Mathematics. - "An Involutory I'ransformation of the Rays of Space which is defined by two Involutory Homologies." By Prof. Jan de Vries.

(Communicated at the meeting of February 22, 1919).

1. In a plane a I consider the involutory homology (central colli neation) which has A for centre and a for axis, in a plane β a similar involution with centre B and axis b. If P, P^{\prime} is a pair of the first involution, Q, Q^{\prime} a pair of the second, I associate the rays $t \equiv P Q$ and $t^{\prime} \equiv P^{\prime} Q^{\prime}$. In this way arises an involution in the rays of space, which will be investigated in what follows.
When $P Q$ and $P^{\prime} Q^{\prime}$ intersect in a point M, the pair Q, Q^{\prime} is the central projection of P, P^{\prime} out of M as centre. By means of this projection the pairs of the involution [c] lying on $p \equiv P P^{\prime}$ are transformed into the pairs of an involution situated on $q=Q Q^{\prime}$; the latter has one pair in common with the involution which is defined on q by the homology [β]. Consequently through M passes one pair of rays t, t^{\prime}.
Along $A B$ two rays t and t^{\prime} coincide. Also the straight lines through A to the points of b, and through B to the points of a are double rays of the involution $\left(t, t^{\prime}\right)$. The rest of the double rays form the bilinear congruence which has a and b as directrices.
2. Let t_{α} be a straight line in a; each of its points can be considered as its passage P, while its passage Q lies on the straight line $c \equiv \boldsymbol{c \beta}$. If C_{β} is the point that in $[\beta]$ corresponds to $C \equiv Q$ and t_{α} the image of t_{α} in [$\left.\alpha\right]$, the involution $\left(t, t^{\prime}\right)$ associates to t_{α} all the rays t of the plain pencil which has C_{β} as vertex and lies in the plane ($C_{\beta} t_{\alpha}^{\prime}$). All the rays to are therefore singular.

When t_{α} revolves round C, t_{α}^{\prime} describes a plane pencil round the point C_{α}. which in the homology $[\alpha]$ corresponds to C. The plane pencils $\left(t^{\prime}\right)$ corresponding to t_{α} belong to the sheaf $\left[C_{\beta}\right]$; their planes pass through the straight line $C_{\alpha} C_{\beta}$.
When C describes the straight line c, C_{β} describes the straight line c_{β}, which in $[\beta]$ is associated to c. Hence to the singular rays t_{α} are associated the rays t^{\prime} of the axial hinear complex $\left|c_{\hat{\beta}}\right|$ which has c_{3} as a directrix.

Analogously the rays of the axial complex $\left|c_{x}\right|$ are associated to the singular rays t_{β}; to each ray t_{B} correspond the rays t^{\prime} of a plane pencil belonging to $\left|c_{\alpha}\right|$.
The intersection of the complexes $\left|c_{\alpha}\right|$ and $\left|c_{\beta}\right|$ is a bilinear congruence of which the rays are associated to the ray $t \equiv c$. The straight line c is therefore a principal ray; indeed, we can consider two arbitrary points of c as passages P and Q.
All the rays t through a point $P \equiv Q \equiv C$ of c are associated to the ray t^{\prime} joining $P^{\prime} Q^{\prime}$; hence also t^{\prime} is a principal ray. When C moves along c, P^{\prime} and Q^{\prime} describe two projective ranges of points on c_{α} and $c_{\beta} ; P^{\prime} Q^{\prime}$ describes a scroll (c) ${ }^{2}$. The quadratic scroll (c) ${ }^{n}$ consists therefore of principal rays, each of which is associated to the rays of a star [C].
3. When t_{α} revolves round a point T, C_{β} moves along c_{β} and the plane pencil with C_{β} as vertex of which the rays t^{\prime} cut the line t_{α}^{\prime} in $[\alpha]$ associated to t_{α}, defines a congruence. The range of points which C_{β} describes on c_{β}, is projective to the plane pencil ' $T^{\prime \prime}$) described by t_{α}^{\prime}; when it is projected out of any point M on α, there will be two rays t_{α}, which pass through the projection of the corresponding point C_{β}. Through M pass therefore two rays of the congruence. Any plane μ contains one point C_{β} and also the passage of the corresponding ray $t_{\alpha}{ }_{\alpha}$, hence one ray t^{\prime} of the congruence. The plane pencil $\left(t_{\alpha}\right)$ is accordingly represented by a congruence $(2,1)$.
As the ray $T^{\prime \prime} C_{\beta}$ in each of its positions belongs to the (2,1), $\left(T^{\prime \prime} C_{\beta}\right)$ is one of the singular planes of the congruence. Also α is a singular plane, for it contains the plane pencil the vertex of which lies in the point of intersection $C \equiv C^{\beta}$ of c and b.
4. If t describes a plane pencil (T, τ) in the plane t, its passages P and Q describe projective ranges on the straight lines $p \equiv a r$ and $q \equiv \beta r$. But then also the ranges of points which the homologous points P^{\prime} and Q^{\prime} describe on p^{\prime} and q^{\prime}, are projective, so that $P^{\prime} Q^{\prime}$ describes a quadratic scroll. Accordingly in the transformation $\left(t, t^{\prime}\right)$ the image of a plane pencil is in general a quadratic scroll.
If t describes a field of rays μ, the passages P and Q remain on the straight lines $p \equiv \alpha \mu$ and $q \equiv \beta \mu$; P^{\prime} and Q^{\prime} lie in this case on the homologous straight lines p^{\prime} and q^{\prime}. The field of rays is therefore represented by a bilinear congruence.

The ray t^{\prime} in μ joins the points $p p^{\prime}$ and $q q^{\prime}$; it is therefore a double ray of the involution.

When t belongs to the sheaf $[M]$, the passages P and Q form two projective fields. As in this case also P^{\prime} and Q^{\prime} correspond in projective fields, we find for the image of the sheaf a congruence $(3,1)$.
Of the three rays which this congruence sends through an arbitrary point, two are associated to each other in the involution (t, t^{\prime}), while the third is a double ray ($\$ 1$). The ray t^{\prime} which it has in an arbitrary plane μ, is the image of the ray t which the $(1,1)$ associated to μ, sends through M.
As the sheaf $[M]$ contains the plane pencil of which the rays intersect the straight line c, the scroll $(c)^{2}$ belongs to the image $(3,1)$ of the sheaf.

The sheaf $[M]$ contains a plane pencil of rays t intersecting c_{β}. This defines on the intersection m of the plane $\left(M c_{\beta}\right)$ with a a range of points $\left(P^{\prime}\right)$. Any homologous point P^{\prime} defines with the point C corresponding to C_{β} one ray t_{α}. Any plane pencil $\left(t_{\alpha}\right)$ with vertex C contains therefore one ray corresponding to a ray of the axial complex $\left[c_{\beta}\right]$ belonging to $[M]$. But also the line c belongs to the congruence (3,1), it being the image of the transversal through M to c_{α} and c_{β}. Consequently the images t_{α} of the rays of the plane pencil in $\left(M c_{\beta}\right)$ envelop a conic. From this appears that α and β belong to the singular planes of the congruence $(3,1)$; in other words, a and β are osculating planes of the twisted cubics of which the axes (intersections of two osculating planes) form the (3,1).
5. The rays t resting on the straight lines d_{1} and d_{3} and also on $c_{\boldsymbol{\beta}}$, form a quadratic scroll; their passages P lie therefore on a conic d^{2}. The corresponding points P^{\prime} form on a conic $d^{\prime 2}$ a range of points projective to the range of the points C_{β}, hence also to the range of the points C. Consequently the ray t^{\prime} envelops a curve of f the third class. Through a point N^{\prime} of a pass four lines t^{\prime}, the images of rays t of the bilinear congruence with directrices d_{1}, d_{2}, namely three rays t_{α} and besides the ray associated to the ray which the point N sends to the $(1,1)$.
The bilinear congruence representing the field of rays $[\boldsymbol{\mu}]$, has two rays in common with the $(1,1)$ mentioned above; the image of the latter has therefore two rays in the plane μ. Consequently a bilinear congruence is represented by a congruence $(4,2)$.
The latter has a and β as singular plones of the third class.
The rays sent by the $(4,2)$ through a point M, are the images of the rays which the $(1,1)$ has in common with the image $(3,1)$ of the sheaf $[M]$.

The images of two bilinear congruences have among others the
scroll (c) ${ }^{\text {a }}$ in common; for any sheaf $[C]$ furnishes one ray for each of the two (1, 1).
6. The axial complex with axis d is transformed by the transformation (t, t^{\prime}) into a quadratic complex $\left\{t^{\prime}\right\}^{2}$; indeed, to the two rays of the scroll $(t)^{2}$ representing the plane pencil $\left(t^{\prime}\right)$, correspond two rays of the image-complex lying in the plane pencil $\left(t^{\prime}\right)$.

As $[d]$ singles out one ray out of each plane pencil of singular rays, $\left\{t^{\prime}\right\}^{3}$ contains the two fields of rays $[\alpha]$ and $[\beta]$. Two congruences $\left\{t^{\prime}\right\}^{2}$ have besides those two congruences $(0,1)$ one more congruence $(4,2)$ in common; from this appears again that a bilinear congruence is transformed into a $(4,2)$.

The image $(3,1)$ of a sheaf $[M]$ has four rays in common with the image $(1,1)$ of the field $[\mu]$. One of them belongs to the scroll $(c)^{3}$ and is associated to any ray that the corresponding sheaf $[C]$ has in common with $[M\rfloor$ and $\lfloor\mu]$. Another coincides with c; for $[M]$ and $[\mu]$ send each one ray to c_{α} and c_{β}.

The straight line through M and the point C_{β} in μ belongs to a plane pencil that is associated to a definite ray $t_{\alpha} ;$ as μ also contains a ray of this plane pencil, the image-congruences $(3,1)$ and $(1,1)$ have this ray (t_{a}) in common. Analogously they have a ray t in common.

The images of two fields of rays $[\mu]$ and $\left[\mu^{*}\right]$ have two rays in common. One of them is the image of the straight line $\mu \mu^{*}$, the other is the line c; this is associated to the two transversals of c_{α} and c_{β} in μ and in μ^{*}.

The image (1,1) of the field $[\mu \mid$ has six rays in common with the image $(4,2)$ of a bilinear congruence with directrices d_{1}, d_{2}. To them belongs the ray of the scroll $(c)^{2}$ associated to the sheaf of which the vertex lies in the point $\left(c_{\mu}\right)$. They have twice the line c in common, for two transversals of c_{α} and c_{β} rest also on d_{1} and d_{q}, while one straight line of μ rests on c_{α}, c_{β}. The transversal through the point $\left(\mu c_{\beta}\right)$ to d_{1}, d_{2} belongs to a plane pencil which has also one ray in μ; to both of them corresponds the same line t_{α}. Analogously the image-congruences have a straight line t_{β} in common. The sixth common ray is the image of the transversal of d_{1} and d_{3} in μ.

