Mathematics. — "A Null System (1, 2, 3)." By Prof. JAN DE VRIES.

(Communicated at the meeting of February 24, 1923).

1. We consider as given a congruence $[\varrho^{s}]$ of twisted cubics with the base points C_{1} , C_{2} , C_{3} , C_{4} , C_{5}^{-1}) and the crossing straight lines a and b.

Through a point N there passes one curve ρ^3 ; let r be the tangent at N and t the transversal of a and b through N. We conjugate $v \equiv rt$ to N as a null plane.

The curves ϱ^3 touching a plane v have their points of contact in a conic ϱ^3 . The transversal t lying in v, cuts ϱ^3 in the null points N_1 and N_2 of v.

If v revolves round the straight line l, t describes a scroll $(t)^{2}$ and ϱ^{2} a cubic surface through l. The locus of N is accordingly a twisted curve λ^{5} , which has evidently l, hence also a and b, as trisecants.

We have therefore a null system with the characteristic numbers $\alpha = 1$, $\beta = 2$, $\gamma = 3$.

2. The points C_k are singular; for C_k carries one straight line t but ∞^3 straight lines r. The null planes of C_k form a pencil of planes round t as axis.

Also the points A of a and B of b are singular. For each of them carries ∞^1 straight lines t which are combined to a plane pencil. The null planes of each of these points form a pencil of which the axis lies in the tangent r. These axes form two cubic scrolls $(r)^3$.

Other singular points S can only arise through coincidence of the straight lines t and r. Now the tangents of the curves ϱ^3 form a complex of the 6th order and this complex has a scroll $(n)^{13}$ in common with the bilinear congruence [t]. On each straight line n there lies a point S to which any plane through n corresponds as null plane.

As l is intersected by 12 straight lines n, the corresponding curve λ^{s} contains 12 points S.

¹) The principal properties of this congruence are to be found for instance in R. STURM: Die Lehre von den geometrischen Verwandtschaften, Part IV, p. 470.

3. The null points of the planes passing through the point P, lie on a surface $(P)^4$. For P is the null point of one definite plane of the sheaf and on a straight line l through P there lie the null points of three planes through l.

The intersection of the surface $(P)^4$ and $(Q)^4$ consists of the curve λ^5 corresponding to PQ, the straight lines a and b, and a curve σ^9 which is the locus of the singular points S and which passes evidently through the 5 base points C_k .

Three surfaces $(O)^4$, $(P)^4$ and $(Q)^4$ have in the first place the curve σ^9 in common. The points which they have further in common, are apparently the points of intersection of $(O)^4$ with the curve λ^5 corresponding to PQ. To them there belong the 12 points S on λ^5 and the 2×3 points A and B on λ^5 ; the remaining two are the null points of the plane OPQ.

4. Any plane α through α is singular; it contains a plane pencil (t) and each ray t cuts the conic ϱ^3 (§ 1) in two null points. Analogously the planes β through b are singular.

Also the ten planes σ each containing three base points C, are singular. For in σ_{133} there lies a pencil of conics of which each individual is combined with the straight line $C_4 C_5$ to a curve ρ^3 ; they cut the straight line t in σ_{133} in an involution of null points.

The surface $(P)^4$ contains the conics a^3 and β^3 lying in the planes Pa and Pb, and the intersection p of these planes. The straight line p is singular in this respect that it is a null ray for *each* of its points. The *singular null rays* p form the bilinear congruence with the director lines a and b.

Also the ten straight lines $C_k C_l$ are singular; for through each point on such a straight line r_{kl} there passes one straight line t, while r_{kl} may be considered as a tangent.