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Another method of ecaleulation already indicated by BERTHELOT
in 1856 viz. from the molecular-volumes and the molecular-refrac.
tions of the substances that have interacted, at equal temperatures
led to better results. It has already been remarked by others, that
the ethereal salts of the fatty acids in general often seem to be formed
without great change of volume and this seems equally to be the
case with triacylins. For caprin the result of this calculation of the
molecular-volume even perfectly agrees with the one really found;
it does not result therefrom that this should necessarily be the case
with the other terms as well, and in the subjoined table given by
Mr. Scuuy their deviations are shown.

A third method of calculation starts from what is found for onc
of the terms and as all of them rise or full with an equal diffe-
rence of composition, it takes into account the average value of this
difference. Starting from caprin, as the purest product, the values
calculated on this base and those for molecular-volumes and molecu-
lar-refraction concurred pretty well, as will be scen from subjoined
tables.

As to the meltingpoints it was found that they were quite or
nearly quitc equal for capric acid and for tricaprin, while for the
lower terms of the triacylins the meltingpoint is below that of the
acid, for the higher ones on the other hand above it, which dous
not agrec with what BerTuevor thought to have found.

This work will be published in the Recueil des Travaux Chimiques
des Pays-Bas et de la Belgique.

»

Physics. — ,On the Vibrations of Blectrified Systenss, placed in ¢
Mugnetic Iield”. By Prof. 1II. A. Lorentz.

Read 'in the meeting of Junuary 28t 1899),
8 ¥

§ 1. Many spectral lines show the Zppman-cect according to
the well known elementary theory, and are thus changed into
triplets or, if viewed along the lines of force, into doublets, yet there
arc a rather large number of eases, in which the phenomena are more
complicated. ConrNu!) found that the line D) becomes a quartef,
whose outer and inner components ure polurized, the firsi parallel
and the latter perpendicularly to the lines of force. Similar quariets
have been observed in other cascs. Sometimes?), in triplets and quar-

1) Counu, Comples rencdus, T. 126,
2) Breauenen and Desnaxvugs, Comptes rendus, T 127, p. 18,
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tets, the inuer and outer lines have interchanged their ordinary
states of polarization. Finally MicnrnsoN, PresTox!) and other
physicists have seen a division of some lines into 5, 6 or even more
components,

I shall examine in this paper, to what extent such multiple lines
may be explained by appropriate assumptions concerning the way in
which light is emitted. Of course I am perfectly aware of the possi-
bility that my interpretation of the facts will have to be replaced
by a more adequate one. The special form of my hypotheses has
the less value, as in the only case in which I have endeavoured
to account for all the peculiarities of the phenomena, I have suc-
cceded but poorly, at the best.

§ 2. Since the components, into which a line is broken up by
the magnetic force, are in many cases as sharp as the original line
itself, it must be admitted that the periods of all the luminous par-
ticles of the source of light are modified in the same way. This is
only possible in two ways. Either, in the magnetic field, all the
particles must take the same direction, or the modification of the
periods must remain unchanged, into whatever position the particles
may be turned. The first assumption leads however to some diffi-
culties 2). I shall therefore suppose the Iuminous particles to be
spherical bodies, having the same properties in all directions. This
may be true, even though the chemical atoms be of a much less
simple structure; indeed, the vibrating spherical ion may very well
be only a part, perhaps a very small part, of the whole atom 3).

It has been shown in a former paper#) thata triplet may be obser-
ved if, among the principal modes of vibration of the sysiem, there
be three, for which, outside the magnetic field, the time of vibration
is the same, or, as we may say, if the system have three equiva-
lent degrees of freedom. Afterwards Mr. PANNEROEK ’) remarked
that a quartet may appear if there be, in the same sense, four equi-
valent degrees of liberty, and in general, a n-fold line, if » of the
principal modes have equal periods.

Now, spherical systems, vibrating in ome of their higher modes,
have indeed more than three equivalent degrees of freedom.

) MicueisoN, Phil. Mag., Vol. 45, p. 848. Prrstow, ibidem, p. 325.

*) Bee Lowrextz, Verslng der Verg. Akad. van Wetensch, VI, p. 197, and Areh,
uéerl,, Sér. 2, T, 2, p. 5.

) See Lorents, Verslag der Verg. Akademie van Wetenschappen VI, p. 5id..

) Wied. Ann. Bd. 68, p. 278.

?) Verslag der Verg, Akademie van Wetenschappen VII, p. 120. Proceedings Royal
Acad, Vol. I, p, 96
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§ 3. T shall consider in the first place an infinitely thin spheri-
cal shell of radius g, charged, in the state of equilibrium, to a
uniform surface-density o. The surface-density of the ponderable
matter itself will be denoted by g. We shall suppose that the points
of the shell can only be displaced along its surface, that the elements
carry their charge along with them, and finally that, after a displa-
cement, each element is acted on by an elastic force, which is
brought into play merely by the displacement of the element itself,
and not by the relative displacement of adjacent clements.

When the motions are infinitely small, the elastic force may be
taken proportional to the displacement a. Let it be

__kza

per unit area, the constant 22 having the same value all over the sphere.

The only connexion between the different parts of the shell will
consist in their mutual electric forces. If the wave-length of the
emitted radiations be very large in comparison with the radius of
the sphere, we have merely to consider the ordinary electrostatic
actions, depending solely on the configuration of the system. Hence
there will be no resistances proportional to the velocities, and con-
sequently ro damping. In fact, it is well known that the damping
which, in some degree, must always be caused by the loss of
energy, accompanying the radiation, may be neglected when the
wave-length is very much larger than the dimensions of the vibra-
ting system.

§ 4. In the absence of magnetic forccs the shell can vibrate in
the following way.

Let Yn be a swmface haimonie of arder 2 Then the displacement
of a point of the sphere is

37
P73

}‘1

oo ()

r

“_l

Here ¢ is the dircetion in the surface in which ¥), increascs most
rapidly, and gé—? is to be regarded as a vector in this direction i
The coefficient p is the same all over the sphere; it has the form

qgeos (mpt-fc), « « « o o . 2

s0 that n; is the frequency of the vibrations.
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In consequence of the displacements (1), the electrie density will
have changed from & to

G4 h(h 4 1)ai2p Y.

Hence, there will be an clectric foree

41 6 3Y
2hL1 @ Do

(V = velocity of light) along the surface and, as the density
differs from & by an infinifely small amount, we may write for
the force per unit area

Kh+1) 6 3

—4aV? .
" 2441 PRarn al

The cquation of motion becomes

oYL 22 Ry AT /a(h+1) o a_ﬁ
Y A VR Y S R VR

and the {requeney »; is dotermined by

Lh+1) a®
2h+1 " a

omi=Ik 44 V? (3)

Thus, we see that the ftequency is the same for all motions
corresponding to a harmonic of order 4, no matter what particular
harmonic of this order may be chosen.

If we put 2=1, we obtain the frequency of the slowest vibra-
tions; h=2 corresponds {o the first of the higher types of motion,
and so on. However each of the different types includes a eertnin
number of different modes of motion.

In the motion we have considered there is a kinetic cnergy

7y 2
T:%g[fz‘f(‘a—a—ii) do,

d@ being an element of the sphere, and the integration extending

all over the surface.
In virtue of the properties of spherical harmonics we may also
write
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T=310+1)-% pﬂf'ns deo .
a

The potential energy is given by

T2 12 42 Y2
D=2, D —”—pf&fy,ﬁdw+gk2p2f(a ’) do =

241 o d1

12 (h 4+ 1) &° 1
[ i 2h+41 a5+"i(£+ )ag PfYI dw

If we put

o

~

72 (b F1)2 o (’L+1)§3

Ay =47 VP —— —
PEETTTTORTL @
and

Bi=h(h+ 1)—2’2— ,

these formulae may be replaced by

T:%—B/,[/zfyhzdw

and

U:%A/lpﬁf]’hzdw .

§ 5. We shall now take for % a determinate number and consider
only vibrations corresponding to barmonics of this order. These
motions of the common frequency »; may differ from one another by
the position of the poles of the harmonic Y. Moreover, vibrations
depending on different functions ¥, may be superposed with any
amplitudes and phases we like.

However, not all of these modes of motion are mutually independent.
Sinee any surface harmonic of order & may be decomposed into
2 & + 1 particular harmonics of the same order, there are only
9 b 4 1 equivalent degrees of freedom, for which the frequency is
n;. As for these 2 71 fundamenial harmonics, as we shall call
them, they need only satisfly the condition that none of them can be
expressed in terms of the other ones. After having chosen these
functions, which I shall denote by

Y, Y, 7Yy cte,
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we may write for the displacement in the most general case we shall
have to consider

97 0¥ a7y
a=p all+P~z a[2+pga—f3—|—etc., N ()

where each term represents a vector along the surface in the manner
mdicated in § 4, so that  has different meanings in the different terms,
The potential and the kinetic energy will now be found to be

U=1}anp® + § azapo® + 4 033 pg® + ete. .« -
+aprps + azpips + ete,
T=3b0n®+ 305 05° + 3 b 2% + ete. . .

“+ Dig 1 fro = big i pg + ete,,
where

Gpp = A,,sz,mdm, G =A,Lf1’,,,‘ Y:, do,

bﬂl‘:Bﬁf}’zﬁydm, b#y:BﬁfY-’”‘Y]‘/ d(O.

As long as we limit the investigation to the vibrations of order 1,
we may ignore the other degrees of freedom; we may then consider
the 2 & 4- 1 coefficients p3, pg, ps . . . as the general coordinates,
The cquation of motion for the coordinate p, will be

d BT)_ U

AN e

it will take the form
d ,oT oU _
%(m)__E_FQH’ @ € ¢ a4 o« e (D)

if, besides the forces which we have considered thus far, there are
other forces whose gencral components are Q.

§ 6. If an elcetrified system be vibrating in a maguetic field, its
Parts will be acted on by clectromagnetic forces proportional to the
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charges. Per unit charge these forces are eiven by the veetor product
of the velocity and the magnetic foice in the field.

Let there be a mode of motion 4, with frequency n, before there
is any magnetic force, and let F be the electromagnetic forces arising
from this motion as soon as the field is produced. The direction of
these forces will obviovsly change with the frequency =, and to deter-
mine their action on the system is a pioblem of ,1esonance” or of
oforced wibrations”. In general, the system will respond to the forces
F by a motion in several of its other fundamental modes. In faet,
any particular motion B will certainly be excited if only the forces
F do a positive or negative work in an infinitely small displacement
corresponding to that mode B.

Since the electromagnetic forces are perpendicular to the velo-
cities, the forces F will do no work if the infinitely small displa-
cement belong to the mode 4 itself. A direct influence of the forces
F on the motion 4 which gave 1ise to them is thereby excluded.

As to the other modes, all depends on their frequency. If the
frequency »' of a motion B be considerably different from =, the
forced vibration B, if it exist at all, will be very mswmﬂcant for
experience shows the forces I to be very feeble as compared w1th
the other forces acting in the system. As well as the forces F
themselves, the amplitude of the forced vibrations B will be pro-
portional to the sirength H of the field. Hence, the electromagnetie
forces F', which exist in consequence of the vibration B, will be
of the order #2, and it will be permitted to neglect their reaction
on the original motion.

The case is quite different as soon as the frequeney of B is
equal to that of 4. The amplitude of the new motion B will then
rise to a much higher value; as may be deduced from the equa-
tions of the problem, it will reach the same order of magniiude as
the amplitude of 4 itself. The influence of the forces #' on the ori-
ginal motion will likewise be much greater than in the former case.

One may see by a simple reasoning that this influcnce will
consist in a modification of the period. Since the forces F have
the same phase as the velocities in the motion 4, there will be a
difference of phase of 1/s period between them and the displacements
4. On the other hand, the displacements in the motion B have
the same or the opposite phasc as the forces 7, and the phase of
the forces #' will differ by /; period from that of the displacements
B. These latter forces will therefore have the same or the oppo-
site phase as the displucements A, and this is precisely what i
required, if they are to change the frequency of 4.
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We see at the same time that the simultanecous motions 4 and
B will differ in phase by 1/, peried. "This is the reason why ecir-
cularly polarized light can be emitted in the dircetion of the lines
of force.

§ 7. The foregoing reasoning shows that, in the magnetic ficld,
the vibrations of order % will never be percepiibly modified by
the vibrations of different oiders. We may thcrefore continue to
consider them by themselves. Now, the mecaning of the term @,
in equation (5) is this, that Q. Jp, is the work of the electromag-
netic forees coiresponding to the infinitely small displacement deter-
mined by Jp.. But the electromagnetic forces are linear functions
of the veloeities; consequently, Q, will take the form

Qyzzvsy,‘,f;v. B ()

The cocfficients ¢ arc easily calculated. Let the centre of the
shell be the origin of coordinates, the axis of z having the direction
of the magnetic force AH. Then, if # be the distance to the
centre, and

— ph
W],'L._—7IEF

the -solid haimonic of degree %, coriesponding to the suiface har-
monic Yi,, I find

&y I 2y

Ho fz aw,, aw,, ow

-_— b
E,l,/_a':zh-f-f)_ deo . . . . (7)

e T Yy FE

anu a[’Vle a];Vlzv
o ' 9y ' o

I shall suppose that the axis of y points to the place the observer
occupies when viewing the phenomena across the lines of force.

It will sometimes be found convenient to distinguish the funda-
mental harmonics by suffixes, indieating the position of their poles.
Thus », will be the surface harmonic of the first order whose pole
is determined Ly the intersection of the axis of # with the sphere;
Y;, the harmonic of the second order, baving its poles on the axes
of # and y, Y. the zonal harmonic, whose poles coincide on the
axis of . If these notations be used, the suffix which indicates
the order of the harmonic may be omitled,
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By (1) we see that

8#{120’ FV’I.:—“F[‘yo

These relations would hold for all electrified systems, vilirating
in the magnetic field.

§ 8. We shall begin by examining the vibrations, depending on

harmonies of the first order.
Let the fundamental harmonics be

Yn=Ye, Yp=1I, Fuy=1T,
Wl]_:w, W12=y, IV].S:z'

Then :

aj) = agg = agg = Y3 w a® 4,

a3 = dgg = ag; = 0,

bi1 = bog = bgg =¥z m a®* B) = 8f3 7 g,

big == by3 = b3, = 0,

fp=%Yanlo , g3 ==&3=0,

and, \[ we replace ain, 11 and s12 by ey, /A, &,

Aiiv=—apitak, « o .. (8)
rpe=—a1pa—&pn, « « « « « .« (9
fh Py = — a1 ps.

From these cquations we conclude that, for 7/ =0 and ¢ = o,
all vibrations have the frequency n;, given by

9)_2—_51——_/;_1_
A A

which follows also from (3).
When there is a magnetic field, the vibrations coiresponding to

Y, will still have this frequency »;, but besides these there will be
two motions with a modified time of vibration. In order to find
them, we may suppose that p, and py contain the factor ent muli-

-10 -
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plied by quantities independent of the time. Then, neglecting
quantities of the oider of H% we may satisfy (8) and (9), by as-
suming either

. _ '
Py =+ ipn n=mny; 4 ny
or
s : — [
po=—1ip;, Nn=n —ny.

In these formulae

or, writing ¢ for the total charge 4ma®s, and m for the total
mass 4 ma?y,

He

In the two modes of motion, which correspond to py=-ip;, and
py= —1ip;, and the expressions for which are got in the ordinary
way by taking only the real parts of the complex quantities, the
soexisting Yo~ and Yy-vibrations will show a difference of phase of
/y period. This difference will have opposite signs for the two modes.

The vibrations corresponding to surface harmonies of the first
order may be roughly described as oscillations of the entire charge
n the direction of one of the axes of coordinates, or, to speak more
correctly, in these vibrations there exists at every instant an ,electrie
moment” parallel to one of the axes. Thus it appears that the mode
of motion we have now examined closely resembles the one that is
assumed in the elementary theory of the ZeEMaN-effect and it is but
natural that we should again be led to the triplets and doublets of
this theory. Only, for equal values of ¢ and m the change »'; of
the frequency is half of what it would be in the elementary explanation.

§ 9. In investigating the vibrations of the second oi1der we shall
introduce two new axes OX' and OY', which are got by rotating
OX and 0Y in their plane and the first of which bisects the angle
Y0¥, We shall take for the fundamental harmonies :

Ygl = -Y:ty, ]’22 == Ya.’y'a Y23 = Yy Yoy = Y_r/z: 'Y25 = V...

We may 1eally du so, because any harmonic of the second order

-11 -
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may be decomposed into these five functions. Now we have the
o lowing solid harmonics

Woa=3zy, Wy =35y ="54@ —%,
}V% = 3/2 rz W= 3/2 Yz
Wos =1p(— o —g® 4259 ,
and, patting
Yemady=ay Ysma®By=7p3 3nHo=¢, ,
the following values of the coefficients:
Q)] == Qgg = ag3 = 044 = 3 Ky, ap5 == 4 (293
by =lby=1lyy=0u=38M0 by;=4p
f10 ==+ 2 &y b =—2¢
€34 = -I—- Eoy 843 = — &y

All coefficients that have not been mentioned here have the
value 0,
The equations of motion become

SPypr=—S8p+280. . . . . . (10)

3y ps=—380apy—2¢8/7. « . « . . (11)

3Py ps=—23ctaps-+&ps . . . . . . (12

8Papa=—38agps—&p .« . . . . . (19
B3 ps=— azps

It appears that, in the absence of a magnetic force, ail vibrations
PP , I 8 y all
of the second order will have a common frequency ny, given by

When the shell is placed in the magnetic field, it will be only
for the Y.-vibrations that this frequency remains unchanged, and
there will be four motions with a slightly increased or diminished
frequency.

-12 -
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Operating again with expressions that contain the factor ¢, we
can satisfy (10) and (L1) by the values
pp=tip1 » n=nmytm
and likewise by -
Pzz‘“zpl ’ ”:”z—”z' )
the change in the frequency being given by

& Ho He

—_— _— ——

?12’ =

In both cases we have to do with a combination of a Y,y and
a Yey-vibration, the two vibrations having equal amplitudes, and
differing in phase by 1/, period.

From (12) and (13) we deduce the possibility of two similar
combinations of a Yi- and a Yp-vibration; the frequency is

ny+dn

for one combination, and
ng — % ny'
for the other.

§ 10. Similar results are obtained by supposing that a charge
is distributed with uwniform volume-density o over a spherical space
and that each element of volume, after having undergone a dis-
placement a from its position of equilibrium, is: acted on by an
clastic force, proportional to the displacement. Let #*a be this force
per unit volume, ¢ the uniform volume-density of the ponderable
matter, and let us suppose that this density is invariable and that,
besides the charge o, the sphere contains an equal charge of opposite
sign that 1s dmumocable. Then, outside the magnetic field, a motion
represeuted by

o Wy
a:_p—a—tl-........(lé)

may fake place.

By ¢ I have now indicated the direction in space in which the
solid harmonic Wj inereases most rapidly, and the differential cocffi-
cient is fo be understood as a veetor in that direction. The factor p
is still of the form (2), and for the frequency I find

-13 -
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L o?

8B 4 VO .
on TV

This formula is of some interest in connection with an important
phenomenon that presents ilself in the series of spectral lines. If
namely, the number % is made to increase indefinitely, the frequency
up approaches to a determinate limit.

It appears from (14) that in the present case, as well as in the
former one, each type of motion corresponds to a certain spherical
harmonic. Hence, all the reasonings of the foregoing articles may
be repeated with only a slight modification.

I shall not dwell at length on this subject; suffice it to say, that
in the magnetic field the vibrations of the first order have the
three frequencies

He
n; and nliz—-,
m

whereas the frequencies of the motions of the second order are

Ile He
ng , MgkE— and ngE — .
2w 4 m

In these expressions e again denotes the total charge, and m the
total mass.

§ 11. The fundamental electromagnetic equations for the sur-
rounding ether enable us to determine the vibrations emitted by
the systems whose motion we have examined. The expressions for
the components of the dielectric displacement will contain terms
inversely proportional to the distance », but also other terms varying
as the second and higher powers of 1. Now, it is clear that
only the terms of the first kind are to be taken into account when
we treat of the emission of light. If these terms are caleulated for
the vibrations of the first and the second order, they are found in

. a . . .
the latter case to contain the factor T being again the radius

of the sphere, and A the wave-length of the cmitted radiations. If,
therefore, the displacements on the sphere itself in the ¥p-vibrations
were of the same order of magnitude as those in the Yj-vibrations,
the light produced by the first would be very much feebler than that
which is due to the latter, All determinations of molecular dimen-

-14 -
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sions tend to show that -% is an excessively small fraction; if it

were otherwise, there would be so much damping that the spectral
lines could not be as sharp as they are.

Now one might believe that on the sphere itself the amplitude of
the Yy-vibrations were so much greater than that of the ¥;-vibrations,
that the motions of the second order could produce a perceptible

amount of light, notwithstanding the smallness of the factorTa. As-

suming this for an instant, improbable though it seemed, and deter-
mining by my formulae, for the shell as well as for the solid sphere,
the properties of the emitted rays of light, I was led precisely to
Cornu’s quartet if I supposed the observations to take place across
the lines of force, the middle line of the quintet vanishing alto-
gether, This seemed very promising at first sight, but, considering
the radiation along the lines of force, I found that in this case it
ought to be the two inner lines of the quartet that remained, and not
the outer ones, as observation has shown to be the case. This suffices

to banish all idea that the influence of the factor —;— might be com-

pensated by a large amplitude in the sphere. We cannot but take for
granted that the vibrations corresponding to harmonics of the second
order are incapable of radiating. This is due to the circumstance
that in adjacents parts of the sphere there are equal and opposite
displacements of equal charges.

Of course, the vibrations of still higher orders will be equally
incapable of producing rays, and similar remarks will apply to sys-
tems of a totally different nature. Thus, the higher tones of a
sounding body whose dimensions are very much smaller than the
wave-length, will be very feebly heard, and it is for a similar
reason that the tone of a tuning fork has to be reinforced by a
resonance case. After all it seems very probable that the light of a
flame is in every case caused by vibrations in which there is a
variable electric moment in a definite direction, and which may in
so far be called of the first order, though they need not depend
precisely on a spherical harmonic. If this principle be admitted, it
may be shown that, along the lines of force, only those components
remain visible which are polarized in the direction of these lines

when viewed across the field,

§ 12. Seeking for some means by which the vibrations of the

sccond order might be made to reveal themselves in the spectrum,
24

Proceedings Royal Acad. Amsterdam. Vol. L.

-15-
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and by which therefore the multiple lines in the ZeEmMaN-effect migh
perhaps be explained, I have been led to the assumption that in a
source of light there exist not only the primary vibrations we have
so far considered, but also secondary vibrations which are produced
in the way of voN HELMHOLTZ's combination tones. This assumption is
by no means a new one. Many years ago, Mr. V. A. JuLius!) has
remarked that the many equal differences existing between the fre-
quencies of different lines of a spectrum, seem to indicate the presence
of such secondary vibrations. Indeed, it seems difficult io conceive
another cause for the constancy of the difference of frequencies
which is found e.g. in the doublets of the alkali metals. It ought to
be remarked that secondary vibrations, the word being taken in its
widest sense, may arise in very different ways. The displacements
may be so large that the elastic forces — and in our spheres also
the electric forces — are no longer proportional to the elongations.
Or, perbhaps, the vibrations will cause the superficial density of the
charged shell to vary fo such a degree, that the convection current
cannot be reckoned proportional to the velocity and the original
density. Moreover, two vibrating particles may act upon each other
and each or one of them may thus be made to vibrate as a whole,
This case would present itself e.g., if there were fwo concentric
spherical shells, each of them capable of vibrating in the way we
have examined. They might have different frequencies, or even one
of them might have the frequency 0; i.e., one sphere might be
charged to an invariable density proportional to some surface harmonie.

It is not necessary to make any special assumption concerning the
mechanism by which the secondary vibrations are produced. It will
suffice to assume that the system is perfectly symmetrical all around
the centre of a particle and that, if in one primary vibration we
have to do with expressions of the form:

geos(nt4-¢)y « .+ .« « « . . (18)

and in a second one with similar expressions :

geosmt+c),. . « .« . . . (16

the derived vibrations will depend on the product

) V. A. Jurtos, De lineaire spectra der elementen, Verh, der Kon. Akad. v.
Wetensch,, Deel 26. '

-16 -
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g ¢ cos (nt -+ ¢)cos ('t + ) =} g ¢ cos [(n — ')t + (¢ — ¢)]
Fiqq s [(n+ )+ o+ o).

Of the two vibrations, I shall only consider the one whose fre-
quency is n—n',

§ 13. It is easily seen, and may be verified by working out some
example, that we can obtain a sccondary vibration of the first order,
i. e. one which really emits light, by combining a vibration of the
second order with one of the first order, these primary motions being
executed either by the same sphere, or by two concentric shells.

Let us now imagine the three vibrations corresponding to the
functions Y, Y, and Y, and the five vibrations determined by ¥y,
Yoty =} (¥yy—Yea) Yoz, Yysy Yoo Let the factor p that has been intro-
duced in §4 be of the form (15) for one of the former vibrations, and
of the form (16) for one of the latter. By considering the symmetry
of the system, it may be shown that a secondary vibration in the
direction of one of the axes of coordinates can only be produced by
the combination of these two, if, among the three indices of the two
harmonics, the one that corresponds to the axis considered, appear
an uneven number of times. Thus the mutual action of a Y- and
a Y,-vibration will call forth only a vibration in the direction of 0.

Another question is to determine the amplitudes of the derived
vibrations taking place along OX, OY¥ and 0Z. In every special case
the amplitude must be proportional to g¢'; we may therefore denote
it by multiplying ¢¢’ by a certain amplitude fictor.

These factors are not independent of one amother; they may all
be expressed in terms of one of them. To understand this, it must
be kept in wind that, if the first of the two combined primaries
a and b be decomposed into some components, say into a,, ag, etc.,
the secondary vibration {a, b} may be considered as the resultant
of {ay, b}, {ay b}, etc. If we denote the amplitude factors by
[Yar, Ya)x, ete, the last index indicating the direction of the
secondary vibration, we shall have

[Y:'/?/f Yx]X = [Yzz, Yx]x’
and ,
[Yxm -Y.r]a -+ [Yy_ya Yalx + [Y;zs Yx]\—: 0.

The last formula is a consequence of the relation

sz'f‘yyy‘f‘ Yoo = 0,
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Let us put
[Yary Yol =#.
Then
[Y::/yi YV lk = — 12, %, [yzzs Yme::"' 3

s0 that the amplitude factor is now knowu in all cases in which the
harmonic of the second order is a zonal one whose pole coincides
with that of the other harmonic or is 90° distant from it. All other
cases may be reduced to these two by suitable decomposition of the
harmonics, In this way I find the values of the amplitude factors
ingeribed in the following table; the letters x, y, z again serve to
indicate the direction of the secondary vibration.

Yoy Yoy Yee Yyz Ve
Yo +32@) —%zE) + %@ 0 — 3z
Yy +%z@E —+53x() 0 + 8z (z) —#(y)
Y, 0 0 +3ax(x) +3ux(y) +#(2)

§ 14. In the magnetic field there are three modes of motion of
the first order, whose frequencies are

ny ', mp—nh, ny. . . . o o (A7)

‘We shall call the amplitudes of the variable p; (§ 8) in the first
two motions, and that of the variable p; in the last one

1 1 92+ 43

Then there are five motions of the second order, having the
frequencies

n2+n’2 y Ng—MNg , 772+ 1“2"}2’2 ’ 112——§n'2 y g .. (18)

Let

1 v ds v 98 s 4 4 g
respectively be the amplitudes of p, (§ 9) for the two first motions,
of pg for the third and fourth, and of p; for the last vibration.
We shall now take as an example the combination of the first
of the vibrations (17) with the first of (18).
The motion of the second order conmsists in a ¥, and a ¥uy-
vibration for which we may respectively write

-18 -



( 357 )
g'1 cos [ (ng + n'g) ¢ 4 €]

and

g1 cos [ (ng 4 n') ¢ 4- &' 4 } #].

On the other hand, there are at the same time a Y.-vibration

q 008 [(m +m) t 4ol
and a Y,-vibration
g1 o5 [(m + )t +od 3.
Consulting the small table of the last Art, I find a vibration
Yaxqaq' cos [lg—m +mg' —m)tf-d—c—3n]—
— Yz gy cos [(g—m +n) —m) et —etdnl=
=% xqq' cos [(ng—m + 2y —m)t+ ¢ —c—}m]
parallel to OX, and a vibration
Ysxquqi’ cos [(mg— my +mg' —my)t ¢ — el
+Ysequq) cos [(ng—m4m —m)t ' —c]l=
=3 zqq cos [(ng—mn +ng'—m)t+ ¢ —e)

in the direction of 0¥ Hence, across the lines of force we shali
see light whose vibrations are perpendicular to the lines of force and

- s [ 9 9 .
whose intensity may be put proportional to vy #? ¢, ¢'*. Since there

is a difference of phase of Y/; period between the two secondary
vibrations, both together will produce circularly polarized light along
the lines of force.
By similar reasoning it is found that the second of (17) and
the second of (18) do not produce any secondary vibrations.
Examining all the 15 combinations, I find the following results,
as regards the radiation across the lines of force.
A. There will be seen in the spectrum the following lines, whose
vibrations are parallel to the lines of force.
1. A central line whose frequency is ng—n,, and whose in-
tensity is proportional to

7s* ¢5* [12] .
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2. Two side lines, each at a distance of § ng'—n,' from the
preceding one. Their intensities are

9 9
T 1" ¢5'? [9] and _4‘%2 g4'® [9] .

B. The following lines will be produced by vibrations perpen-
dicular to the lines of force.
1. Two lines at distances ny'—n,’ from 4,1, Intensities:

9 9
T n® ¢’ [9] and T 7% ¢ * 197 .

2. Two lines at distances 3n'y from 4, 1. Intensities:

9 9 9 9
PRIPVI AP 2 0248 [
1695 78 [2]“& 16 78 2¢ [2]

3. Two lines at distances n'y from 4, 1. Intensities:
1 3 1 3
Y 71® ¢'s? [*'2-] and T 92° 75 [—2'}

In the observations along the lines of force, the lines B only
will be seen, with the same relative intensities. They will then be
circularly polarized.

Of cowise, the source of light will contain innumerable molecules
for which the quantities ¢ and ¢' will have widely different values.
Assuming that both the vibrations of the first and those of the
second order take place indifferently in all directions, and that even
a particular vibration of one kind may be equally accompanied by
vibrations of the other kind in all possible directions, I find for
the relative intensities the numbers inclosed in brackets.

Perhaps the way in which the ions are made to vibrate will be
unfavourable to the existence at the same time of certain particular
vibrations of the first and the second order; some of the derived vibra-
tions would then have a smaller intensity than the one indicated.
As to the middle line 4,1, it must always be weakened by ab-
sorption in the exterior parts of the source. Yet, in the case of
luminous particles of a symmetrical structure, it seems impossible
that this central line should ever vanish altogether.

§ 15. If there were no ZepMaN-effect for the vibrations of the
first order, we should have »’; = 0, and tho lines 3,3 would form
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a single line in the middle, whose intensity would be 3. If in this
case, for onme reason or another, this line B, 3, and the lines 4, 1
and B, 2 were to disappear or to become imperceptible, we should
only see 4,2 and B,1 and this would he a quartet as has been
observed by CoRrnu.

The case n'y == 2/3n"y (§ 9) is likewise of some interest. 5,1 and
B, 2 would then form a single pair, each of whose components would
have the intensity %7/,. The distance of these strong lines would be
half that of the lines 4,2, and, if it werenotfor 4,1 and B, 3 we
should have a quartet, the outer components of which would be
polarized perpendicularly to, and the inner components in the dircc-
tion of the lines of force. Quartets of this kind have been really
observed.

§ 16. The following remarks remain to be made.

1. Since the frequency of the secondary vibrations is wholly
determined by that of the primary ones, we need not trouble our-
selves about a direct ZEEmaN-effect in these secondary vibrations.

2. Any explanation of the spectral lines must account for their »¢-
versibility. Consequently, the foregoing theory, which attributes some
lines to derived vibrations, will hold only, if a system can be made
to vibrate by the action of forces, whose period corresponds not to
a primary, but to a secondary vibration of the system. I believe
this to be really possible, but for want of space, I shall not now
insist on this point.

3. If one wishes to apply the above considerations to vibrations of
an order, higher than the second, one soon perceives that it is
impossible to obtain a motion of the first order by combining these
bigher modes with vibrations of the first order.

Vibrations that are capable of radiating may however be derived
from two vibrations whose order differs by unity. If now the primary
motions showed the peculiarity that has been mentioned in § 10
and has been observed in the series of spectral lines, this peculiarity
wonld also present itself in those derived vibrations whose frequency
is the sum of the frequencies of the primaries; it would not exist
in the secondary vibrations corresponding to the difference of these
frequencies, I must acknowledge however that this conception of
the series of spectral lines seems hardly recomcilable to the fact of

so large a number of lines becoming simple triplets in the magnetic
field.

(Marech 22th, 1899.)
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