N./_{40}$ Na OH + $\rm N./_{40}$ saccharose.

	selies.	Second			ries.	First se	
	kC_1	C_n	t		kC ₁	$\mathbf{C}_{\mathbf{n}}$	t
	-	6.93	3			6.91	3
	0.0882	5.48	6		0.0908	5.43	6
k = 5,15	900	4.50	9	k = 5,22	903	4.48	9
	888	3.85	12		901	3.82	12
	880	3.37	15		896	3.33	15
	ge 0.0887	avera			ge 0 0902	avera	

TABLE VIII.

 $N./_{40}$ cthyl acetate $+ N./_{40}$ Na OH $+ N./_{80}$ saccharose.

First :	series.
---------	---------

t	Cn	kC ₁		t	C_n	kC ₁	
2	7.40	-		2	7 30		
4	6.08	0.108	k = 5,84	4	6.00	108	k == 5,92
6	5.12	106		6	5 05	111	
9	4.21	108		12	3,52	107	
12	8.55	108					
	avera	ge 0.108			averag	e 0.108	

Second series.

B. Experiments with invert-sugar.

A ' $N.2^{1}_{2}$ solution of invert-sugar was prepared by inverting a $N.2^{1/2}$ solution of cane-sugar by means of a little acid at 60° C. A weighed quantity of saccharose was dissolved in a little water 45*

contained in a measuring flask, 20 cc. of $N_{./20}$ H NO₃ were added and the whole kept for 24 hours at 60°. The acid was then neutralized with lye and the liquid was diluted to the mark. I made sure about the completeness of the inversion by a polariscopic test.

Operating in this manner, the liquid contains but little Na NO_3 ; the presence of salts should be avoided as, according to SPOHR's experiments they exercise a great influence on the saponificationvelocity of ethyl acetate by Na OH.

To be more sure, I inverted a second solution with a trace of oxalic acid: the figures which I obtained afterwards on saponification were identical with those given by the solution inverted with $H NO_3$. Both the solutions were, therefore, used in the further saponification experiments. I have studied closer an additional phenomenon which might have been of influence on the experiments where invert-sugar or d-glucose and d-fructose were used.

LOBRY DE BRUYN and ALBERDA VAN EKENSTEIN¹) when studying the action of dilute alkalis on carbohydrates have found that d-glucose and d-fructose undergo decomposition even by dilute solutions of Na OH. A portion of the added Na OH disappears as it gets neutralized by the organic acids which are formed. The decomposition was very plainly observable at 63° after a short time, when $N_{...,J_{50}}$ Na OH was used.

It, therefore, became necessary to ascertain in how far a similar secondary reaction may interfere here at 25° C. during the time my observations lasted.

For that purpose, I mixed in a flask: 50 cc. $N.2^{1/2}$ invert-sugar, 25 cc. of water and 25 cc. of $N./_{10}$ Na OH and kept the mixture in a thermostat at 25° C. From time to time, the alkalinity was determined by titrating 10 cc. with $N./_{40}$ acid.

After 80 minutes 0.2 cc. of N_{40} NaOH were assumed.

'n	250	, 33	0.3 cc.	n	$\rm N./_{40}~NaOH$	n	n
33	1320	n	1.1 cc.	n	N./40 NaOH	n	n

As in our case the experiments are finished within 150 minutes, the secondary action is not likely to influence the general result.

¹) Rec. des Trav. chim. des Pays-Bas. 14, 156, 203 (1895).

(627)

TABLE IX.

N./40 ethyl acetate + N./40 Na OH + N./5 invert-sugar.

t C_n kC_1 30 7.52 -50 6.59 0.00705 80 5.51 729 k = 0.379 110 4.79 712 average 0.00715

TABLE X.

N./40 ethyl acetate + N./40 Na OH + N./10 invert-sugar.

	First se	ries	Second series.		
t	C_n	kC ₁	t	C_n	kC ₁
15	7.78		15	7.78	-
30	6.50	0.0131	30	6.50	0.0131
50	5.35	129 k = 0.68	50	5.38	$127 \ k = 0.66$
73	4.35	131	75	4.39	128
105	3.59	142	105	3 55	132
	averag	re 0,0133		averag	e 0 0139

TABLE XI.

ł

	N./40 ethy	l acetate + N./40	Na OH + N./s	invert-	sugar.	
	First serie	95.	Sec			
t	Cn	kC ₁	t	C_n	kC_1	
10	7.44		10	7.40	-	
20	6.10	0.0219	20	6.05	0.0223	
30	5.20	215 k = 1.15	30	5.13	221	k == 1.18
45	4.28	211	45	4.21	216	
65	3.40	216	65	3.42	212	
	average	0.0215		average	0.0218	

TABLE XII.

	N./40 ethy First serie		+ N./40 Na C		/ ₄₀ inveri Second s		
t5	Cn 7.51	kC ₁	X	t 5	C _n 7.50	kC ₁	
10	6 32	0.0376		15	5.42	0.0383	
15	5.41	388	k = 2.01	20	4.78	379	k = 2.04
20	4.80	376		30	3.81	387	
3 0	3,90	370			_		_
	average	0.0377			averag	e 0,0383	

	N_{40} eth	yl acetate	+ N./40 Na	OH + N.	/ ₈₁ invert	-sugar.						
	First serie	es.		5	Second se	ries.						
t	C_n	k.C.		t	$\mathbf{C}_{\mathbf{n}}$	kC,						
3	7.60			3	7.52							
6	6.36	0.0650	k = 3.39	6	6.32	0.0633						
9	5 48	644		9	5 42	645	k = 3.36					
12	4.82	641	-	12	4.80	629						
		<u></u>		17	4.01	625	_					
	averag	e 0.0644			averag	e 0.0633						

TABLE XIII.

.

C. Experiments with d-glucose.

For these experiments I made use of a preparation sold by MERCK as "Traubenzucker purissimum, wasserfrei'. By polarisation and a water determination, the article, however, appeared to contain about 6 pCt. of water.

A second preparation in beautiful crystals was kindly offered to me by Prof. RINDELL of Helsingfors. Both specimens gave the same figures in the saponification experiments and were used side by side.

•	TABLE XIV.									
	N./40 ethyl acetate + N./40 Na OH + N./5 d-glucose									
	First serie			5	Second ser	ries.				
t	C_n	kC ₁		t	Cn	kC_1				
15	7.32	~		15	7.32					
30	6.07	0.0137		30	6.02	0.0143				
45	5.13	142		45	5.14	142				
60	4.41	146	k = 0.79	60	4.41	146	k = 0.79			
80	3.72	148		80	3.72	148				
110	3.05]47	_	110	3.05	147				
	average	0.0144			average	e 0.0145				
		\mathbf{T}	ABLE	XV	•					
	$N./_{40}$ et	hyl acetat	e + N./40 Na	0H +	N./10 d-	glucose.				
	First serie				Second se					
t	(n	kC_1		t	Cn	kC,				
10	7.04			10	7.04					
20	5.68	0.0239		20	5.68 ~	0.0239				
80	4.70	248	k=1 36	30	4.70	248				
	0.00	020		45	3.83	239	k = 1.38			
45	3.83	239								
45 60	3.83 3.20	239 240		60	3.19	242				
	3.20 2.80				3.18 2.70	242 247 e 0.0243				

(629)

TABLE XVI.

N./40 ethyl acetate + N /40 Na OH + N./20 d-glucose.

First series.					Second series.				
t	Cn	kC ₁		t	Cn	kC,			
5	7.39			5	7.32				
10	6.08	0.0430	k = 2,31	10	6.03	0.0427			
15	5.18	426		15	5 11	432	k == 2,32		
20	4 50	428		20	4.48	422			
				25	3 98	419			
				30	3.55	424			
	averag	e 0.0428			avera	ge 0.0425			

TABLE XVII.

	$N./_{40}$ ethyl acetate $+ N./_{40}$ Na OH $+ N/_{40}$ d-glucose.										
	First serie	es.		S	ies.						
t	Cn	kC_1		t	$\mathbf{C}_{\mathbf{n}}$	kC ₁					
4	6.96	_		4	6.89						
7	5 81	0.0659		7	5.80	0.0626					
10	5.02	644	k == 3,72	10	4.99	634	k = 3,66				
13	4 40	646		13	4.40	628					
17	3.80	639		17	3.78	633					
	averag	e 0.0647			avera	ge 0,0630					

TABLE XVIII.

١

N./40 ethyl acetate + N./40 Na OH + N./80 d-glucose.

	First serie	8.		Second series.					
	C_n	kC1		t	Cn	kC ₁			
	7.02			3	6.92				
6	5 60	0.0845		6	5.52	0.0845			
9	4.61	871	k=4 79	12	3.98	818	k = 4 .79		
12	4.50	839		15	3.47	828			
15	3.53	824		18	3,10	821			
18	3.13	828					_		
average 0.0841					averag	ge 0.0828			

(630)

D. Experiments with d-Fructose.

Two specimens of this substance were in my possession. A small quantity of crystallised d-fructose from MERCK of Darmstadt and a larger quantity which Mr. ALBERDA VAN EKENSTEIN, director of the Government sugar laboratory of Amsterdam, had been kind enough to prepare and recrystallize for me. I will not neglect to express here my particular thanks for the great kindness with which Mr. ALBERDA has obliged me with this expensive preparation as this alone has rendered it possible for me to do the experiments with d-fructose on a somewhat larger scale.

Both preparations gave the same figures as will be noticed from the tables.

TABLE XIX.

 $N./_{40}$ ethyl acetate $+ N./_{40}$ Na OH $+ N./_{5}$ d-fructose.

	First seri	ies		Second series				
(Albei	RDA's pre			(Me				
t	C_n	kC ₁			t	$\mathbf{C_n}$	kC ₁	
30	6.73		-		30	,6.60		
45	5.82	0.0104			45	5.80	0.0092	
60	5 21	097	k == 0,59		60	5.10	98	k == 0,59
80	4.52	098		-	80	4.40	100	
111	3.73	099			110	3.63	102	
145	3.07	104			145	3.03	102	_
	averag	e 0.0100				average	0.00988	

TABLE XX.

 $N./_{40}$ ethyl acctate $+ N./_{40}$ Na OH $+ N/_{10}$ d-fructose.

	First serie	es.		Se	econd sei	ies.	
t	C_n	kC,		t	Cn	kC _i '	
11	7.48			10	7 53	-	
20	6 38	0.0191		20	6.38	0 0180	
30	5.49	190	k = 1,03	33	5.44	192	k == 1,01
45	4.51	193		45	4.50	192	
60	3.85	192		60	3.82	194	
80	3.22	191	1	80	3.15	198	
				100	2.76	192	
	averag	e 0.0192			averag	e 0.0191	

I

(631)

TABLE XXI.

	N/40 eth First series		e 🕂 N./40 N	a OH + N Sec	./ ₂₀ d-fruc ond series	tose.	
t 5	Cn	kC,		t 5	Cn 7.60	kC ₁	
э 10	7.68 v	0.0363		10	6.39	0 0378	
15	5 64		k = 1.89	15	5.60	357	
20	4.92	373		20	490	367	k = 1.87
	average	0.03631)	30	4.10	341	
١				40	3.42	349	
				50	3.00	340	
					average	0.0355	

TABLE XXII.

	N./40 eth First series		e 🕂 N./40 Na OF	1 + 3 Se	N./ ₄₀ d-fruc cond series	tose.	
	Cn	"kC,		t	C_n'	kC,	
4	7.21			4	7.20	-	
8	5.90	0.0555		8	5.90	0.0550	
12	5.00	552		12	4.99	553	
18	4.38	538	k == 3.02	16	4.33	552	k=3.05
20	3.87	539		20	3.82	553	_
24	3.46	541			average	0.0552	
28	3.13	544					
	average	0.0545					

ł

TABLE XXIII.

	N_{40} eth	yl acetate	$+ N./_{40}$	Na	→ EC	N./80 d-f	ructose.	
	First serie				S	lecond se	ries.	
t	\mathbf{C}_{n}	kC,			t	$\mathbf{C}_{\mathbf{n}}$	kC_1	
3	7.12	-			3	7.12		
9	4.87	0.0770			9	4.87	0.0770	
12	4.22	763	k = 4,2 9	,	12	4.25	750	k == 4,24
15	3.71	766			15	3.71	766	
20	3,11	758			20	3.11	758	
25	2.65	766			25	2.71	739	~
	averag	e 0.0764	_			averag	e 0.0756	

1) As I find in my notes that the figure 4.92 is decidedly too low I have disregarded the value 0.0373 when calculating the average.

(632)

_ l

ب

E. Experiments with Mannitol.

The preparation obtained from KAHLBAUM was sharply dried and then used for making the solutions.

TABLE XXIV.

	N./40 e	thyl acetai	e + N./40	Na OH 🕂	- N./ ₅ ma	nnitol.		
I	first serie	s.	·	~ ¦	Second se	ries.		
t	C_n	kCı		t	∖ C _n	kC ₁		
3	7.23			3	7.19	_		
9	4.68	0.0907	k == 5,13	6	5.61	0.0938	-	
12	3.92	938		9	4.60	938	k == 5,20	
17	3.12	940		12	3.90	937		
			_	17	3.11	937		
	avera	ge 0.0928			averag	e 0.0938		-

TABLE XXV.

$N./_{40}$ ethyl acetate $+ N./_{40}$ Na OH $+ N./_{10}$ mannitol.									
	First seri	es.		8	Second se	ries.			
t	C_n	kC _l		t	Cn	kC _l			
2	7.53			2	7.49				
4	6.19	0.109		4	6.17	0.107			
6	5.21	111	k == 5,83	6	5.20	110	k == 5,87		
8	4.50	112		8	4.52	109			
п	3.80	109	_	11	3.70	113	_		
average 0.110					averag	e 0.110	-		

TABLE XXVI.

N./40 ethyl acetate + N./40 Na OH + N./20 mannitol.								
	First serie	es.		S	econd se	ries.		
t	C_n	kC _l		t	Cn	kC _i		
2	7,32			2	7.30			
4	6.01	0.109		4	5.97	0.111		
6	5.01	115	k == 6,17	6	4.99	115	k == 6,19	
8	4.33	115		8	4.31]15		
10	3.80	115		10	3.81	111	_	
	average	e 0.113			averag	e 0.113	-	

(633.)

	$N./_{40}$ ethyl acetate $+ N./_{40}$ Na OH $+ N./_{40}$ mannitol.										
	First serie	s.		S	econd se	ries.					
t	C_n	kC ₁		t	C_n	kC,					
2	7.20			2	7.23						
4	5.84	0.116		4	5.84	0,119					
6	4.98	111	k = 6,3 3	6	4.98	112	k = 6,47				
8	4.22	117		8	4.23	118					
10	3.76	114		10	3.71	118					
	average	0.114			averag	e 0.117					

TABLE XXVII.

TABLE XXVIII.

$N./_{40}$ ethyl acetate $+ N./_{40}$ Na OH $+ N/_{80}$ mannitol.									
	First serie	s.		Se	cond seri	es.			
t	C_n	kC,		t	$\mathbf{C_n}$	kC _l			
2	7.20	_	`	2	7.12				
4	5.79	0.121		4	5.75	0.119			
6	4.80	124	k = 6.88	6	4.80	120	k = 6.74		
8	4.10	126		10	3.60	122			
10	3.62	124							
	average	e 0,124	-		averag	e 0.120	_		

Summary of results obtained.

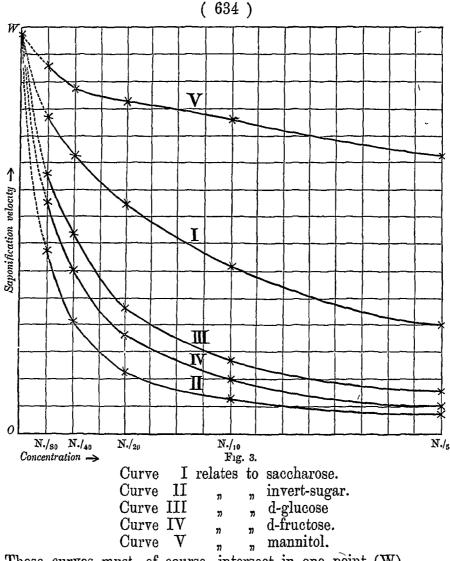

If we now take the mean of the figures obtained in the above tables as end-figure we get the following summary:

TABLE XXIX.

Saponificati	on-velocity	of N./40 ethy	l acetate 🕂 N	./40 Na OH a	at 25°.0 C.	
In:	N./5	$N./_{10}$	N./20	N./40	$N./_{80}$	
Water						6.86
Saccharose	2 01	3.12	4.29	5.19	5.88	
Invert-sugar	0.38	0.67	1.17	2.03	3.38	
d-Glucose	0.79	1.37	2.32	3.69	4.79	
d-Fructose	0.59	1.02	1.88	3.04	4.27	
Mannitol	5.17	5.85	6.18	6.40	6.81	

Fig. 3 gives a graphic representation of the results; the abscissae representent the concentrations and the ordinates, the velocities ¹).

¹) It must be observed that in fig. 1 which gives KULLGREN's results the abscissae represent percentages by volume, whilst here normalities have been used for calculation. In KULLGREN's case, this representation would have caused difficulties in connection with the great concentrations of several of the non-electrolytes used by him, in view of the scale to be used.

These curves must, of course, intersect in one point (W).

A glance at the figure shows at once that the saponificationvelocity is considerably retarted by saccharose; still more so by invertsugar. The result showing that the influence exercised by d-glucose and d-fructose is different, is of importance as d-fructose retards the saponification to a much larger extent than d-glucose.

Mannitol, however, exercises but little influence even in the strongest solutions and thus behaves like ethyl and methyl alcohol.

In connection with what has been said at the commencement about KULLGRENS researches, we see that saccharose, d-glucose, d-fructose and invert-sugar behave like acids. Invert-sugar is stronger than cane-sugar, d-fructose stronger than d-glucose. The remarkable behaviour of cane sugar solutions observed by RAÝMAN and ŠULC may be easily explained after these results.

In a following communication the results obtained will be subjected to calculation.

Stockholm, University physical Laboratory. Aug. 1899.