Huygens Institute - Royal Netherlands Academy of Arts and Sciences (KNAW)

Citation:

J.J. van Laar, Calculation of the second correction to the quantity b of the equation of condition of Van der Waals, in:
KNAW, Proceedings, 1, 1898-1899, Amsterdam, 1899, pp. 273-287

This PDF was made on 24 September 2010, from the 'Digital Library' of the Dutch History of Science Web Center (www.dwc.knaw.nl)
> 'Digital Library > Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), http://www.digitallibrary.nl'

Physics. - „Calculation of the second correction to the quantity b of the equation of condition of VAN DER Wáals." By Mr. J. J. van Laar. (Communicated by Prof. J. D. van der Walls.)

In a paper, published in the Proceedings of the Meeting of the Section for Mathematics and Physics of the Royal Academy of Sciences $29^{\text {th }}$ of Oct. 1898 (appeared Nov. 9th 1898), Prof. van der Warls has pointed out among others how a second correction to the quantity b of his equation of condition might be found. The integrations necessary to it, proving to be extremely tedious and lengthy, have not been calculated at full length.
I then tried to work out these integrations; I shall communicate in short the results found, referring, with respect to the various mathematical developments which led to my results, to a more extensive treatment that will shortly be published elsewhere (in the "Archives du Musée Teyler").
The form to be integrated ${ }^{1}$) ran as follows (see pages 142-143 of the cited Proceedings):

$$
\iint \frac{N}{V} \cdot 2 \pi(h+a \cos \theta)^{2} d l d \theta \times \text { part of segment },
$$

in which that part of segment is found to be:

$$
\begin{aligned}
1 / 3 a^{2} \sin \varphi \cos \varphi \vee \overline{R^{2}-a^{2}} & +2 / 3 R^{3} \tan -1\left(\tan \varphi \frac{\sqrt{R^{2}-a^{2}}}{R}\right)- \\
& -a \sin \varphi\left(R^{2}-1 / 8 a^{2} \sin ^{2} \varphi\right) \tan -1 \frac{\sqrt{R^{2}-a^{2}}}{a \cos \varphi}
\end{aligned}
$$

If we now first perform the integration with respect to θ between the limits 0 and θ_{1}, where θ_{1} is given by the circumstance that the centre C of the third sphere cannot lie within the two spheres A and B (see fig. on page 142), we have to integrate:

$$
2 \int_{0}^{\theta_{1}}(h+a \cos \theta)^{2} d \theta,
$$

[^0]giving after some reduction :
$$
2\left[\left(h^{2}+1 / 2 a^{2}\right) O_{1}+\left(2 a h \sin O_{1}+1 / 2 a^{2} \sin O_{1} \cos O_{1}\right)\right] .
$$

If we now call the angle $C M A$, point C lying on the sphere A, 2ψ, we have evidently, θ_{1} being $=180-\varphi-2 \psi$:

$$
\left.\begin{array}{l}
\sin O_{1}=\sin (\varphi+2 \psi)=\sin \varphi \cos 2 \psi+\cos \varphi \sin 2 \psi \\
\cos O_{1}=-\cos (\varphi+2 \psi)=-\cos \varphi \cos 2 \psi+\sin \varphi \sin 2 \psi
\end{array}\right\},
$$

or as
$\sin \varphi=\frac{1 / 2 r}{a} \quad, \quad \cos \varphi=\frac{h}{a} \quad, \quad \tan \varphi=\frac{1 / 2 r}{h}$
$\sin \psi=\frac{1 / 2 R}{a} \quad \sin 2 \psi=\frac{R}{a^{2}} \sqrt{a^{2}-1 / 4 R^{2}} \quad \cos 2 \psi=\frac{1}{a^{2}}\left(a^{2}-1 / 2 R^{2}\right)$,
also

$$
\begin{aligned}
& \sin O_{1}=\frac{1}{a^{3}}\left[1 / 2 r\left(a^{2}-1 / 2 R^{2}\right)+h R \sqrt{a^{2}-1 / 4 R^{2}}\right] \\
& \cos O_{1}=\frac{1}{a^{3}}\left[-h\left(a^{2}-1 / 2 R^{2}\right)+1 / 2 r R \sqrt{a^{2}-1 / 4 R^{2}}\right]
\end{aligned}
$$

so, taking into consideration the rolation

$$
h^{2}=a^{2}-1 / 4 r^{2}
$$

after reduction, we find:
$2 a h \sin O_{1}+1 / 2 a^{2} \sin O_{1} \cos \theta_{1}=\frac{1}{2 a^{4}}\left[1 / 2 r \sqrt{a^{2}-1 / 4 r^{2}}\left(3 a^{4}-1 / 2 R^{4}\right)+\right.$

$$
\begin{gather*}
\left.+R V \overline{a^{2}-1 / 4 R^{2}}\left(3 a^{4}+1 / 2 a^{2}\left(R^{2}-r^{2}\right)-1 / 4 R^{2} r^{2}\right)\right] . \tag{1}\\
\left.\left(h^{2}+1 / 2 a^{2}\right) O_{1}=(3)(3) a^{2}-1 / 4 r^{2}\right)\left[\tan ^{-1} \frac{-1 / 2 r}{\sqrt{a^{2}-1 / 4 r^{2}}}-2 \tan ^{-1} \frac{1 / 2 R}{\sqrt{a^{2}-1 / 4}}\right],(2)
\end{gather*}
$$

O_{1} being equal to $(180-\varphi)-2 \psi$.
Now the form to be integrated is

$$
4 \pi \frac{N}{V} \int[(1)+(2)] \times \text { part of segment } \times d h
$$

To simplify still further we put:

$$
1 / 2 r=n R \quad a=y R,
$$

so that

$$
h=R V \overline{y^{2}-n^{2}}
$$

and

$$
d l=1 / 2 R \frac{d y^{2}}{\sqrt[V y^{2}-n^{2}]{2}} .
$$

The above mentioned expression for the part of segment passes into:
$1 / 3 R^{3}\left[n \sqrt{\left(1-y^{2}\right)\left(y^{2}-n^{2}\right)}+2 \tan ^{-1}\left(n \sqrt{\frac{1-y^{2}}{y^{2}-n^{2}}}\right)-\right.$

$$
\left.-n\left(3-n^{2}\right) \tan ^{-1} \sqrt{\frac{1-y^{3}}{y^{2}-n^{2}}}\right] .
$$

(1) becomes
$1 / 2 R^{2} \frac{1}{y^{4}}\left[n\left(3 y^{4}-1 / 2\right) \vee \overline{y^{2}-n^{2}}+\left\{3 y^{4}+1 / 2 y^{2}\left(1-4 n^{2}\right)-n^{2} \mid \backslash \overline{y^{2}-1 / 4}\right]\right.$.
(2) becomes

$$
1 / 2 R^{2}\left(3 y^{2}-2 n^{2}\right)\left[\tan ^{-1} \frac{-n}{\sqrt{y^{2}-n^{2}}}-2 \tan ^{-1} \frac{1 / 2}{\sqrt{y^{2}-1 / 4}}\right],
$$

so that our integral is now, writing everywhere x for y^{2}, transformed into:

$$
I=1 / 3 \pi R^{6} \frac{N}{V} \int(A+B+C+D) d x
$$

where (paying attention to $d l$ being equal to $1 / 2 R \frac{d x}{\sqrt{x-n^{2}}}$):

$$
\begin{aligned}
& A=n V \overline{1-x}\left[\frac{n\left(3 x^{2}-1 / 2\right)}{x^{2} \cdot} \sqrt{x-n^{2}}+\frac{3 x^{2}+1 / 2^{x}\left(1-4 n^{2}\right)-n^{2}}{x^{2}} \sqrt{x-1 / 4}\right] \\
& B=n\left(3 x-2 n^{2}\right) \sqrt{1-x}\left[\tan ^{-1} \frac{-n}{\sqrt{x-n^{2}}}-2 \tan ^{-1} \frac{1 / 3}{1 \cdot \overline{x-1 / 4}}\right] \\
& C=\left[\frac{n\left(3 x^{2}-1 / 2\right)}{x^{2}}+\frac{3 x^{2}+1 / 2 x\left(1-4 n^{2}\right)-n^{2}}{x^{2}} \sqrt{\frac{x-1 / 4}{x-n^{2}}}\right] \times \\
& \times\left[2 \tan ^{-1}\left(n \sqrt{\frac{1-x}{x-n^{2}}}\right)-n\left(3-n^{2}\right) \tan ^{-1} \sqrt{\frac{1-x}{x-n^{2}}}\right]
\end{aligned}
$$

$$
\begin{align*}
& D=\frac{3 x-2 n^{2}}{\sqrt{x-n^{2}}}\left[\tan ^{-1} \frac{-n}{\sqrt{x-n^{2}}}-2 \tan ^{-1} \frac{1 / 2}{\sqrt{x-1 / 4}}\right] \times \tag{276}\\
& \\
& \quad \times\left[2 \tan ^{-1}\left(n \sqrt{\frac{1-2}{x-n^{2}}}\right)-n\left(3-n^{2}\right) \tan ^{-1} \sqrt{\frac{1-x}{x-n^{2}}}\right]
\end{align*}
$$

In the integrations following now we shall for the present not pay attention to the limits for h (or x). To simplify the notation I still propose the following abridgments:

$$
\begin{array}{cc}
\sqrt{\frac{1-x}{x-n^{2}}}=z & \sqrt{\frac{1-x}{x-1 / 4}}=z^{\prime} \\
\sqrt{(1-x)\left(x-n^{2}\right)}=p & \sqrt{(1-x)(x-1 / 4)}=p^{\prime}
\end{array}
$$

We then easily find for the five parts of the integral $\int A d x$:

$$
\left.\begin{array}{l}
A_{1}=3 n^{2} \int p d x=3 / 4 n^{2}\left[\left(2 x-\left(1+n^{2}\right)\right) p-\left(1-n^{2}\right)^{2} \tan ^{-1} z\right] \\
A_{2}=-1 / 2 n^{2} \int \frac{p}{x^{2}} d x=1 / 2 n^{2}\left[\frac{p}{x}-2 \tan n^{-1} z+\frac{1+n^{2}}{n} \tan ^{-1} n z\right] \\
A_{3}=3 n \int p^{\prime} d x=3 / 4 n\left[(2 x-5 / 4) p^{\prime}-9 / 10^{2} \tan n^{-1} z^{\prime}\right] \tag{4}\\
A_{4}=1 / 2 n\left(1-4 n^{2}\right) \int \frac{p^{\prime}}{x} d x=1 / 2 n\left(1-4 n^{2}\right)\left[p^{\prime}-5 / 4 \tan ^{-1} z^{\prime}+\tan ^{-1} 1 / 2^{\prime} z^{\prime}\right] \\
A_{5}=-n^{3} \int \frac{p^{\prime}}{x^{2}} d x=n^{3}\left[\frac{p^{\prime}}{x}-2 \tan -1 z^{\prime}+5 / 2 \tan ^{-1} 1 / 2 z^{\prime}\right]
\end{array}\right\}
$$

as is to be verified by means of the relations.

$$
\begin{array}{ll}
d p=-1 / 2 \frac{2 x-\left(1+n^{2}\right)}{p} d x & d p^{\prime}=-1 / 2 \frac{2 x-5 / 4}{p^{\prime}} d x \\
d \tan ^{-1} z=-1 / 2 \frac{d x}{p} & d \tan ^{-1} z^{\prime}=-1 / 2 \frac{d x}{p^{\prime}} \\
d \tan ^{-1} n z=-\frac{n}{2} \frac{d x}{x p} & d \tan ^{-1} 1 / 2 z^{\prime}=-1 / 4 \frac{d x}{x p^{\prime}}
\end{array}
$$

Furthermore, as

$$
\begin{aligned}
& \int\left(3 x-2 n^{2}\right) V \overline{1-x} d x=-2\left[\left(1-2 / 3 n^{2}\right)(1-x)^{3 / 2}-3 / 5(1-x)^{5 / 2}\right] \\
& d \tan ^{-1} \frac{-n}{\sqrt{x-n^{2}}}=-\frac{n}{2} \frac{d x}{x \sqrt{x-n^{2}}} d \tan ^{-1} \frac{1 / 2}{\sqrt{x-1 / 4}}=-1 / 4 \frac{d x}{x \sqrt{x-1 / 4}},
\end{aligned}
$$

we find for both parts of $\int B d x$:

$$
\left.\begin{array}{rl}
B_{1}=-2 n\left[\left(1-2 / 3 n^{2}\right)(1-x)^{3 / 2}-3 / 5(1-x)^{5 / 2}\right] \tan -1 \frac{-n}{\sqrt{x-n^{2}}}- \\
-n^{2}\left[\left(\frac{3}{10} x-\frac{7}{20}-\frac{13}{60} n^{2}\right) p-\right. & \left(\frac{3}{4}-\frac{3}{2} n^{2}+\frac{13}{60} n^{4}\right) \tan ^{-1} z+ \\
& +\frac{4}{n}\left(\frac{1}{5}-\frac{1}{3} n^{2}\right) \tan ^{-1} n z \\
B_{2}=4 n\left[\left(1-2 / 3 n^{2}\right)(1-x)^{3 / 2}-3 / 5(1-x)^{5 / 2}\right] \tan -1 \frac{1 / 2}{\sqrt{x-1 / 4}}- \tag{5}\\
-n\left[\left(\frac{3}{10} x-\frac{19}{80}-\frac{2}{3} n^{2}\right) p^{1}-\left(\frac{27.1}{320}-\frac{11}{6} n^{2}\right) \tan ^{-1} z^{1}+\right. \\
& \left.+8\left(\frac{1}{5}-\frac{1}{3} n^{2}\right) \tan ^{-1} 1 / 2 z^{1}\right]
\end{array}\right\}
$$

The integration of the four parts of $\int C d x$ is already more difficult. Comparatively easy are C_{1} and C_{2} :

$$
\begin{align*}
& C_{1}=-n^{2}\left(3-n^{2}\right) \int \frac{3 x^{2}-1 / 2}{x^{2}} \tan ^{-1} z \cdot d x= \\
& \left.=-n^{2}\left(3-n^{2}\right)\left[-3 / 2 p+\left\{3 x+\frac{1}{2 x}-3 / 2\left(1+n^{2}\right)\right\} \tan ^{-1} \tilde{z}-\frac{1}{2 n} \tan -1 n z\right]\right\} \\
& C_{2}=2 n \int \frac{3 x^{2}-1 / 2}{x^{2}} \tan ^{-1} n z, d x= \\
& \left.=2 n\left[\frac{p}{4 n x}-3 n \tan ^{-1} z+\left(3 x+\frac{1}{2 n}-\frac{1+n^{2}}{4 n^{2}}\right) \tan ^{-1} n z\right]\right)
\end{align*}
$$

Proceedings Royal Acad. Amsterdam. Vol. I.

To integrate C_{3} we add to this integral :

$$
-n\left(3-n^{2}\right) \int \sqrt{\frac{x-1 / 4}{x-n^{2}}} \tan ^{-1} z \cdot d x
$$

which afterwards will be subtracted from D_{3}. So C_{3} becomes:
$C_{3}^{\prime}=-n\left(3-n^{2}\right) \int \frac{4 x^{2}+1 / 2 x\left(1-4 n^{2}\right)-n^{2}}{x^{2}} \sqrt{\frac{x-1 / 4}{x-n^{2}}} \tan ^{-1} z . d x$.
But now we find:

$$
\frac{4 x^{2}+1 / 2 \cdot x\left(1-4 n^{2}\right)-n^{2}}{x^{2}} \sqrt{\frac{x-1 / 4}{x-n^{2}}} d x=d\left[\frac{4(x-1 / 4)}{x} \sqrt{(x-1 / 4)\left(x-n^{2}\right)}\right],
$$

so that we get (the various developments - as was said before will be published elsewhere):

$$
\left.\begin{array}{rl}
C_{3}^{\prime}=-n\left(3-n^{2}\right)\left[\frac{4(x-1 / 4)}{x}\right. & \sqrt{(x-1 / 4)\left(x-n^{2}\right)} \tan -1 \\
x- \tag{7}\\
& -2\left\{p^{\prime}+1 / 4 \tan ^{-1} z^{\prime}+1 / 4 \tan ^{-1} 1 / 2 z^{\prime}\right\}
\end{array}\right\} .
$$

Likewise to the integral C_{4} is added:

$$
2 \int \sqrt{\frac{x-1 / 4}{x-n^{2}}} \tan ^{-1} n z \cdot d x,
$$

which shall directly be subtracted from D_{\neq}. For
we find in quite the same way as for $C_{3}{ }^{\prime}$:

$$
\begin{align*}
& C_{4}^{\prime}=2\left[\frac{4(x-1 / 4)}{x} V\right.(x-1 / 4)\left(x-n^{2}\right) \\
& \tan -1 \tag{8}\\
&(x z+ \\
&\left.+2 n\left\{\frac{1}{4} \frac{p^{\prime}}{x}-2 \tan ^{-1} z^{\prime}+\frac{11}{8} \tan ^{-1} 1 / 2 z^{\prime}\right\}\right] .
\end{align*}
$$

As $\int \frac{3 x-2 n^{2}}{\sqrt{x-n^{2}}} d x$ is equal to $2 x V \cdot \overline{x-n^{2}}$, we shall find after various reductions successively for the 4 parts of $\int D d x$:

$$
\begin{aligned}
D_{1}= & -n\left(3-n^{2}\right) \int \frac{3 x-2 n^{2}}{\sqrt{x-n^{2}}} \tan ^{-1} \frac{-n}{\sqrt{x-n^{2}}} \tan ^{-1} z \cdot d x= \\
& =-n\left(3-n^{3}\right)\left\lceil 2 x \sqrt{x-n^{2}} \tan ^{-1} \frac{-n}{\sqrt{x-n^{2}}} \tan ^{-1} z-\right.
\end{aligned}
$$

$$
\begin{equation*}
\left.-2 / 3(x+2) \sqrt{1-x} \tan ^{-1} \frac{-n}{\sqrt{x-n^{2}}}+5 / 6 n p-n\left(x-3 / 2-5 / 6 n^{2}\right) \tan ^{-1} \tilde{\sim}-4 / 3 \tan ^{-1} n z\right] . \tag{9}
\end{equation*}
$$

Likewise:

$D_{2}=2 \int \frac{3 x-2 n^{2}}{\sqrt{x-n^{2}}} \tan ^{-1} \frac{-n}{\sqrt{x-n^{2}}} \tan ^{-1} n z \cdot d x=$
$=2\left[2 x^{x} \sqrt{x-n^{2}} t a n^{-1} \frac{-n}{\sqrt{x-n^{2}}} \tan ^{-1} n z-2 n V \overline{1-x} \tan -1 \frac{-n}{\sqrt{x-n^{2}}}+\right.$

$$
\begin{equation*}
\left.+3 n^{2} \tan ^{-1} z-n(x+2) \tan ^{-1} n z\right] \tag{10}
\end{equation*}
$$

The integral D_{3}, viz.

$$
D_{3}=2 n\left(3-n^{2}\right) \int \frac{3 x-2 n^{2}}{\sqrt{x-n^{2}}} \tan ^{-1} \frac{1 / 2}{\sqrt{x-1 / 4}} \tan ^{-1} \approx . d . c
$$

can first be reduced to
$D_{3}=2 u\left(3-n^{5}\right)\left[2 a \sqrt{x-n^{2}} \tan ^{-1} \frac{1 / 2}{\sqrt{x-1 / 4}} \tan ^{-1} z+\right.$

$$
+1 / 2 \int \sqrt{\frac{x-x^{2}}{x-1 / 4}} \tan ^{-1} z \cdot d x+\int \frac{x}{\sqrt{1-x}} \tan ^{-1} \frac{1 / 2}{\sqrt{x-1 / 4}} \cdot d x .
$$

But as $\int \sqrt{\frac{x-n^{2}}{x-1 / 4}} \tan ^{-1} z . d x$ can bo transformed into $-\int \sqrt{\frac{x-1 / 4}{x-n^{2}}} \tan ^{-1} z \cdot d x+2 \sqrt{(x-1 / 4)\left(x-n^{2}\right)} \tan ^{-1} z-p^{\prime}-3 / 4 \tan ^{-1} z^{\prime}$, 19*
we subtract from D_{3} the part $2 n\left(3-n^{2}\right) \times-1 / 2 \int \sqrt{\frac{x-1 / 4}{\sqrt{x-n^{2}}}} \tan ^{-1} z . d x$, which part, as we saw above, was already added to C_{3}. After various lengthy developments we find at last:

$$
\begin{align*}
D_{3}^{\prime}= & 2 n\left(3-n^{2}\right)\left[2 x \sqrt{x-n^{2}} \tan ^{-1} \frac{1 / 2}{\sqrt{x-1 / 4}} \tan ^{-1} z-\right. \\
& -2 / 3(x+2) V \overline{1-x} \tan ^{-1} \frac{1 / 2}{\sqrt{x-1 / 4}} \pm \sqrt{(x-1 / 4)\left(x-n^{2}\right)} \tan ^{-1} z- \\
& \left.-\frac{2}{3} p^{\prime}-\frac{11}{12} \tan ^{-1} z^{\prime}+\frac{4}{3} \tan ^{-1} 1 / 2 z^{\prime}\right] . . .(11) \tag{11}
\end{align*}
$$

And in the same way for

$$
D_{4}=-4 \int \frac{3 x-2 n^{2}}{\sqrt{x-n^{2}}} \tan ^{-1} \frac{1 / 2}{\sqrt{x-1 / 4}} \tan ^{-1} n z . d x
$$

after transformation of the integral $1 / 2 \int \sqrt{\frac{x-n^{2}}{x-1 / 4}} \tan ^{-1} n z \cdot d x$ into

$$
\begin{aligned}
1 / 2\left[-\int \sqrt{\frac{x-1 / 4}{x-n^{2}}} \tan ^{-1} u z \cdot d x+\right. & 2 \sqrt{(r-1 / 4)\left(x-n^{2}\right)} \tan ^{-1} n z- \\
& \left.-2 n \tan ^{-1} z^{\prime}+u \tan ^{-1} 1 / 2 z^{\prime}\right]
\end{aligned}
$$

and subtraction of the integial already added to C_{4} :

$$
2 \int \sqrt{\frac{x-1 / 4}{x-n^{2}}} \tan ^{-1} n z \cdot d x
$$

we find:

$$
\begin{align*}
& \left.+V(x-1 / 1)\left(\bar{x}-n^{2}\right) \tan n^{-1} n \varepsilon-2 n \tan n^{-1} z^{\prime}+5 / 2 n \tan n^{-1} 1 / 2 z^{\prime}\right] .(12) \tag{12}
\end{align*}
$$

If wo now join all the similar terms, we shall find for

$$
\int(A+B+C+D) d x
$$

the following:

$$
\begin{align*}
& {\left[\frac{1+n^{2}}{2 x}+5 / 5 n^{2} x+2 / 5 n^{2}\left(4-3 n^{2}\right)\right] \vee \sqrt{(1-x)\left(x-n^{2}\right)}+} \\
& +\left[\frac{n\left(1+n^{2}\right)}{x}+0 / 5 n x+1 / 5 n\left(9-10 n^{2}\right)\right] \vee \overline{(1-x)(x-1 / 4)}+ \\
& +\left[-n^{2}\left(3-n^{2}\right)\left(2 x+\frac{1}{2 x}\right)-n^{2}\left(1-2 n^{2}+6 / 5 n^{4}\right)+\right. \\
& \left.+n\left(3-n^{2}\right)\left(\frac{1}{x}-2\right) \vee \overline{(x-1 / 4)\left(r-n^{2}\right)}\right] \tan ^{-1} \sqrt{\frac{1-x^{2}}{x-n^{2}}}+ \\
& +\left[2 n\left(2 x+\frac{1}{2 n}\right)-\frac{1}{n}\left(1 / 2-7 / 10 n^{2}\right)-\right. \\
& \left.-2\left(\frac{1}{x}-2\right) \cdot \frac{1}{(x-1 / 4)\left(x-n^{2}\right)}\right] \tan ^{-1}\left(n \sqrt{\frac{1-\lambda}{x-n^{2}}}\right)- \tag{13}\\
& -\frac{21}{5} n \tan ^{-1} \sqrt{\frac{1-x}{x-1 / 4}}+\frac{39}{10} n \tan ^{-1} 1 / 2 \sqrt{\frac{1-x}{x-1 / 4}}+ \\
& +2 n V \overline{1-x}\left(-2 / 5+\left(4 / 5-n^{2}\right) x+3 / 5 x^{2}\right)\left(\tan ^{-1} \frac{-n}{\sqrt{x-n^{2}}}-2 \tan ^{-1} \frac{1 / 2}{\sqrt{x-1} / 4}\right) \\
& +2 x v^{\prime} \cdot \overline{x-n^{2}}\left(\tan ^{-1} \frac{-n}{V^{\prime} \overline{x-n^{2}}}-2 \tan ^{-1} \frac{1 / 2}{\sqrt{x-1 / 4}}\right) \times \\
& \times\left[2 \tan ^{-1}\left(n \sqrt{\frac{1-x}{x-n^{2}}}\right)-n\left(3-n^{2}\right) \tan ^{-1} \sqrt{\overline{1-x}} \frac{x-n^{2}}{}\right]
\end{align*}
$$

Let us now introduce the limits for h. These are (see the paper of Prof. v. D. Waals) for values of r lying between R and $R_{V} / 3$:

$$
\frac{R^{2}-1 / 2 r^{2}}{2 V \overline{R^{2}-1 / 4 r^{2}}} \text { and } \sqrt{\overline{R^{2}-1 / 4} r^{2}} \text {, }
$$

whilst for valucs of r between $R У 3$ and $2 R$ they are:

$$
-\sqrt{R^{2}-1 / 4} \text { and } V \overline{R^{2}-1 / 4 r^{2}}
$$

So with our notations we get $\left(h=R \sqrt{x-n^{2}}\right)$:

For $n=1 / 2$ to $1 / 2 \vee 3$:
$\sqrt{x-n^{2}}$ from $\frac{1-2 n^{2}}{2 \sqrt{1-n^{2}}}$ to $V \overline{1-2^{2}}\left(x\right.$ from $\frac{1}{4\left(1-n^{2}\right)}$ to 1$) ;$

For $n=1 / 2 \vee 3$ to 1:

$$
\sqrt{x-n^{2}} \text { from }-\sqrt{1-n^{2}} \text { to } \sqrt{\overline{1-n^{2}}} \text { (} x \text { from } 1 \text { to } 1 \text {). }
$$

Substitution of these limits in (13) gives, paying attention to the circumstance that wherever $\sqrt{ } \sqrt{x-n^{2}}$ appears in $\tan ^{-1}$, the value of $\tan ^{-1}$ is equal to π for $\sqrt{x-n^{2}}=-\sqrt{\overline{1-n^{2}}}$, when at the same time $\sqrt{1-x}$ (which becomes 0) appears in the numerator:

$$
\left.\begin{array}{rl}
I_{a}(n=1 / 2 \text { to } 1 / 2 V 3) & =-\left(1 / 2+3 / 2 n^{2}-3 / 5 n^{4}\right) \sqrt{3-4 n^{2}}+ \\
+n^{2}\left(7-4 n^{2}+6 / 5 n^{4}\right) \tan -1 & \frac{\sqrt{3-4 n^{2}}}{1-2 n^{2}}+\frac{1}{n}\left(\frac{1}{2}-\frac{47}{10} n^{2}\right) \tan ^{-1} \frac{n \sqrt{3-4 n^{2}}}{1-2 n^{2}}+ \\
& +\frac{21}{5} n \tan ^{-1} \frac{\sqrt{3-4 n^{2}}}{n}-\frac{39}{10} n \tan -1 \frac{\sqrt{3-4 n^{2}}}{2 n} \\
I_{l}(n=1 / 2 V 3 \text { to } 1)=\pi\left[\frac{1}{2 n}-\frac{57}{10} n+\frac{17}{2} n^{2}-\frac{9}{2} n^{4}+\frac{6}{5} n^{6}\right]+ \tag{14}\\
& +1 / 2 \pi 1 / 3\left(2-3 n+n^{3}\right) V \overline{1-n^{2}}+ \\
+ & 2 \pi\left(2-3 n+n^{3}\right) V \overline{1-n^{2}}\left(\tan ^{-1} \frac{n}{\sqrt{1-n^{3}}}-1 / 3 \pi\right)
\end{array}\right\}
$$

Here I have also availed myself of the circumstance that

$$
\tan ^{-1} \frac{-n}{\sqrt{x-n^{2}}}-2 \tan ^{-1} \frac{1 / 2}{\sqrt{x-1 / 4}}
$$

disappears for $x=\frac{1}{4\left(1-n^{2}\right)}\left(\sqrt{x-n^{2}}=\frac{1-2 n^{2}}{2 \sqrt{1-n^{2}}}\right)$.
The expressions found fur I_{a} and I_{b} have been verified by me in various ways and evory time found true. They are both still to be multiplied by $1 / 3 \pi R^{6} \frac{N}{V}$. Before passing to the second integration with respect to n, we must calculate a complementary term for the cases
(not mentioned in the cited paper) in which point M falls outside the segment and an entire segment is included by a third sphere. It is ansy to see that that complementary term is obtained out of

$$
I_{b}^{\prime}=2 \iint \frac{N}{V} 2 \pi(h+a \cos 0)^{2} d h c l 0 \times \text { segment }
$$

which produces after some reductions,
Segment being equal to $1 / 3 \pi\left(2 R^{3}-3 / 2 R^{2} r+1 / s r^{3}\right)=1 / 3 \pi R^{3}\left(2-3 n+n^{3}\right)$:
$I_{b}^{\prime}=1 / 3 \pi^{2} R^{n} \frac{N}{V}\left(2-3 n+n^{3}\right) \int\left[\frac{n\left(3 x^{2}-1 / 2\right)}{x^{2}}+\right.$
$\left.+\frac{3 x^{2}+1 / 2^{x}\left(1-4 n^{2}\right)-n^{2}}{x^{2}} \sqrt{\frac{x-1 / 4}{x-n^{2}}}+\frac{3 x-2 n^{2}}{\sqrt{x-n^{2}}}\left(\tan ^{-1} \frac{-n}{\sqrt{x-n^{2}}}-2 \tan ^{-1} \frac{1 / 2}{\sqrt{x-1 / 4}}\right)\right] d x$.
Of this integral we mention only the result taken betweon the limits $\sqrt{x-n^{2}}=\frac{1-2 n^{2}}{2 \sqrt{1-n^{2}}}$ to

$$
\sqrt{x-n^{2}}=-\sqrt{1-n^{2}}\left(x \text { from } \frac{1}{4\left(1-n^{2}\right)} \text { to } 1\right) .
$$

It is evident that this integreal relates only to the second tompo $(n=1 / 2 \sqrt{ } 3$ to 1).

We find:
$I_{b}^{\prime}=1 / 3 \pi^{2} R^{6} \frac{N}{V}\left(2-3 n+n^{3}\right)\left[1 / 2 n-1 / 2 \sqrt{3\left(1-n^{2}\right)}-\right.$

$$
\begin{equation*}
\left.-2 \sqrt{1-n^{2}}\left(\tan ^{-1} \frac{n}{\sqrt{1-n^{2}}}-1 / 3 \pi\right)\right], . \tag{15}
\end{equation*}
$$

by which most remarkably the above named value of I_{b} is considerably simplified and, with the omission of the factor $1 / 3 \pi R^{6} \frac{N}{V}$, passes into:

$$
\begin{equation*}
I_{b}+I^{\prime \prime}{ }_{b}=\pi\left[\frac{1}{2 n}-\frac{47}{10} n+7 n^{2}-4 n^{4}+\frac{6}{5} n^{6}\right] . . \tag{16}
\end{equation*}
$$

If we now multiply by

$$
4 \pi r^{2} d r \times \frac{N}{V}=32 \pi R^{3} \frac{N}{V} \times n^{2} d n
$$

we have still to integrate:

$$
I=\frac{32}{3} \pi^{2} R^{9} \frac{N^{2}}{V^{2}}\left[\int_{1 / 3}^{1 / 2 V 3} I_{a} n^{2} d n+\int_{1 / 3 V 3}^{1}\left(I_{b}+I_{b}^{\prime \prime}\right) n^{2} d n\right]
$$

This integration we break up into parts again.

$$
I_{1}=\int_{1 / 2}^{1 / 2 V}\left(-1 / 2 n^{2}-3 / 2 n^{4}+3 / 5 n^{0}\right) \sqrt{3-4 n^{2}} d n
$$

furnishos:

$$
\begin{aligned}
I_{1}=\left[\left(\frac{735}{8192} n-\frac{89}{1024} n^{3}-\frac{83}{320} n^{5}\right.\right. & \left.+\frac{3}{40} n^{7}\right) \sqrt{3-4 n^{2}}+ \\
& \left.+\frac{2205}{16384} \tan ^{-1} \frac{\sqrt{3-4 n^{2}}}{2 n}\right]_{1 / 2}^{1 / 2} /
\end{aligned}
$$

as is to be verified by means of the relations:

$$
d V \overline{3-4 n^{2}}=\frac{-4 n d n}{\sqrt{3-4 n^{2}}} \quad d \tan ^{-1} \frac{V \overline{3-4 n^{2}}}{2 n}=\frac{-2 d n}{\sqrt{3-4 n^{2}}} .
$$

Introduction of the limits gives further:

$$
\begin{equation*}
I_{1}=-\frac{2169}{5 \times 16384} V^{2}-\frac{2205}{16384} \tan ^{-1} \vee 2 \ldots . \tag{17}
\end{equation*}
$$

In the second place, sce (14) and (16):

$$
I_{2}=\int_{1 / 2}^{1 / 2 V^{3}}\left(7 n^{4}-4 n^{6}+\% n^{8}\right) \tan ^{-1} \frac{V \overline{3-4 n^{2}}}{1-2 n^{2}} . d n+\int_{1 / 2 V^{3}}^{1}\left(7 n^{4}-4 n^{6}+\% / 5 n^{8}\right) \pi .
$$

As $\tan ^{-1} \frac{\sqrt{3-4 n^{2}}}{1-2 n^{2}}$.takes for $n=1 / 2 \sqrt{ }$ the value π, we find by means of

$$
d \tan ^{-1} \frac{V \overline{3-4 n^{2}}}{1-2 n^{2}}=\frac{2 n}{1-n^{2}} \frac{d n}{\overline{V_{-4 n^{2}}^{2}}},
$$

and, paying attention to the relation $\tan ^{-1} 2 \vee^{2}=\pi-2 \tan ^{-1} \vee^{2}$:
$I_{2}=\left(\frac{5710}{15.256}-\frac{127}{7.32}\right) \pi+\left(\frac{169}{15.128}-\frac{1}{7.16}\right) \tan ^{-1} \mathfrak{V}^{2} 2-$

$$
\begin{equation*}
-\int_{1 / 2}^{1 / 2 V^{14}} \frac{14 / 5 n^{6}-8 / 7 n^{8}+4 / 1 ; n^{20}}{\left(1-n^{2}\right) \sqrt{3-4 n^{2}}} d n \tag{18}
\end{equation*}
$$

In the third place:

$$
I_{3}=\int_{1 / 2}^{1 / 2 V^{3}}\left(\frac{1}{2} n-\frac{47}{10} n^{3}\right) \tan ^{-1} \frac{n \sqrt{3}-4 n^{2}}{1-2 n^{2}} \cdot d n+\int_{1 / 2}^{1}\left(\frac{1}{2} n-\frac{47}{10} n^{3}\right) \pi d n .
$$

With $d \tan ^{-1} \frac{n V \overline{3-4 n^{2}}}{1-2 n^{2}}=\frac{3-2 n^{2}}{1-n^{2}} \frac{d n}{\sqrt{3-4 n^{2}}}$ we easily find:
$I_{3}=-\frac{37}{40} \pi+\frac{7}{640} \tan ^{-1} 1^{1 / 2}-\int_{1 / 2}^{1 / 2 / 3} \frac{\frac{3}{4} n^{2}-\frac{161}{40} n^{4}+\frac{47}{20} n^{6}}{\left(1-n^{2}\right) 1-\frac{\left.9-4 n^{2}\right)}{}} d n \quad$.
For

$$
I_{4}=\int_{1_{12}}^{1 / 3 V 3}\left[\frac{21}{5} n^{3} \tan ^{-1} \frac{\sqrt{3-4 n^{2}}}{n}-\frac{39}{10} n^{3} \tan ^{-1} \frac{V \sqrt{3-4 n^{2}}}{2 n}\right] d n
$$

we find by means of
$d \tan ^{-1} \frac{\sqrt{\overline{3}-4 n^{2}}}{n}=\frac{-d n}{\left(1-n^{2}\right) V \overline{3-4 n^{2}}}, d \tan -1 \frac{V \overline{3-4 n^{2}}}{2 n}=\frac{-2 d n}{\sqrt{3-4 n^{2}}}:$

$$
\begin{aligned}
& I_{4}=\left(-\frac{21}{320} \pi+\frac{21}{160} \tan ^{-1} \vee 2\right)+\frac{39}{040} \tan ^{-1} \vee 2+ \\
& +\int_{1 / 3}^{1 / 2 V^{3}} \frac{21}{20} \frac{n^{4}-\frac{39}{20} n^{4}\left(1-n^{2}\right)}{\left(1-n^{2}\right) V^{3}-4 n^{2}} d n,
\end{aligned}
$$

where again in the first part I made use of the relation $\tan ^{-1} 2 \mathfrak{V}^{\prime 2}=\pi-2 \tan ^{-1} \mathrm{I}^{\prime 2}$.

If we then join the terms obtained, we shall get bosides the forcmost factor

$$
\left.\begin{array}{rl}
I=-\frac{2169}{5.16384} V^{2}+\left(\frac{383}{3.256}-\frac{127}{7.32}\right) \pi+ \\
& +\left(-\frac{2205}{16384}+\frac{559}{15.128}-\frac{1}{7.16}\right) \tan ^{-1} V^{2}+ \tag{20}\\
& +\int_{1 / 2}^{1 / 21 / 3} \frac{-3 / 4 n^{2}+25 / 8 n^{4}-16 / 5 n^{6}+8 / 7 n^{8}-4 / 15 n^{10}}{\left(1-n^{2}\right) V 3-4 n^{2}} d n
\end{array}\right\}
$$

For the integrating of this last integral we again refer to the more lengthy paper; it is sufficient to mention the result for I. I only draw attention to the fact that after having successively determined

$$
\int \frac{n^{2 k} d n}{\sqrt{3-4 n^{2}}},
$$

where $k=1,2,3,4$, besides

$$
\int \frac{n^{2} d n}{\left(1-n^{2} \sqrt{3-4 n^{2}}\right.}=\pi-5 / 2 \tan ^{-1} V^{2}
$$

all the above-named integrals are found by parts. So is e.g.

$$
\int \frac{n^{4} d n}{\left(1-n^{2}\right) \sqrt{3}-4 n^{2}}=\int \frac{n^{2} d n}{\left(1-n^{2}\right) \sqrt{3-4 n^{2}}}-\int \frac{n^{2} d n}{\sqrt{3-4 n^{2}}},
$$

etc. The result now becomes, after multiplication by the formost
factor and by N for all N spheres:

$$
\begin{equation*}
\frac{32}{3} \pi^{2} R^{9} \frac{N^{3}}{V^{2}}\left[\frac{73}{7.45 .64} V^{2}-\frac{153}{7.5 .256} \pi+\frac{153}{7.5 .64} \tan ^{-1} V^{2}\right] . \tag{21}
\end{equation*}
$$

If for a moment we call the expression between brackets ω, this may be writton:

$$
\left(\frac{4}{3} \pi R^{3}\right)^{3} \frac{N^{3}}{\overline{V^{2}}} \times \frac{9}{2} \frac{\omega}{\pi} .
$$

For the double volume of the N spheres of distance remains also, after paying attention to the $1^{\text {st }}$ and $2^{\text {nd }}$ corrections:

$$
\begin{aligned}
N \cdot 4 / 3 \pi R^{3} & -\left(4^{4} \pi R^{3}\right)^{2} \frac{17}{64} \frac{N^{\prime 2}}{V}+\left(4^{4} \pi R^{3}\right)^{3} \cdot \frac{9}{2} \frac{\omega}{\pi} \frac{N^{3}}{V^{2}}= \\
& =86\left[1-\frac{17}{64} \frac{8 b}{V}+\frac{9}{2} \frac{\omega}{\pi} \frac{64 b^{2}}{V^{2}}\right],
\end{aligned}
$$

$N .4 / 3 \pi R^{3}$ being equal to $8 b$. If now $4 b=b_{\infty}$, then in

$$
2 b_{\infty}\left[1-\frac{17}{32} \frac{b_{\infty}}{V}+18 \frac{\omega}{\pi}\left(\frac{b_{\infty}}{V}\right)^{2}\right]
$$

the $2^{\text {nd }}$ correction sought for evidently becomes equal to $18 \frac{\omega}{\pi}$, so:

$$
\beta=\frac{9}{35.32 \pi}\left[\frac{73}{9} V 2+153\left(\tan ^{-1} \mathcal{V} 2-1 / 4 \pi\right)\right],
$$

or

$$
\begin{equation*}
\beta=\frac{1}{1120 \pi}\left[73 V^{2}+81.17\left(\tan ^{-1} V^{2}-1 / 4 \pi\right)\right] \tag{22}
\end{equation*}
$$

this being our definite result. The value of this is, exact in 4 decimals,

$$
\beta=0,0958,
$$

so almost $1 / 0$, wherens the $1^{\text {st }}$ correction was fully $1 / 2$.

[^0]: ${ }^{1}$) The angle $A M G$ indicated as C by Prof. v. D. Wats has here been called $e_{\text {, }}$ whllst the angle indicated as φ has here been called θ.

