$I^{2}{ }_{q}$ ard both pencils contain at the same time the ray at infinity of the plave $\frac{g k .}{}$ The latter is a line through which the bitangential planes of $\overline{C^{8}}$ pass; the point in Σ_{1} corresponding to it is D_{u}. So the point C_{u} is found by constructing the plane $T^{2}{ }_{g} T^{2}{ }_{k} D_{u}$ and determining its point of intersection with $K^{S_{u}}$.

Physics. - ${ }_{n}$ On the vilrations of electrified systems, placed in a magnetic field. A contribution to the theory of the Zeman'ffect". By Prof. H. A. Lorentz.
(Will be published in the Proceedings of the next meeting.)

Mathematics. - "On Trinodal Quartics". By Prof. Jan de Vries.

1. If we consider the nodes D_{1}, D_{2}, D_{3} of a trinodal plane quartic as the vertices of a triangle of reference, that curve has an equation of the form :

$$
\begin{align*}
& \Gamma_{4} \equiv a_{11} x_{2}^{2} x_{3}^{2}+a_{22}^{2} x_{3}^{2} x_{1}^{2}+a_{33} x_{1}^{2} x_{2}^{2}+ \\
& \tag{1}\\
& \quad+2 x_{1} x_{2} x_{3}\left(a_{12} x_{3}+a_{23} x_{1}+a_{31} x_{2}\right)=0 .
\end{align*}
$$

The equations

$$
\begin{align*}
& \Phi_{2} \equiv b_{1} x_{2} x_{3}+b_{2} x_{3} x_{1}+b_{3} x_{1} x_{2}=0 \tag{2}\\
& \Psi_{2} \equiv c_{1} x_{2} x_{3}+c_{2} x_{3} x_{1}+c_{3} x_{1} x_{2}=0 \tag{3}
\end{align*}
$$

then represent two conics passing through the nodes.
If the coefficients of these equations satisfy the conditions

$$
\begin{equation*}
b_{1} c_{1}=a_{11}, \quad b_{2} c_{2}=a_{22}, \quad b_{3} c_{3}=a_{33}, . . \tag{4}
\end{equation*}
$$

it is evident from the identity

$$
\begin{equation*}
\Phi_{2} \Psi_{2}-\Gamma_{4} \equiv x_{1} x_{2} x_{3} \Sigma\left(b_{1} c_{2}+b_{2} c_{1}-2 a_{12}\right) x_{3} . \tag{5}
\end{equation*}
$$

that the two new couples of points common to I_{4} and each of the two associated conics \mathscr{J}_{2} and Ψ_{2} are situated on the right line corrosponding to the equation

$$
\begin{equation*}
\Sigma\left(b_{1} c_{2}+b_{2} c_{1}-2 a_{12}\right) r_{3}=0 \tag{6}
\end{equation*}
$$

