Physics. - "On the Heat of Mixing of Normal and Associating Liquids." By Dr. J. J. van Laar. (Communicated by Prof. H. A. Lorentz).
(Communicated at the meeting of September 30, 1922).

1. In connection with a study by J. R. Katz (published in „Verslag der Wis- en Natuurk. Afdeeling Kon. Akad. v. Wetensch." Vol. XXXI, nos 5/6, p. 333-336) I wish to make a few remarks on the heat of mixing of liquids, also in reference to the quantity a / v^{2} (or a / b^{2}).

Different authors, among others van der Wails and myself, made use of approximations some time ago, which seemed permissible; but which gave no account, not even in approximation, of the heateffect, which is sometimes very slight, especially for normal substances. For here the case presented itself that the neglected quantities $\left((v-b)^{2}\right.$ by the side of v^{2}, p by that of $\left.a / v^{2}\right)$ would give a term of higher order of magnitude in the results than that which results from the not neglected part. The latter term appears to be of the order of magnitude $\left(b_{2} V a_{1}-b_{1} V a_{9}\right)^{2}$, whereas that of the neglected part - yielding a term with $\left(p+a / v^{2}\right) \Delta v$ - is of the order $b_{2} V a_{1}-b_{1} V a_{2}$ on account of Δv; hence, when the difference of the critical pressures of the components is small, the neglected part will have a much greater value than the not neglected part.

And besides: While the first part - referring to the change of the potential energy without reference to the contraction - will always be positive, the second (neglected) part - which is in connection with the volume contraction Δv - is nearly always negative. In "quasi-ideal" mixtures of two liquids (i.e. liquids the critical pressures of which are about equal), the effect will nearly always be negative (i.e. heat is liberated), and not positive, as the earlier theoretical derivation indicated. In liquids the critical pressures of which are not about equal, sometimes differ even considerably, it will entirely depend on circumstances (relation of the a 's and b 's' inter se, value of the mixing ratio x) whether the result will be positive or negative.

In associated components, where Δv can become much greater than in mixtures of normal components (generally the critical pressures also differ much more from each other), the above ratios will

Proceedings Royal Acad. Amsterdam. Vol. XXV.
be more greatly accentuated, and the negative term with $\left(p+a / v^{2}\right) \Delta v$ will predominate still more.

Already Bakhuis Roozeboom - now about twenty years ago drew my attention to the insufficiency of the approximative expression, but at the time we attributed this to other causes ${ }^{1}$), thinking that - especially in quasi-ideal mixtures - the possible volumecontraction would probably be quite negligible. Not until 1912, when in a letter my friend Prof. Kremann at Graz put a question to me on this subject, was I led to carry out the perfectly accurate calculation of the quantity Δv^{2}).

In what follows I may be allowed to give the exact theory, first of all of mixtures of normal components. Here too the perfectly accurate derivation appears to be by no means more difficult or longer than the approximated derivation, and the result is almost equally simple. The same thing is found here as before with the exact derivation of the equations of the spinodal and the plaitpoint line '). There the perfectly accurate results are even simpler than the earlier approximated expressions.

2. Heat of mixing of normal components.

From the well-known expression for the total energy

$$
e=e^{\prime}+k T-\frac{a}{v}+p v
$$

in which the energy constant e^{\prime} is $=n_{1} e_{1}^{\prime}+n_{2} e^{\prime}$, and the heat capacity at constant (infinitely great) volume $k=n_{1} k_{1}+n_{2} k_{2}$, we find for the pure components:

$$
\left.\begin{array}{l}
e_{1}^{\bullet}=e_{1}^{\prime}+k_{1} T-\frac{a_{1}}{v_{1}^{\circ}}+p v_{1}^{\bullet} \\
e_{2}^{\bullet}=e_{1}^{\prime}+k_{2} T-\frac{a_{3}}{v_{2}^{\circ}}+p v_{2}^{\bullet}
\end{array}\right\}
$$

For the integral heat of mixing of $n_{1} \mathrm{gr}$. mol. of one component and n, gr. mol. of the other component the expression

[^0]\[

$$
\begin{equation*}
w=-\left(\frac{a}{v}-n_{1} \frac{a_{1}}{v_{1}^{0}}-n_{2} \frac{a_{2}}{v_{2}^{0}}\right)+p\left(v-n_{1} v_{1}^{0}-n_{2} v_{1}^{0}\right) . \tag{a}
\end{equation*}
$$

\]

is at once found from

$$
w=e-\left(n_{1} e_{1}^{0}+n_{2} e_{2}^{0}\right)
$$

Now

$$
\frac{a}{v}=\frac{a}{v_{0}}+\left(\frac{a}{v}-\frac{a}{v_{0}}\right)=\frac{a}{v_{0}}-\frac{a}{v v_{0}} \Delta v,
$$

in which $v_{0}=n_{1} v_{1}{ }^{0}+n_{2} v_{2}{ }^{0}$, and $v-v_{0}=\Delta$ is written. Further $a=\left(n_{1} V a_{1}+n_{2} V a_{2}\right)^{2}$, and from this follows:

$$
\frac{a}{v_{0}}=\left(n_{1} \frac{a_{1}}{v_{1}{ }^{0}}+n_{2} \frac{a_{3}}{v_{2}^{0}}\right)-r_{1} n_{2} \frac{\left(v_{2}{ }^{0} V a_{1}-v_{1}^{0} V a_{3}\right)^{2}}{v_{0} v_{1}^{0} v_{2}^{0}} .
$$

Hence:

$$
\begin{equation*}
w=n_{1} n_{2} \frac{\left(v_{2}^{0} V a_{1}-v_{1}^{0} V a_{3}\right)^{2}}{v_{0} v_{1}^{0} v_{2}^{0}}+\left(p+\frac{a}{v v_{0}}\right) \Delta v . \tag{1}
\end{equation*}
$$

Remarks. a. Formerly ${ }^{1}$) the following equation was written:

$$
\frac{a}{v}=\frac{a}{v}+\left(\frac{a}{v^{2}}(v-b)+p(v-b)-\left(n_{1}+n_{2}\right) R T\right)
$$

on account of the equation of state. This gives:

$$
\begin{gathered}
\frac{a}{v}=\frac{a}{v^{2}}(2 v-b)+p(v-b)-\left(n_{1}+n_{2}\right) R T=\frac{a}{b}\left(1-\left(\frac{v-b}{v}\right)^{2}\right)+ \\
+p(v-b)-\left(n_{1}+n_{2}\right) R T,
\end{gathered}
$$

hence:

$$
e=e^{\prime}+\left(k+\left(n_{1}+n_{1}\right) R\right) T-\frac{a}{b}\left(1-\frac{(v-b)^{2}}{v^{2}}\right)+p b,
$$

for which $e=e^{\prime}+k^{\prime} T-a / b$ was written - with an apparently perfectly justifiable neglect of some terms. Then we get:

$$
w=n_{1} n_{2} \frac{\left(b_{2} V a_{1}-b_{1} V a_{3}\right)^{2}}{b b_{1} b_{2}}
$$

It is seen that the very essential term $\frac{a}{v v_{0}} \Delta v$ is omitted.
b. We might also have written:

$$
\frac{a}{v}=n_{1} \frac{a_{1}}{v_{1}}+n_{2} \frac{a_{3}}{v_{2}}-n_{1} n_{2} \frac{\left(v_{2} V a_{1}-v_{1} V a_{2}\right)^{2}}{v v_{1} v_{2}},
$$

in which $v_{1}=\frac{\partial v}{\partial n_{1}}$ and $v_{2}=\frac{\partial v}{\partial n_{2}}$. For according to a property of the
${ }^{1}$) Cf. among others Zeitschr. f. physik. Ch. 63, p. 219 (1908).
homogeneous functions of the first degree with regard to n_{1} and n_{z}, we have $v=n_{1} v_{1}+n_{2} v_{2}$. And further according to (a):

$$
\begin{gathered}
w=n_{1} n_{2} \frac{\left(v_{2} V a_{1}-v_{1} V a_{2}\right)^{2}}{v v_{1} v_{2}}+n_{1}\left(\frac{a_{1}}{v_{1}{ }^{0}}-\frac{a_{1}}{v_{1}}\right)+n_{2}\left(\frac{a_{2}}{v_{2}{ }^{0}}-\frac{a_{3}}{v_{2}}\right)+ \\
+p\left(n_{1}\left(v_{1}-v_{1}{ }^{\circ}\right)+n_{2}\left(v_{3}-v_{2}{ }^{\circ}\right)\right)
\end{gathered}
$$

or also
$w=n_{1} n_{2} \frac{\left(v_{2} \vee a_{1}-v_{1} V a_{3}\right)^{2}}{v v_{1} v_{2}}+\left(p+\frac{a_{1}}{v_{1} v_{1}^{0}}\right) n_{1} \Delta v_{1}+\left(p+\frac{a_{2}}{v_{2} v_{2}^{0}}\right) n_{2} \Delta v_{2}$,
which expression will at once appear to be useful.
Here is $v_{1}-v_{1}{ }^{\circ}=\Delta v_{1}$ and $v_{2}-v_{2}{ }^{\circ}=\Delta v_{2}$ and evidently we have $\Delta v=v-v_{0}=\left(n_{1} v_{1}+n_{2} v_{2}\right)-\left(n_{1} v_{1}{ }^{0}+n_{2} v_{2}{ }^{0}\right)=n_{1} \Delta v_{1}+n_{2} \Delta v_{2}$.

For the differential heats of mixing $w_{1}=\frac{\partial \omega}{\partial n_{1}}$ and $\omega_{2}=\frac{\partial \omega}{\partial n_{2}}$ we now have from ($\left(1^{a}\right)^{1}$):

$$
w_{1}=n_{2} \frac{\left(v_{2} V a_{1}-v_{1} V a_{2}\right)^{2}}{v_{1} v_{2}} \frac{\partial}{\partial n_{1}}\left(\frac{n_{1}}{v}\right)+\left(p+\frac{a_{1}}{v_{1} v_{1}^{0}}\right) \Delta v_{1}
$$

or as $\frac{\partial}{\partial n_{1}}\left(\frac{n_{1}}{v}\right)=\frac{v-n_{1} v_{1}}{v^{2}}=\frac{n_{3} v_{2}}{v^{2}}$:

$$
w_{1}=n_{2}{ }^{2} \frac{\left(v_{2} V a_{1}-v_{1} V a_{3}\right)^{2}}{v^{2} v_{1}}+\left(p+\frac{a_{1}}{v_{1} v_{1}{ }^{0}}\right) \Delta v_{1} j
$$

Likewise

$$
\begin{equation*}
w_{2}=n_{1}{ }^{2} \frac{\left(v_{2} V a_{1}-v_{1} V a_{3}\right)^{\prime}}{v^{2} v_{3}}+\left(p+\frac{a_{2}}{v_{2} v_{2}{ }^{0}}\right) \Delta v_{2} \tag{2}
\end{equation*}
$$

${ }^{1}$) In these differentiations many parts have not been taken into account. For in general v_{1} and v_{2} are still functions of n_{1} and n_{2}. But as the neglected parts in w_{1} and w_{2} can always be represented by $z_{1}=\frac{\partial z}{\partial n_{1}}$ and $z_{2}=\frac{\partial z}{\partial n_{2}}$, in which z, just as w, will always be a homogeneous function of the first degree with respect to n_{1} and n_{2}, necessarily $n_{1} z_{1}+n_{2} z_{2}$ will have to be $=0, n_{1} w_{1}+n_{2} w_{2}$ already being $=w$ according to (2). Now also $n_{1} z_{1}+n_{2} z_{2}=z$, hence z is identically $=0$, hence also z_{1} and z_{2}.

It would indeed not be difficult to show directly the disappearance of the parts z_{1} and z_{2}, which have been left out of account. As to z_{1}, we get the result:

$$
\frac{1}{v}\left(n_{1} \frac{a_{1}}{v_{1}}+n_{2} \frac{a_{2}}{v_{2}}\right)\left(n_{1} \frac{\partial v_{1}}{\partial n_{1}}+n_{2} \frac{\partial v_{2}}{\partial n_{1}}\right),
$$

in which the last factor will disappear in conseqence of $\frac{\partial v_{2}}{\partial n_{1}}=\frac{\partial v_{1}}{\partial n_{2}}$, as v_{1} is a homogeneous function of the 0 th degree with respect to the molecular numbers n_{1} and n_{2}.

For liquids p may of course always be cancelled against the so much greater molecular pressure a / v^{2}.

We will just mention that the earlier - inaccurate - expressions were:

$$
w_{1}=n_{2}^{2} \frac{\left(b_{2} \vee a_{1}-b_{1} \vee a_{2}\right)^{2}}{b^{2} b_{1}} ; \quad w_{2}=n_{1}^{2} \frac{\left(b_{2} \vee a_{1}-b_{1} \vee a_{2}\right)^{2}}{b^{2} b_{2}}
$$

3. Volume contraction with normal components.

We must now try to find an expression for Δv, and then also for Δv_{1} and Δv_{2}, in order to be able to substitute in (1) and (2), and to form an opinion of the order of magnitude of the different parts. As

$$
\Delta v=v-v_{0}=v-\left(n_{1} v_{1}^{0}+n_{2} v_{s}{ }^{0}\right)
$$

we have also:

$$
\Delta v=b-\left(n_{1} b_{1}+n_{2} b_{2}\right)+(v-b)-n_{1}\left(v_{1}{ }^{0}-b_{1}\right)-n_{3}\left(v_{2}{ }^{0}-b_{2}\right) .
$$

Now $b=n_{1} b_{1}+n_{2} b_{2}$, hence after application of the equation of state, there remains:

$$
\Delta v=\frac{\left(n_{1}+n_{\mathbf{2}}\right) R T}{p+\frac{n_{1}}{n / v^{2}}}-\frac{n_{1} T}{p+a_{1} / v_{1} \mathbf{1}^{2}}-\frac{n_{2} R T}{p+a_{2} / v_{2} 0^{2}},
$$

i.e. with neglect of p :

$$
\Delta v=R T\left[\left(n_{1}+n_{2}\right) \frac{v^{2}}{a}-n_{1} \frac{v_{1}{ }^{\circ}}{a_{1}}-n_{3} \frac{v_{9}^{0^{\prime}}}{a_{2}}\right]
$$

or

$$
\begin{gathered}
\Delta v=\frac{R T}{a a_{1} a_{2}}\left[\left(n_{1}+n_{2}\right)\left(n_{1} v_{1}^{0}+n_{2} v_{2}\right)^{0} a_{1} a_{2}-n_{1} v_{1} 0^{8} a a_{2}-n_{2} v_{2}{ }^{0^{2}} a a_{1}\right]+ \\
\\
+\frac{R T}{a}\left(n_{1}+n_{2}\right)\left(2 \Delta v\left(n_{1} v_{1}^{0}+n_{2} v_{2}^{0}\right)+(\Delta v)^{2}\right),
\end{gathered}
$$

as $v=\left(n_{1} v_{1}{ }^{0}+n_{2} v_{2}{ }^{\circ}\right)+\Delta v$. In consequence of this, with $a=$ $=\left(n_{1} V a_{1}+n_{2} V a_{2}\right)^{2}$:

$$
\begin{gathered}
\Delta v-\frac{\left(n_{1}+n_{2}\right) R T}{a}\left(2 \Delta v(v-\Delta v)+(\Delta v)^{2}\right)= \\
=\frac{R T}{a a_{1} a_{2}}\left[\left(n_{1}+n_{2}\right)\left(n_{1} v_{1}^{0}+n_{2} v_{2}^{0}\right)^{9} a_{1} a_{2}-\left(n_{1} v_{1}^{0^{2}} a_{2}+n_{2} v_{2}^{0^{2}} a_{1}\right)\left(n_{1} V a_{1}+n_{2} V a_{2}\right)^{2}\right],
\end{gathered}
$$

which, worked out with neglect of Δv by the side of $2 v$, and putting $n_{1}+n_{2}=1$ at $R T$ ', gives:
$\Delta v\left(1-\frac{2 R T}{a / v}\right)=$

$$
\begin{aligned}
& =\frac{\boldsymbol{R T}}{a a_{1} a_{2}} n_{1} n_{2}\left[\left\{n_{1} v_{1}{ }^{0^{3}}+2\left(n_{1}+n_{3}\right) v_{1}{ }^{0} v_{3}{ }^{0}+n_{2} v_{2}{ }^{0}\right\} a_{1} a_{2}-\right. \\
& \left.-\left\{n_{1} v_{2} \mathbf{0}^{\mathbf{2}} a_{1}{ }^{\mathbf{2}}+2\left(n_{1} v_{1}{ }^{\mathbf{0}^{\mathbf{2}}} a_{2}+n_{2} v_{2} \mathbf{0}^{\mathbf{0}} a_{1}\right) V \overline{a_{1} a_{2}}+n_{2} v_{1}{ }^{\mathbf{0}} a_{2}{ }^{\mathbf{2}}\right\}\right] \\
& =\frac{R T}{a a_{1} a_{3}} n_{1} n_{2}\left[n_{1}\left\{v_{1}{ }^{0} a_{2} \dot{V a_{1}}\left(\left(v_{1}{ }^{0}+2 v_{2}{ }^{0}\right) V a_{1}-2 v_{1}{ }^{0} V a_{2}\right)-v_{2}{ }^{0} a_{1}{ }^{3}\right\}+\right. \\
& \left.\left.+n,\left\{v_{2}{ }^{0} a_{1} V a,\left(v_{2}{ }^{0}+2 v_{1}{ }^{0}\right) V a_{2}-2 v_{2}{ }^{0} V a_{1}\right)-v_{2^{\prime}}{ }^{\mathbf{0}} a_{2}{ }^{\mathbf{2}}\right\}\right] \\
& =\frac{R T}{a a_{1} a_{2}} n_{1} n_{2}\left[n_{1}\left\{2 v_{1}{ }^{0} a_{2} V a_{1}\left(v,{ }_{2} V a_{1}-v_{1}{ }^{0} V a_{2}\right)+a_{1}\left(v_{1}{ }^{0}{ }_{a} a_{2}-v_{1}{ }^{0^{3}} a_{1}\right)\right\}+\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{R T}{a a_{1} a_{2}} n_{1} n_{\mathbf{2}}\left(v_{1}{ }^{0} V a_{2}-v_{2}{ }^{0} V a_{1}\right)\left[n_{1}\left\{\left(v_{1} \cdot V a_{2}+v_{2}{ }^{0} V a_{1}\right) a_{1}-2 v_{1}{ }^{0} a_{2} V a_{1}\right\}+\right. \\
& \left.+n_{3}\left\{-\left(v_{1}{ }^{0} \vee a_{2}+v_{1}{ }^{0} V a_{1}\right) a_{2}+2 v_{2}{ }^{\circ} a_{1} V a_{2}\right\}\right] .
\end{aligned}
$$

For the form between [] we may further write:

$$
\begin{aligned}
& n_{1} a_{1}\left(v_{1}{ }^{\circ} V a_{2}+v_{2}{ }^{\circ} V a_{1}\right)-n_{2} a_{2}\left(v_{1}{ }^{\circ} V a_{2}+v_{2}{ }^{\circ} V a_{1}\right)-2 n_{1} v_{1}{ }^{\circ} a_{3} V a_{1}+2 n_{2} v_{2}{ }^{\circ} a_{1} V a_{2} \\
& =-n_{1} a_{1}\left(v_{1}{ }^{\circ} V a_{3}-v_{9}{ }^{\circ} V a_{1}\right)-n_{2} a_{2}\left(v_{1}{ }^{\circ} V a_{3}-v_{3}{ }^{\circ} V a_{1}\right)+ \\
& +2 a_{1} V a_{9}\left(n_{1} v_{1}{ }^{0}+n, v_{3}{ }^{\circ}\right)-2 a_{3} V a_{1}\left(n_{1} v_{1}{ }^{\circ}+n_{3} v_{3}{ }^{\circ}\right),
\end{aligned}
$$

so that we finally get:

$$
\begin{align*}
& \Delta v\left(1-\frac{2 R T}{a / v}\right)=\frac{R T}{a a_{1} a_{2}} n_{1} n_{\mathbf{2}}\left(v,{ }^{\circ} V a_{3}-v_{2} \cdot \vee a_{1}\right)[\\
& \quad 2 v_{0}\left(V a_{1}-V a_{2}\right) V a_{1} a_{2}-\left(n_{1} a_{1}+n_{2} a_{\mathbf{3}}\right)\left(v_{1}^{0} V a_{2}-v_{3} \cdot V a_{1}\right) \tag{3}
\end{align*}
$$

This almost quite exact result (only p has been neglected, and in the $1^{\text {st }}$ member Δv by the side of $2 v$) shows that Δv will be of the order $\delta=v_{\mathrm{t}}{ }^{\circ} V a_{1}-v_{\mathrm{a}}{ }^{\circ} V a_{1}$, so that w consists of two parts, of which the first is of the order $\boldsymbol{d}^{\prime \prime}$ (ef. equation (1)), the second of the order $\boldsymbol{\delta}$. When the critical pressures differ little, \boldsymbol{d} is very small, and of the small heat of mixing w the second part (neglected before) will certainly predominate.

In the case that the critical pressures differ little, expresion (3) can be considerably simplified. For then $v_{1}{ }^{\circ} V a_{2}-v_{1}{ }^{\circ} V a_{1}=0$ can be put between [], and there remains:
$\Delta v\left(1-\frac{2 R T}{a / v}\right)=\frac{2 R T}{a / r_{0}} n_{1} n_{2}\left(1-\frac{v_{2}{ }^{0} V a_{1}}{v_{1}{ }^{0} V a_{2}}\right) \frac{v_{1}{ }^{0} V a_{9}\left(V a_{1}-V a_{2}\right)}{V \overline{a_{1} a_{2}}}$.
But because then $V a_{2}=\frac{v_{9}{ }^{0}}{v_{10}} \vee a_{1}, \vee a_{1}-V a_{2}=\frac{v_{1}{ }^{0}-v_{2}{ }^{0}}{v_{1}{ }^{0}} \vee a_{1}$,
hence $\quad \Delta v\left(1-\frac{2 R T}{a / v}\right)=\frac{2 R T}{a / r_{0}} n_{1} n_{2}\left(1-\frac{\overline{p_{k_{1}}}}{p_{k_{2}}}\right)\left(v_{1}{ }^{0}-v_{2}{ }^{\circ}\right)$.
As for ordinary substances in liquid state (below the boiling-point) $a / v-7 R T_{k}$, and in the second member $v_{0}=v$ may be put, we find with $T / T_{k}=m$:

$$
\begin{equation*}
\Delta v=\frac{2 / 7 m}{1-2 / 7 m} n_{1} n_{2}\left(1-\downarrow \frac{\overline{p_{k_{1}}}}{p_{k}}\right)\left(v_{1}{ }^{0}-v_{2}{ }^{0}\right) . . \tag{b}
\end{equation*}
$$

If e.g. $m=1 / 2$, we have with $n_{1}=1-x, n_{2}=x$ for Δv the value ${ }^{1} / 0 x(1-x)(1-V)\left(v_{1}{ }^{0}-v_{2}{ }^{\circ}\right)$, so that the maximum contraction (at $x={ }^{1} / 2$) becomes $={ }^{1} / 24(1-V)\left(v_{1}{ }^{0}-v_{2}{ }^{0}\right)$ - hence very small and of the order $1-V$.

With regard to the sign of Δv it may be pointed out that $b_{1}>b_{2}$, e.g. $b_{1}=\theta b_{2}$ corresponds with $v_{1}{ }^{0}>v_{2}{ }^{0}$. Then a_{1} is approximately $=\theta^{2} a_{2}$, so that a_{1} / b_{1} becomes $=\theta a_{2} / b_{2}$ or $T_{k_{1}}>T_{k_{2}}$. But from this it ensues that $p_{k_{1}}$ is generally somewhat greater than $p_{k_{2}}$, in consequence of which $1-V$ becomes negative. And the reverse when $v_{1}{ }^{\circ}$ should be $<v_{2}{ }^{0}$. The quantity Δv will, therefore, nearly always be negative, in other words volume contraction will take place.

With regard to the differential variations of volume $\Delta v_{1}=v_{1}-v_{1}{ }^{\circ}=$ $=\frac{\partial(\Delta v)}{\partial n_{1}}$ and $\Delta v_{2}=v_{2}-v_{2}{ }^{0}=\frac{\partial(\Delta v)}{\partial n_{9}}$, from the approximated expression ($3 a$) follows, when a / v is considered constant in the correction term of the $1^{\text {st }}$ member :

$$
\Delta v_{1}\left(1-\frac{2 R T}{a / v}\right)=2 R T n_{2}(1-V)\left(v_{1}^{0}-v_{2}{ }^{0}\right) \frac{\partial}{\partial n_{1}}\left(\frac{n_{1} v_{0}}{a}\right) .
$$

In approximation $v_{1}{ }^{0} V a_{2}=v_{2}{ }^{0} V a_{1}$ was taken, so that $V a_{1}$ is $=$ $=\frac{v_{1}{ }^{0}}{v_{2}{ }^{\circ}} V a_{2}$ and $\vee a=n_{1} \vee a_{1}+n_{2} \vee a_{2}=V a_{2}\left(n_{1} \frac{v_{1}{ }^{0}}{v_{2}{ }^{0}}+n_{2}\right)=\frac{v_{0}}{v_{3}{ }^{0}} V a_{2}$. In consequence of this $\frac{\partial}{\partial n_{1}}\left(\frac{n_{1} v_{0}}{a}\right)$ becomes $=\frac{\partial}{\partial n}\left(\frac{n_{1} v^{0}}{a_{2}} \frac{v_{2}{ }^{0}}{v_{0}{ }^{2}}\right)=$ $=\frac{v_{2}{ }^{{ }^{2}}}{a_{9}} \frac{\partial}{\partial n_{1}}\left(\frac{n_{1}}{v_{0}}\right)$, in which $\frac{\partial}{\partial n_{1}}\left(\frac{n_{1}}{v_{0}}\right)=\frac{v_{0}-n_{1} v_{1}{ }^{0}}{v_{0}{ }^{2}}=\frac{n_{2} v_{2}{ }^{\circ}}{v_{0}{ }^{2}}$. Hence we have
$\frac{\partial}{\partial n_{1}}\left(\frac{n_{1} v_{0}}{a}\right)=n_{2} \frac{v_{2}{ }^{0}}{v_{0}{ }^{2}} \frac{v_{2}{ }^{0}}{a_{3}}=n_{2} \frac{v_{2}{ }^{0}}{a}$; therefore with the same approximation as (3a):

$$
\Delta v_{1}\left(1-\frac{2 R T}{a / v}\right)=\frac{2 R T}{a / r_{2}{ }^{0}} n_{2}^{2}(1-V)\left(v_{1}{ }^{0}-v_{1}{ }^{\circ}\right)
$$

and

$$
\begin{equation*}
\left.\Delta v_{2}\left(1-\frac{2 R T}{a / v}\right)=\frac{2 R T}{a / v_{1}{ }^{0}} n_{1}^{2}(1-V)\left(v_{1}^{0}-v_{2}^{0}\right)\right\} \tag{4a}
\end{equation*}
$$

We now duly get again $n_{1} \Delta v_{1}+n_{2} \Delta v_{2}=\Delta v_{1}$, because $n_{1} n_{2}, \frac{v_{2}{ }^{0}}{a}+n_{2} n_{1}{ }^{2} \frac{v_{1}{ }^{0}}{a}=n_{1} n_{2} \frac{v_{0}}{a}$:

4. Substitution of (3 ${ }^{b}$) in (1).

We get for w, after substitution of (3a) in (1), with omission of the external pressure p :
$w=n_{1} n_{2} \frac{\left(v_{3}{ }^{0} V a_{1}-v_{1}{ }^{0} V a_{3}\right)^{2}}{v_{0} v_{1}{ }^{0} v_{2}{ }^{0}}+\frac{a}{v v_{0}} \frac{{ }^{2} / 7 m}{1-\xi^{2} / 7 m} n_{1} n_{3} \frac{v_{1}{ }^{0} V a_{2}-v_{2}{ }^{0} V a_{1}}{v_{1}{ }^{0} V a_{2}}\left(v_{1}{ }^{0}-v_{2}{ }^{0}\right)$,
or
$w=n_{1} n_{2}\left[\frac{\left(v_{3}^{0} V a_{1}-v_{1}{ }^{0} V a_{2}\right)^{2}}{v_{0} v_{1}{ }^{0} v_{2}{ }^{0}}-\frac{{ }^{2} / 7 m}{1-2 / 7 m} \frac{\left(v_{2}{ }^{0} V a_{1}-v_{1}{ }^{0} V a_{9}\right)\left(v_{1}{ }^{0}-v_{9}{ }^{0}\right) V a}{v v_{1}{ }^{0} v_{2}{ }^{0}}\right]$,
when $v_{2} \%_{r_{0}} V a$ is substituted for $V a_{2}$. With $m=1 / 2$ and $v=v_{0}$, this passes into

$$
\begin{equation*}
w=\frac{n_{1} n_{2}}{v_{0} v_{1}{ }^{0} v_{2}{ }^{0}}\left(v_{2}{ }^{0} V a_{1}-v_{1}{ }^{0} V a_{2}\right)\left[\left(v_{2}{ }^{0} V a_{1}-v_{1}{ }^{0} V a_{2}\right)-\frac{1}{6}\left(v_{1}{ }^{0}-v_{2}{ }^{0}\right) V a\right] . \tag{b}
\end{equation*}
$$

The factor $1 / \%$ is, of course, somewhat different, when $m=T / T_{c}$ is not $=1 / 2$. When the critical pressures are equal, the foregoing factor is $=0$, hence also the total heat of mixing. But when these pressures do not differ too much, the first term between [] will all the same be small with regard to the second, and in approximation

$$
\begin{equation*}
w=-\frac{1}{6} \frac{n_{1} n_{2}}{v_{0} v_{1}^{0} v_{2}^{0}}\left(v_{2}^{0} \vee a_{1}-v_{1}^{0} \vee a_{2}\right)\left(v_{1}^{0}-v_{2}^{0}\right) \vee a . \tag{c}
\end{equation*}
$$

may be written.
But however this be, we shall always be allowed to write:

$$
w=n_{1} n_{2} \frac{\beta}{v_{0} v_{1}{ }^{0} v_{2}{ }^{0}} \quad ; \quad w_{1}=n_{2}{ }^{2} \frac{\beta}{v_{0}{ }^{2} v_{1}{ }^{0}} \quad ; \quad w_{3}=n_{1}{ }^{2} \frac{\beta}{v_{0}{ }^{2} v_{2}{ }^{0}}
$$

$$
\text { or, as } v_{0}=n_{1} v_{1}^{0}+n_{2} v_{2}^{0}=(1-x) v_{1}^{0}+x v_{2}^{0}=v_{1}^{0}+x\left(v_{2}^{0}-v_{1}^{0}\right)=
$$

$=v_{1}{ }^{0}(1+r x)$, when $\frac{v_{2}{ }^{0}-v_{1}{ }^{0}}{v_{1}{ }^{0}}=r\left(\right.$ hence $\left.\frac{v_{2}{ }^{0}}{v_{1}{ }^{0}}=1+r\right)$ is put, and with $\frac{\beta}{\left(v_{1}{ }^{0}\right)^{2}}=\alpha$:
$w=x(1-x) \frac{\alpha}{(1+r x)(1+r)} ; w_{1}=\frac{x^{2} \alpha}{(1+r x)^{2}} ; w_{2}=\frac{(1-x)^{2} \alpha}{(1+r x)^{2}(1+r)}$,
the old expressions, but in. which α has now a somewhat different value than before, and will also be dependent on the temperature (through m).

When in approximation

$$
w=\frac{a}{v v_{0}} \Delta v=\frac{a}{v^{2}} \Delta v
$$

is written for (1) with omission of the first part, which is generally much smaller, we get approximately :

$$
\begin{equation*}
\frac{w}{\Delta v}=\frac{a}{v^{2}} \tag{7}
\end{equation*}
$$

If the critical pressures of different substances do not diverge too much, also the values of a / v^{2} do not lie far apart in mixtures of different pairs of substances, and we shall find values of at leust the same order of magnitude for the quotient $\frac{w}{\Delta v}$; a result to which also Mr. Katz came experimentally in his latest paper (loc.cit.) ${ }^{1}$) at least as far as volume-contraction and heat of imbibition of amorphous and crystalline swelling substances is concerned. That the ratios there are quite analogous to those of liquid mixtures is owing to this, that when one of the components is solid, it must first be reduced to the liquid state, whence the pure heat of melting of this components is simply added to w. But if Δv predominates, also this heat might be omitted with respect to the second part.

At any rate we shall never find exactly a / c^{2} for $w / \Delta v$, because the omitted part can never be entirely disregarded. For this reason also the values of $w / \Delta v$ will differ somewhat, even with almost equal values of a / v^{2}, which was also found by Katz.
${ }^{1}$) The curves of Fig. 1 and 2 are no hyperbolae, but oblique parabolae, as according to (6) w is $=\frac{x(1-x)}{1+r x} \frac{\alpha}{1+r}$. If r were $=0\left(v_{2}{ }^{0}=v_{1}{ }^{0}\right)$, the curve of the integral heat of mixing (i.e. $1-x \mathrm{gr}$. mol. of $I+x \mathrm{gr}$. mol. of $I I$) would be a pure parabola. If, however, $v_{2}{ }^{0}$ is not $=v_{1}{ }^{0}$, the top of the parabola will have been displaced somewhat to the side of the component with the smallest molecular volume, as is easy to verify. From $\partial w / \partial x=0$ we find $x=1:(1+V \overline{1+r)}$, which gives $x=1 / 2$ for $r=0$, but $x<{ }^{1} / 2$ for $r>0$. $\left(v_{2}{ }^{0}>v_{1}{ }^{0}\right)$.

The values of a / v^{2} in our above formulae always refer exclusively to the liquid mixture, even for solid components, for as we already remarked above: this solid component must first be thought liquid, so that after all we have always to do with liquid mixtures.

Now that through the formulae derived by us above, the absolute values of w and Δv are known, which Mr. Katz so eagerly desired, the problem has become clearer. Also when the components should be associated, everything remains essentially the same, as I will shortly show in a concluding paper. But then the preponderating influence of Δv will still be more pronounced, in consequence of the great variation of volume on dissociation of the double molecules.

And finally as regards the "important as yet undiscovered principles of the laws that govern molecular attraction" - I believe that this principle too was solved long ago ${ }^{1}$). This subject will also be discussed more fully in our concluding paper.

Tavel sur Clarens (Suisse), September 1922.

[^1]
[^0]: ${ }^{1}$) Inaccuracy of Van der $W_{\text {abils' }}$ equation of state; non-validity of Berthelot's assumption $a_{12}=V \overline{a_{1} a_{2}}$, etc. But since then I have got more than ever convinced of the absolute validity (in liquids) of the said equation and B's assumption. Of course a and b then have other values than in the gaseous slate, but this need, of course, not be considered here.
 ${ }^{2}$) Later inserted summarized in his valuable - unfortunately too little known - book: "Die Eigenschaften der binären Flüssigkeitsgemische etc." (Sammlung (Herz) chemischer Vorträge Bd. 23, Stuttgart, Enke, 1916) ; see p. 170-171.
 ${ }^{3}$) These Proc. Vol. VII, p. 646; Vol. VIII, p 33.

[^1]: ${ }^{1}$) Compare my papers in These Proc. Vol. XVIII N ${ }^{0}$. 8, p. 1220-1235, and following numbers; in the Journ. de Ch. physique 14, p. 1 et seq. (1916); in the Z. f. anorg. und allg. Chemie 104, p. $57-156$ (1918); in the Ch. Weekbl. of 1918 (p. 1124); in These Proc. Vol. XXI No. 5, p. 644-655, and the J. de Ch. ph. 16, 411 (1919), which possibly have escaped Mr. Katz's notice.

