Mathematics. — "An Involutory Transformation of the Rays of Space which is defined by two Involutory Homologies." By Prof. JAN DE VRIES.

(Communicated at the meeting of February 22, 1919).

1. In a plane α I consider the *involutory homology* (central collineation) which has A for centre and α for axis, in a plane β a similar involution with centre B and axis b. If P, P' is a pair of the first involution, Q, Q' a pair of the second, I associate the rays $t \equiv PQ$ and $t' \equiv P'Q'$. In this way arises an *involution in the rays of space*, which will be investigated in what follows.

When PQ and P'Q' intersect in a point M, the pair Q,Q' is the central projection of P,P' out of M as centre. By means of this projection the pairs of the involution $[\alpha]$ lying on $p \equiv PP'$ are transformed into the pairs of an involution situated on $q \equiv QQ'$; the latter has one pair in common with the involution which is defined on q by the homology $[\beta]$. Consequently through M passes one pair of rays t,t'.

Along AB two rays t and t' coincide. Also the straight lines through A to the points of b, and through B to the points of a are double rays of the involution (t, t'). The rest of the double rays form the bilinear congruence which has a and b as directrices.

2. Let t_{α} be a straight line in α ; each of its points can be considered as its passage P, while its passage Q lies on the straight line $c \equiv \alpha\beta$. If C_{β} is the point that in $[\beta]$ corresponds to $C \equiv Q$ and t'_{α} the image of t_{α} in $[\alpha]$, the involution (t, t') associates to t_{α} all the rays t of the plain pencil which has C_{β} as vertex and lies in the plane $(C_{\beta} t'_{\alpha})$. All the rays t_{α} are therefore singular.

When t_{α} revolves round C, t'_{α} describes a plane pencil round the point C_{α} which in the homology $[\alpha]$ corresponds to C. The plane pencils (t') corresponding to t_{α} belong to the sheaf $[C_{\beta}]$; their planes pass through the straight line $C_{\alpha}C_{\beta}$.

When C describes the straight line c_{β} describes the straight line c_{β} , which in $[\beta]$ is associated to c. Hence to the singular rays t_{α} are associated the rays t' of the axial linear complex $|c_{\beta}|$ which has c_{β} as a directrix. Analogously the rays of the *axial complex* $|c_{\alpha}|$ are associated to the *singular rays* t_{β} ; to each ray t_{β} correspond the rays t' of a plane pencil belonging to $|c_{\alpha}|$.

The intersection of the complexes $|c_{\alpha}|$ and $|c_{\beta}|$ is a bilinear congruence of which the rays are associated to the ray $t \equiv c$. The straight line c is therefore a *principal ray*; indeed, we can consider two arbitrary points of c as passages P and Q.

All the rays t through a point $P \equiv Q \equiv C$ of c are associated to the ray t' joining P' Q'; hence also t' is a principal ray. When C moves along c, P' and Q' describe two projective ranges of points on c_{α} and c_{β} ; P'Q' describes a scroll (c)². The quadratic scroll (c)² consists therefore of principal rays, each of which is associated to the rays of a star [C].

3. When t_{α} revolves round a point T, C_{β} moves along c_{β} and the plane pencil with C_{β} as vertex of which the rays t' cut the line t'_{α} in $[\alpha]$ associated to t_{α} , defines a congruence. The range of points which C_{β} describes on c_{β} , is projective to the plane pencil T') described by t'_{α} ; when it is projected out of any point M on α , there will be two rays t'_{α} which pass through the projection of the corresponding point C_{β} . Through M pass therefore two rays of the congruence. Any plane μ contains one point C_{β} and also the passage of the corresponding ray t'_{α} , hence one ray t' of the congruence. The plane pencil (t_{α}) is accordingly represented by a congruence (2,1).

As the ray $T' C_{\beta}$ in each of its positions belongs to the (2,1), $(T' C_{\beta})$ is one of the singular planes of the congruence. Also α is a singular plane, for it contains the plane pencil the vertex of which lies in the point of intersection $C \equiv C^{\beta}$ of c and b.

4. If t describes a plane pencil (T, τ) in the plane τ , its passages P and Q describe projective ranges on the straight lines $p \equiv a\tau$ and $q \equiv \beta\tau$. But then also the ranges of points which the homologous points P' and Q' describe on p' and q', are projective, so that P'Q' describes a quadratic scroll. Accordingly in the transformation (t, t') the *image* of a *plane pencil* is in general a *quadratic scroll*.

If t describes a field of rays μ , the passages P and Q remain on the straight lines $p \equiv a\mu$ and $q \equiv \beta\mu$; P' and Q' lie in this case on the homologous straight lines p' and q'. The field of rays is therefore represented by a bilinear congruence.

The ray t' in μ joins the points pp' and qq'; it is therefore a double ray of the involution.

30*

When t belongs to the sheaf [M], the passages P and Q form two projective fields. As in this case also P' and Q' correspond in projective fields, we find for the *image* of the *sheaf* a *congruence* (3,1).

Of the three rays which this congruence sends through an arbitrary point, two are associated to each other in the involution (t, t'), while the third is a double ray (§ 1). The ray t' which it has in an arbitrary plane μ , is the image of the ray t which the (1,1) associated to μ , sends through M.

As the sheaf [M] contains the plane pencil of which the rays intersect the straight line c, the scroll $(c)^2$ belongs to the image (3,1) of the sheaf.

The sheaf [M] contains a plane pencil of rays t intersecting c_{β} . This defines on the intersection m of the plane (Mc_{β}) with a a range of points (P'). Any homologous point P' defines with the point Ccorresponding to C_{β} one ray t_{α} . Any plane pencil (t_{α}) with vertex Ccontains therefore one ray corresponding to a ray of the axial complex $[c_{\beta}]$ belonging to [M]. But also the line c belongs to the congruence (3,1), it being the image of the transversal through Mto c_{α} and c_{β} . Consequently the images t_{α} of the rays of the plane pencil in (Mc_{β}) envelop a conic. From this appears that α and β belong to the singular planes of the twisted cubics of which the axes (intersections of two osculating planes) form the (3,1).

5. The rays t resting on the straight lines d_1 and d_2 and also on c_{β} , form a quadratic scroll; their passages P lie therefore on a conic d^2 . The corresponding points P' form on a conic d'^2 a range of points projective to the range of the points C_{β} , hence also to the range of the points C. Consequently the ray t' envelops a curve of the third class. Through a point N' of α pass four lines t', the images of rays t of the bilinear congruence with directrices d_1, d_2 , namely three rays t_{α} and besides the ray associated to the ray which the point N sends to the (1, 1).

The bilinear congruence representing the field of rays $[\mu]$, has two rays in common with the (1, 1) mentioned above; the image of the latter has therefore two rays in the plane μ . Consequently a bilinear congruence is represented by a congruence (4, 2).

The latter has α and β as singular planes of the third class.

The rays sent by the (4, 2) through a point M, are the images of the rays which the (1, 1) has in common with the image (3, 1) of the sheaf $\lceil M \rceil$.

The images of two bilinear congruences have among others the

scroll (c)^{*} in common; for any sheaf [C] furnishes one ray for each of the two (1, 1).

6. The axial complex with axis d is transformed by the transformation (t, t') into a quadratic complex $\{t'\}^2$; indeed, to the two rays of the scroll $(t)^2$ representing the plane pencil (t'), correspond two rays of the image-complex lying in the plane pencil (t').

As [d] singles out one ray out of each plane pencil of singular rays, $\{t'\}^{2}$ contains the two fields of rays $[\alpha]$ and $[\beta]$. Two congruences $\{t'\}^{2}$ have besides those two congruences (0, 1) one more congruence (4, 2) in common; from this appears again that a bilinear congruence is transformed into a (4, 2).

The image (3, 1) of a sheaf [M] has four rays in common with the image (1, 1) of the field $[\mu]$. One of them belongs to the scroll $(c)^{3}$ and is associated to any ray that the corresponding sheaf [C] has in common with [M] and $[\mu]$. Another coincides with c; for [M] and $[\mu]$ send each one ray to c_{α} and c_{β} .

The straight line through M and the point C_{β} in μ belongs to a plane pencil that is associated to a definite ray t_{α} ; as μ also contains a ray of this plane pencil, the image-congruences (3, 1) and (1, 1) have this ray (t_{α}) in common. Analogously they have a ray t in common.

The images of two fields of rays $[\mu]$ and $[\mu^*]$ have two rays in common. One of them is the image of the straight line $\mu\mu^*$, the other is the line c; this is associated to the two transversals of c_{α} and c_{β} in μ and in μ^* .

The image (1, 1) of the field $[\mu]$ has six rays in common with the image (4, 2) of a bilinear congruence with directrices d_1, d_2 . To them belongs the ray of the scroll $(c)^*$ associated to the sheaf of which the vertex lies in the point (c_{μ}) . They have twice the line cin common, for two transversals of c_{α} and c_{β} rest also on d_1 and d_2 , while one straight line of μ rests on c_{α}, c_{β} . The transversal through the point (μc_{β}) to d_1, d_2 belongs to a plane pencil which has also one ray in μ ; to both of them corresponds the same line t_{α} . Analogously the image-congruences have a straight line l_{β} in common. The sixth common ray is the image of the transversal of d_1 and d_2 in μ .