Mathematics. - "A Null System (1, 2, 3)." By Prof. Jan de Vries. (Communicated at the meeting of February 24, 1923).

1. We consider as given a congruence [ρ^{3}] of twisted cubies with the base points $C_{1}, C_{2}, C_{3}, C_{4}, C_{5}{ }^{1}$) and the crossing straight lines a and b.

Through a point N there passes one curve 0^{3}; let r be the tangent at N and t the transversal of a and b through N. We conjugate $v \equiv r t$ to N as a null plane.

The curves ρ^{8} touching a plane v have their points of contact in a conic ρ^{2}. The transversal t lying in v, cuts e^{2} in the null points N_{1} and N_{3} of v.

If v revolves round the straight line l, t describes a scroll $(t)^{2}$ and ϱ^{2} a cubic surface through l. The locus of N is accordingly a twisted curve λ^{5}, which has evidently l, hence also a and b, as trisecants.

We have therefore a null system with the characteristic numbers $\alpha=1, \beta=2, \gamma=3$.
2. The points C_{k} are singular; for C_{k} carries one straight line t but ∞^{2} straight lines r. The null planes of C_{k} form a pencil of planes round t as axis.

Also the points A of a and B of b are singular. For each of them carries ∞^{1} straight lines t which are combined to a plane pencil. The null planes of each of these points form a pencil of which the axis lies in the tangent r. These axes form two cubic scrolls $(r)^{3}$.

Other singular points S can only arise through coincidence of the straight lines t and r. Now the tangents of the curves ϱ^{2} form a complex of the $6^{\text {th }}$ order and this complex has a scroll $(n)^{12}$ in common with the bilinear congruence [t]. On each straight line n there lies a point S to which any plane through n corresponds as null plane.

As l is intersected by 12 straight lines n, the corresponding curve λ^{5} contains 12 points S.

[^0]3. The null points of the planes passing through the point P, lie on a surface $(P)^{4}$. For P is the null point of one definite plane of the sheaf and on a straight line l through P there lie the null points of three planes through l.

The intersection of the surface $(P)^{4}$ and $(Q)^{4}$ consists of the curve λ^{5} corresponding to $P Q$, the straight lines a and b, and a curve σ^{9} which is the locus of the singular points S and which passes evidently through the 5 base points C_{k}.

Three surfaces $(O)^{4},(P)^{4}$ and $(Q)^{4}$ have in the first place the curve σ^{9} in common. The points which they have further in common, are apparently the points of intersection of $(O)^{4}$ with the curve λ^{8} corresponding to $P Q$. To them there belong the 12 points S on λ^{5} and the 2×3 points A and B on λ^{5}; the remaining two are the null points of the plane $O P Q$.
4. Any plane α through a is singular; it contains a plane pencil (t) and each ray t cuts the conic $\varrho^{2}(\$ 1)$ in two null points. Analogously the planes β through b are singular.

Also the ten planes σ each containing three base points C, are singular. For in σ_{13} there lies a pencil of conics of which each individual is combined with the straight line $C_{4} C_{6}$ to a curve ρ^{3}; they cut the straight line t in $\sigma_{1,2}$ in an involution of null points.

The surface $(P)^{4}$ contains the conics α^{2} and β^{2} lying in the planes $P a$ and $P b$, and the intersection p of these planes. The straight line p is singular in this respect that it is a null ray for each of its points. The singular null rays p form the bilinear congruence with the director lines a and b.

Also the ten straight lines $C_{k} C_{l}$ are singular; for through each point on such a straight line $r_{k l}$ there passes one straight line t, while $r_{k l}$ may be considered as a tangent.

[^0]: ${ }^{1}$) The principal properties of this congruence are to be found for instance in R. Sturm: Die Lehre von den geometrischen Verwandtschaften, Part IV, p. 470.

