Physics. — “Deduction of the dissociation-equilibrivan  from the
theory of quanta and a calculation of the chemical constant
based on this” By Prof. P. Eurenerst and V. Trkat.

(Gommunicated at the meeting of February 28, 1920).
Introduction.

Nrrnst's theorem, the theory of the specitic heat of solids, of the
vapour-pressure and of the dissociation-equilibrium must have their
common root in the general foundations of statistical mechanies and
in the quantum-hypothesis. O.Srern') and H. Trrroor?*) have shown
how from Nurnst’s theorem by means of Einstmn’s formula for the
specific heat of solids and a vapour-pressure formula for high tem-
peratures (derived kinetically) the chemical constants (hence also
the dissociation-equilibrinum) may be calcuiated. Notwithstanding the
great advantages of this method a desire must be felt to calculate
the chemical constants and the dissociation-equilibrium more direetly
by considering the hot gases themselves, without the use of a cycle
consisting of a condensation, cooling of the crystals to the absolute
zero, chemical transformation at 7'= 0, heating of the new crystals
and evaporation at the high temperature.

This desire explains the fact, that even after the publication of
STerN’s paper (1913) attempts have been made again and again to
improve the earlier methods of calculating the chemical constants
as given by O. Sackur?) in 19141913 and H. Terropr*) in 1912,
These consist in considering a gas of N equal molecules in a volume
V' at the temperature 7', calculating sfatistically by means of some
formulation of the quantum-hypothesis the “thermodynamic proba-
bility W and by comparing » log W with the thermodynamic
entropy of the gas fixing the indelerminate constant in the entropy.
It is not an accident that it is always the same point that remains
obscure in these theories'), viz, how an expression of the form N—

L) 0. Srerwy, Phys. Zischr. 14 (1913), p. 629.

) N. Terrope. Verslag Kon. Ak. v. Wetensch., Amsterdam 28 (1I), (1915},
p. 1110. Proceedings Amsterdam 17 (1915), p. 1167. [henceforth to be quoted as
“IInd paper”].

%) 0. Sackur. Ann. d. Phys. 86 (1911), p. 958 ; 40 (1913), p. 67; Nernst-Festschrift
(1912), p. 405.

4) H. Tirrope. Ann. d. Phys. 38 (1912), p. 434. [to be gquoted as “I st paper”).
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(Sackur) or (N1)—t (Twrropw I) can be forced into the “thermndy-
namic probability W in order to obtain an admissible value for
the entropy. The law of dependence on N can only be satisfactorily
settled by utilizing a process in which N changes reversibly and then
comparing the ratios of the probability with the corresponding differ-
ences of entropy.

If condensation: and evaporation (3rerN and Twrropr II) are not
to be used, and the whole process is to be carried out with gases,
it will be necessary to work with a gas-mixture and change the
numbers of molecules N, N,, ... .. N; of the various gases by dis-
sociation.

Remembering the real object of the calculation of the chemical
constants, viz the deduction of the dissociation-equilibrium, the follow-
ing formulation of the problem is finally arrived at: Consider
X, Y, Z, .... atoms of different elements contained in a volume 7
and possessing an energy /. These atoms can unite to molecules
of different kinds in a large number of different ways. Determine
by means of the quantum theory directly, which of the various stales
of dissociation possesses relatively the greatest probability.

This problem is to be solved by methods belonging to statistical
mechanics and the quantum-theory which will be set forth in § 2
and § 4. On comparing the dissociation-equations arrived at in this
manner with the corresponding thermodynamical equations values
are obtained for the expressions containing the chemical constants
which occur in the latter (§ 6).

Our method removes, as we hope, any remaining obscurities as
regards the occurrence of N, ! N,!.... This could only be accom-
plished, as it appeared to us, by not stopping at the numbers of
the molecules in the combinatory computations, but by going down
to the atoms. This is the only way of obtaining a solid common
basis for the computation of the relative probability of different
states of dissociation (variations of the numbers of molecules V),
N, ... Nj), viz the phase-space of 6 (X 4~V + Z) dimensions (§ 4).

The introduction into the combinatory ealculation of this refinement,
viz. the consideration of the atoms, confirms a result already attained
by Terrove (I1): the factor which depends on the permulation of
the atoms of the same kind
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5 Comp. § 9.
%) Comp. § 8.
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contains not only the expression N,/ N,/ ... N,/ but also the
“symmetry-numbers” of the wmolecules o, o,,...,d; (comp. e.g. (6)
§ 3). These, therefore, influence the dissociation-equilibrium (comp. § 8).

Accordingly the numerical vulue of the chemical constant of a
molecule should depend not only on its mass and moment of inertia,
but also on the “symmelry-number” of the molecule.

The question whether any of the cases of dissociation-equilibrium
or evaporation which have been investigated numerically, speak in
favour of or against this modification, we shall leave to others who
are more familiar with the experimental ‘side of the question.

§ 1. Fully excited and non-excited degrees of freedom.

The thermodynamic theory of the dissociation-equilibrium considers
. the molecules as having constant specific heats in the range in question,
Le. possible changes of the specific heats are left out of account in
the calculations. If they were taken into account, the expressions for
the entropy and energy of the gasmixture would not have the special
form, which is essential for the definition of the “chemical constant’’ .

In a kinetical theory of "the dissociation-equilibrium analogous
assumptions or approximations must therefore be admitted, it a
kinetic interpretation of the. chemical constant is aimed af.

We shall make the following assumption in our calculations :

L. The translational motions of the molecules as also their rotations ?)
(with the exception of those referred to under II) will be considered
entirely free from any limitations -depending upon quanta ®) (“fully
excited degrees of freedom’).

II. On the other hand the following motions will be assumed
to be absent ) (“non-excited degrees of freedom): S

a. The rotation of di-atomic molecules about the axis of symmetry
and all rotation of mon-atomic molecules.

') Compare the expressions for the energy aud entropyin §5 andin M. Prancxk,
Thermodynamik §§ 237 — 241. :

) We therefore exclude for the special object of our theory these cases, in which
a rotation happens to be in the intermediate stale of being “partially excited”, as
these would introduce a variable specific heat (Comp. Nrernsr. Theor. u. exp.
Grundlagen d. neuen Wirmesalzes, p. 136 bottom p- 137 top).

%) L.e. we approximate for these degrees of freedom all summations over succes-
sive quanta-steps by the corresponding jqu dp; comp. “addit notes 1".

Q.

%) Le. for these degrees of freedom we confine ourselves in our caleulation. of

the sum to the lowest quantum-stage.
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5. Internal motions of the atoms in the wmolecule V).

Note. In accordance with Pranck’s first quantum-theory we have
provisionally assumed the lowest quantum-grade to be that of‘ no
quanta. N. Bomr’s investigations (On the Quantum ',Fhelory of line-~
spectra. (Part 1), D. Kgl. Danske Vidensk. Selsk. Skrifter, Natur-
vidensk. og mathem, Afd., 8. Raekke N. 1, Kgbenhavn, 1918) show,
that probably in many cases the stage with the quantl.lm-nfxmbe.r 1
must be taken as the lowest possible. The corresponding modifications
might easily be introduced in the theory (and also specially the
contribution of the kinetic side by side with the potential energy).

§ 2. The phase-space of a molecule (u-space).
The p-weight {u}.

If a molecule consists of & v, §& atoms of say three different
chemical elements, its ‘“phase” may be determined by means of
6 (§ + v+ 5 cartesian co-ordinates and momenta, i.e. by a point
in a 6(§ w{Q % -} §)-dimensional “‘u-space’” (phase-space of the mole-
cule). In consequence of the assumptions lla and 116 of the previous)
section, however, as long as the molecule is not dissociated, its
phase-point (“u-point”) is confined to a portion of the y-space, namely
to a 2X 6, 25 or 2 x 3-dimensional region according as the
molecule is poly-atomie, di-atomic or monatomic.

Considering for a moment the case of a poly-atomic molecule -
(& -+ -} & atoms), this sub-space may be described af follows:
owing to the rigidity of the molecule the 3 (3 -} % -}~ §) cartesian
co-ordinates of the ators may be expressed by 6 co-ordinates
g, qz, .. .qy which fix the position -and orientation of the molecule.
Six’nilarly the cartesian momenta are determined by the six momenta
Po P - - - Py cOrresponding to the ¢, ...¢q,. If in accordance vﬁth
assumption I of the previous section we imagine the .qu.antltles‘
q,--.p, to vary continuously within any arbitravy limits, the
‘%—point” describes inside the 6 (& -+ % -+ §) dimensional u-space a

1) This assumption underlies so far all derivations of the chemical constants
for di-or monatomic molecules; for the theories never go beyond ,,rigid”moleculgs.
This assumption seems more extra-ordinary in the present theory, in which the dis-
sociation of the molecules is directly considered. Indeed, the molecules must first be
gradually loosened, before they can dissociate. Still our method of calculating agrees
with the following assumption: either every. internal degree of freedom O.f the
molecule is on its lowest quantum-grade, or the molecule is complétely dissqmated.
This is of course only meant as an approximation in the caleulation, simll.ar to
what is done in the thermodynamic derivations, where the variable contribution to
the specific heat is neglected which would be due to a loosening of the molecules.
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2

portion of a “surface” of 12 dimensions and the quantities g, . .p,
play the part of curvilinear parameters on this surface.

We define’) the following expression as the “‘w-weight” {u} of
this region: ’

fu} = 3 Etat)—-6 J . .J(‘/ql cevdgydpy Lodpyy, . (1)

where the integration is to be extended over the region in question.

[n future applications (§ 4) the molecule will have to pass through
the total volume V of a vessel and similarly through all possible
orientations. Accordingly, integrating with respect to the co-ordinates
q, we have

ful = BEFHD)—6 T 4y . 0n f . .‘f‘dp1 cedpy oL L (Q)

The corresponding expressions for di- and mon-atomic molecules
are as follows '

;u}::hmaw&a‘s.vz4ﬂ.Ji ;[kl.,.@%, )

fut= A3 G+nto—3, Vf ..Jdpl N ()

In 3) E4v4 =2 and in (4) ==1, but we have left the power
of /4 in its above form in order to obtain the formulae in our
calculations later on as symmetrical as possible (§ ).

8 3. The constitution of the gas-mixture.

In a vessel of volume V- X, YV, Z atoms of say 3 different chemical
elements (atomic masses mg, m,, mg) may be introduced. These
molecules can associate to molecules in a number of different ways.
At a special moment let there be present j different kinds of mole-
cules; a molecule of the kind may consist of &, u;, & atoms and
may possess the following mass, moments of inertia and potential
energy respectively :

My Py Qu Riv v o« . . . . . L. (5)
The arbitrary constant contained in %i» we shall fix by the follow-
ing rale: we shall ascribe to the atoms a potential energy 0, when

they are completely separated from each other; y; is therefore a

negative quantity, viz. equal to the negative work which the atoms
give off, in uniting to form the molecule.

It may happen that, owing to the special distribution of similar
atoms in a molecule, the latter possesses more than one completely

') Gomp. the illustration of this definition by means of a special simple case
n addit. notes I,
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equivalent rvotational orvientation; its number may be called the
Symmetry-number o; . . . . . . . (6)
of the molecule. (For instance for J, ¢ would be =2, for CH,

(methane) ¢ == 12). R '
Finally we shall call f; the number of fully-excited degrees of

freedom of the molecule; therefore
Jiz==3,5,6 . . . . . . . . . (D
according as the molecule in queslion contains one, two or more

atoms. ~ - « ‘
The numbers of the molecules of different kinds V|, N,, o N,

have to satisfy the equations

J 1 '7:‘ ’;
j?]\’i\ixX, S Niwy=7Y, EN&G=2 . . . (8
1 1

1
i.e. with varying degree of dissociation the numbers N, ... N,
change, as also the total number of molecules
A
NE E Ni . . N . N R N N . (9)
1

but not the numbers of the atoms. ,
The total energy of the gas-mixture is given by the equation
E=K+ XNy . . . . . . . (10
where K stands for the total kinetic energy of all the molecules.
In the thermodynamic calculation of the dissociation-equilibrium
($ 6) we shall use “molar” instead of molecular quantities. Calling
AvoerAaDo’s number
S ¢ B )\
we have the following relations for the number of gram-molecules
ni, for the potential and kinetic energies pro gram-molecule (b;, C;, 7'
and for the specific heat (C) respectively
n ‘::%Y,é, bi== Ny, CiT=N.% %, Ci::r:m'gr o (12)
where

hence
niR==Nir. . . . . . . . . (14

§ 4. The phase-space of the gas (y-space). The y-weight {+!.

The most gen»eral “phase” of our system may be represented by
the 6 (X~ YV 4 72) cartesian co-ordinates and momenta of the
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X4 V42 atoms, and therefore by a “y-poin” in a 6 (X Vf-2)-
dimensional “y-space”. To a given condition of dissociation (NN, . N

of the gas-mixture, owing to the assumptions II (§ 1), a sub-space
corresponds of 2 /' dimensions, where ‘

Lo
o= 2 Nyfis . . ... (15)
1

Ji as before being equal to 3, 5, or 6 according as the index ¢
refers to molecules of one, two or more atoms (comp. eq (7).

We must now consider more in detail the structure of this
sub-space.

Consider an individuarl “phase” of the system (any point vy, of
the y-space); the X -1 4 7 atoms, which we shall provisionally
think of as being individualized by numbers attached to them, a,rle
associated to N molecules, which we shall also suppose to be indivi-
dnally numbered. The total energy of the system then also possesses
a definite value /. We now apply to the phase of the system
changes of two types (4) and (B)Y"), which both leave the Llis:socia-
tion (N,, N,,..., Nj) and the total energy unchanged.

Changes of type [A]. Starting from the initia) phase y, we make
the molecules independently of each other, pass through the total
volume V% and all possible rotational orientations, and also make
them assume sucecessively all possible velocities of translation and
votation, which are in accordance with the original total enerqy.

While in this manner the y-point starting from v, describes a
region (A,) of the y space, the w-points of the various individual
molecules — each in its own p-space -— describe the regions which
were diseussed in § 2. In the elassical theory the “y-volume” is
obtained in cases of this kind by taking the product of the corre-
sponding “u-volumes™. Analogously we shall heve define the y-weight
{7}, of the region just mentioned by the relation

J .
, v
W= L[Twd" 0 e
1

where for f{u;} we have to take the expressions @), (3), or (2) of
§ 2 according to whether ¢ corresponds to a molecule of one, two
or more atoms. The limits of the integrations over the momenta
occurring in (16) are determined by the fact, that on account of

1) Comp. the somewhat similar discussion in P..and T. Enrenresr, Math. Enc.
Bd. IV. Art. 32, §125.

?) The volume-correction which is due to the finite dimensions of the molecules
is left out of account.
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the prescribed total energy // and dissociation N, V,, ... N; the
total kinetic energy
Ke=l] — 2Ny . . . . o . . (1D

is also fixed (comp. (10) in § 3 and the computations further on in § 6.

Changes of type [B]. By the mutual permutations of simelar-
atoms starting from a given y-point new y-points arise !). In connec-
tion with the X!/Y/Z! possible permutations of the individual atoms
of the same kind a set of X/VY/Z! different y-points in the y-space
will be seen to belong together and all these points give the gas

the same /£ and the same dissociation (N,, NV,,...).

In order to reach the total y-region which agrees with y, in the
quantities N and N,, N,, ... N; we must combine the changes of
the two types [A4] and [B], in such a manner, however, that no
portion of the region s counted twice.

It may be proved, that including the region (4,) altogether I
identical regions (A,), (4,), ... Ay, are obtained, in this manner, where

X/ Y!Z!
P — XIy!'zi
- . N,

NN N o0, o

We shall give a few short indications as regards the proof of this stalement.
For this purpose we introduce the notion of “internal” permutation.

A permutation of the atoms will be called internal, if the result may also be
obtained by translations and rotations of the rigid molecules.

Simple nstances. 1. Two molecules of the same kind are made to exchange
their position and orientation by translation and rotation. 2. A molecule of symme-
try-number oi (comp. eq. (6) ) is made to pass from one orientation to another
equivalent one %). 8. The same operations are carried out at the same time
with & number of molecules.

An internal permutation carries the phase-point of the system say from o’ to
y"; but bere the following circumstance must be remembered: 5’ is still inside

') Since-each individual atom has six co-ordinate-axes of the o space referring
to it. Thus when two atoms of the system are exchanged, nearly all co-ordinates
of the 9 point remain unchanged, only 12 co-ordinates exchanging their values
two by two, »

%) BorrzmaNN in his well-known paper: “Ueber das Avbeitsquantum, welches bei
chemischen Verbindungen gewonnen werden kann,” [Wied. Ann. 22 (1884), p. 39.
Wisschensch, Abh. IlI, p. 717 has determined a similar combinatory quantity. But
in comparing the quantily Z in his equation (3) with our , the difference should
be noted which is referred to in the next note 3.

) In a molecule of the constitution 4AB4, therefore, the permutation of the two
4 atoms is an internal one, in a molecule of the form 4AAB it is not. With
Borrzmany the latter permutation would also have lo be regarded as internal.
This difference is due to the facl that with him the changes of type [4] form a
wider class than with us and contain all exchanges of similar atoms inside the
same molecule. ' ’

Ny N o (1 8) ’)
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the phase-region (4’), which is formed from y’ by the changes of type [4] 4
{that is what the word “internal” is meanl to express}. )
Taking any phase-point o as starting point, there are always

s N, .
N=NIN . N MM e (19)

internal permutations ) and all y-points reached in that way lic inside one and the
same 4-region,

It will therefore be clear, that, if from the original phase y, by an operation
[A] we produce thé phaseregion 4, and if we then apply the X7 Y/ Z! operations
of type [B] to every point of the region (4;), we donot obtain X! Y/ Z! regions
similar to (4,), but altogether only ¥ (eq. (18) ), since the X/Y!Z! permulations
of the atoms divide into ¥ groups of O. internal permutations each.

Combining (16) and (18) we obtain for the total y-weight of all

the phases, which belong to given values of V, Eand N, N,... N;
the expression :

B X/ Y!Z! Ny, N
m“Jvl./_zv,./. CN;loMe, M 6 d Al el R0

The expressions f{u;} contain the integrals with respect to the
momenta of all possible motions of translation and rotation of the
molecules which have still to be computed.

The total kinetic energy of the molecules is fixed by equation
(17); the -integration is to bhe taken over all the values of the
momenta which are compatible with it. Calling these momenta for
a moment p,,p,...pp, I being given by equation (15), we have
the following relation- between these quantities:

. 3 pz .
Dol v k@)
where A, A,,..., Ay vepresent the various molecular masses or
moments of inertia

My PLQuRy ..o My, PyQi Ry ... (22)
according to the index (comp. (5) in § 3).

The multiple integrals with lesp(,ct fo the momenta give together
the surface of the “ellipsoid” (21). Neglecting ‘numbers of the order 1
as compared with the large number I, we may use for it the following
approximation *).

") For the operations [A4] include all possible translations and rotations of the
molecules, hence also those, which may replace our interndl permutations

%) The centres of gravity of the Ni molecules of type ¢ may mutually exchange
their N; positions and moreover each of these molecules can choose among the
o equivalent orientations.

% The volume I of a sphere of radius R in a space of F dimensions and its
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fli,m(l/zKﬁ)F VAA A . ..
rf -

()

If we mnow include the remaining factor in the expressions {ui}
(comp. eq. (2), (8), (4) in § 2), having regard to the meaning of the
quantities A,, 4,,..., Ap, the expression (20) for {y} becomes as
follows

1 X171 I
\ X / L (XFY4Z) VN,

| V) — -
= Ny Ny g
NN N6 N6 - (lz)

. (4)
(V9 K Il(a”b N

where
o = dx . 2% VM P Qs B;  for poly-atomic molecules |
o = 4w VME PR ., di- . » ( (25)
o = V Mt ,,  mon- ,,b s

the quantities f;, £ and N being defined by equations (7) § 3, (15)
§ 4 and (9) § 3.

§ 5. log {7} and the entropy for an arbitrary degree of dissociation

(N,, /LV, C ey NJ)

Using Smisrnine’s formula log {y} assumes the followmg approximate
form

: r . — < 0
log {y} == [ 4 Nlog V -+ o log K-+ F'log V' 2m = Ny (logei’—Filog h—log i)

F A
=2 N; (log Ny —71)~_~—~ (109 5 1) .. (26)

or

surface 0 (le the differential coefficient of 7 with respect to 1) are respectively
{comp. say P. H. Scaours, Mehr-dimensionale Geometrie, Bd. 11, (Sammlung Schubert,
Leipzig 1905); J. H. Jeans, The Dynamical Theory of Gases, § 46]:

1 1 _
J=oooioooo VGPRF, Q= V aF RF-1

r F 1 I F)
(z+1) (3

It is in accordance with the usual approximations of the kinetic theory (I very
large as compared with 1), if we putlog J and log O equal to each other, since for
instance, if we-use STIRLING'S approximation, expressions are obtained for these
quantities, which coincide completely, if we do not make any difference between
Fand I'~—1. We have used a similar approximation with regard to the ellipsoid,
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log{yl =1 + = N; {lqu %/ log K + wwz]

g g
— 2 Ni[log Ni —«l)——{log 5 11, .21
where ) '
L= log [X! Y Z!WWX+Y+24)], e (28
log eti' = log «i" — f;ilog h — log 6i -+ filog Vor . . . (29)
therefore
TV )
ai'z“_[wJJ (30
o; h :

If there are n,, n,, ..., n; gram-molecules of ideal gases of different
kinds in the volume V at the temperature 7' the entropy and energy
of the mixture are given by the expressions:

S=—9 I }:n(ze log V4 Cilo .'['—}~m‘)z [
I i R (51)

=8+ 2n (Rlog V -+ Cilog T -+ %) — RZ n; log n; !
B 2T (CeT 4 0) .. . . . L (32)

{2 is a quantity which is independent of V,7 and the numbers
ni, but may depend on the numbers of gram-atoms of the different
kinds of atoms in the system (say a, y, z)?), b; is the potential energy
of a molecule of the kind 7 as compaved with the condition of complete
dissociation, which is taken as the zero of potential energy, and
(; the specific heat at constant volume.

§ 6. Comparison of the kinetic and the thermodynamic calculations
of the dissociation-equilibrivm. The resulting values of the
chemical constants.

We now introduce the following axiom: With given numbers of
atoms X, Y, Z, wolume V and total enerqy E the dissociation-
equz’libriwm s characterized by these values of the numbers of molecules
N, Ny, ..., N; for which log {y} is a mazimum.

) It may be noted that, when all the numbers of atoms and molecules, the volume
14 K
V. and the total kinetic energy are doubled, the numerical values of Jog v log ¥ in

the expression for {9} remain the same and the value of the sums is therefore
also doubled, whereas I increases to more than thce its value on’ account of
X Y! Z! Comp. § 9. ' :

) In the theory as usually given (comp. say M. PLanek, Thermo-dynamik. 4 Aufl,
§ 287) L) is left out. lncompdung the entropy with the “logarithm of the plobabnhty
this becomes the source of great obscurity (comp. § 9).
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Let .
dgN;i=v,dQ or dn;==vidq . . . . (83)
vepresent any possible ') chemical reaction in the system, i.e. a
reaction which is compatible with the given numbers of atoms
X, Y, Z,v, v, ...,v; are certain positive or negative whole numbers,
which give the numbers of the molecules which are formed or
disappear in the elementary reaction?).

The kinetic and thmmodynamlo deductions of the dissociation-
equilibrium may now be given side by side:

(kinetic) (thermodynamie)
dlogiyl==0 . . (34) gS=10. . . (34)
V=0, ¢N;=»,dQ . (8)) dV =0, dni=nridq . (35

dE =0 (K} 3 Niy) =0 (86) | dE=d 3 n(GT + b)=10 (36
Substitution of the expressions (26), (31) § 5 for log (y) and .S
and further development of the maximum-problems lead fo

1 i
2 vilog V; — (log V) 2 vi- Z vilog o' | Zwilogni=(log V)2 1>i+~]~?§f vi(sti- Ci—IR)

r QRN _, fi 1
e Z iy b | log — |2 vy (87 —»—f~2v bi+(og Ty.— 2 v; C; (37
K‘L)(ek<l ) 7() BT (.‘])R :Ci (37)

In (37 we shall express } in the pressure p of the gas-mixture

by means of the equation

pV=RIT Zn, . . . . . . . . (38)

Farther in (37) we sha]l put
7 -
KzF.»—é-‘-, pV=rT2ZN:. . . . . (39)"

_mlﬂ)-mf:oen@ra] more than one reaction is possible belween the molecules of the
mixture ~each characterized by a special set of values of the numbers
Yy Yoy v = vy Ilj.

In order to establish the dissociation-equilibrium completely, and to obtain the
necessary number of equalions between the equilibrivm concentrations, all the
different reactions [variations] have to be taken in succession [Comp. M. Pranck,
Thermodynamik § 247).

2} M. Praxck, Thermodynamik § 244.

- 3) Properly speaking these two equations must be taken as giving definitions of
the quantities p and 7 the phase-region in the “y-space” which corresponds to
the prescribed values of V, I and Ny, N,, . . . Nj contains beside MAXWELL-
BorLrzMaNN  states, others which deviate strongly from those and for which
therefore in themselves the conceptions of “pressure and temperature of the gas”
have no meaning at all. However, the very great majorily of the phase-points of
this region are of the MAXWELL-BoLTZMANN type of dmmbutxon or closely

‘resembling ones, and for those the relations (39) hold with the m“dlnaly meaning

of the quantities p and 7.
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and instead of the numbers N, (n;) we shall introduce the “con-
centrations” *

N -
o= = " (40)
N -+ N, 1‘ o Ny o, oy i
This gives ,
2 vilog ¢ = — (log p) 2 vy | 2 vilogep= — (logp) Zv;
-+ 2 v; log o — p =2 v (1) - = 2 v; (xl +Rlog R—C;— R) “n)

1
i bit(log ’1')E>3m( Ci+R)

1+ (log #T) 3 i (/;i + 1)

On comparing (41 with (41) and in view of (12) to (14) § 3,
we obtain for ‘the ‘“chemical constants”

a=owi+ RlogR —C;i— R . . . . . . (49)
following equation ‘
1 . i
% 2 viai—= & v {loga; (% - l) log v “43) Y
or
1 .
—}-),2' viaim= Z v, . . L L (44)
where
. _ o f
;== log ;' + 5 + )logr . . . . . (45)

hence by (30) and (25)

4n. 2 Vomr\® 1}
== lo'g Mf%fj VM PZ Ql ]? (»—_f_?) 7 J
: 1

4 V2
oy lO_(] th VM“ P (—~7”> 7'] foee e (46)

0; h

a = log V]Wa(lf?ﬂl) 7‘]

for poly-atomic, di-atomic and mon-atomic molecules respectively.

§ 7. Remarks on additional contributions of the atoms to the
_chemical constant of the molecule which remain indeterminate.

Molecules of the kind as considered here may undergo a large
number of different chemical reactions, each characterized by a

") The term with log » is derived from log r T in equation (41).
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different set of nambers v, #,," .., »; ). Hach time we obtain a cor-
responding equation for the chemical constants of these molecules

1
EEQJ,‘@:Z‘W{Z{ e e e e (47)

It will be seen, however, that the quantities «@; are not complete-
ly determined by these relations. For every chemical reaction which
is possible the corresponding numbers »,v,, ..., v; have to satisty
the relations: ‘

28 =0, X v == 0, 2v;8=0 . . . (48)

Therefore: for every chemical reaction the corresponding equation
(47) will be satisfied by putting

a; .

[':faz"| hzu17hv+;zw Coe e e (49)
with completely arbitrary wvalues of the mumbers w, », w, that is to
say: the chemical constant of a molecule is completely determined but
Jor certain additive constants, which the several atoms bring with
them into the molecule and carry away, with them in chemical reac-
tions™®). In the determination of the dissociation-equilibrium these
arbitrary constants drop out, since in that case, as we have seen,
we only deal with Zw;a;.

§ 8. The influence on the dissociation-equilibrium of the
“symmetry-numbers” ¢; of the molecules.

‘The part played by the symmetry-numbers in the dissociation-
equilibrium may be elucidated by a typical example. ;

Let the chemical elements 4 and B be able to form the following
kinds of molecules

') Comp. not 1 in § 6.
% Obviously the entropy-constants K; have exactly the same degree of deterini-
nateness and indeterminateness, The same indelerminateness remains, when the
chemical constants are derived by means of the vapour-pressure equation (comp.
“additional notes” Il), and also if following BorrzmaNN one would make use of
the "equation

% — S=r[log {y*}|— log} vi]

For also the numbers of molecules Ny* No*, . . . Ni* and Ny Ny, oo N,
occurring in this equahon have again to satisfy re]a‘mons of the form.
‘ Ni#% — Nz, A Q (comp. (83) § 6).

in order that the change may be compatible with the number of atoms X, 7,7,
present. We do not think that BorrzmManx's equatlon can be repl(wed by an
assumption of the form:

Sz==rlog v}

on -grounds which will be set forthin § 9. °

S




4, B, AAB, ABA, . . . . . (b0
the concentrations, moments of inertia, potential-energies and sym-
metry-numbers being as follows

cl (’2 cB 64
0 0 P, P, ’
! (51)
0 0 s £, \
1 1 1 2

The two reactions

AABZZA+ B and ABAZ A |+ B, (52)
give dissociation-equations of the following form
¢ — ¢ .
—t== G Pye T — =GP . . . . (B3)
al2 62 cl 02

since all the quantities are the same in the two cases with the
exception of P, # P, 4, # %, and o, # 6,. (G is supposed to contain
the quantities which are common to the two cases).

If therefore for instance approximately P, == P, and y, = yx,, we
should have '

Cg L (ol

or the concentration of the unsymmetrical molecules is about twice
that of the symmetrical molecules. ‘

8§ 9, Critical remarks on some allied deductions of the
chemical constants.

Whereas BortzMann in his theory uses the equation

W
S, — 8 xrlongz' ce e e s (89

1

2

throughout, Pranck and many others following him replace it by
the relation | ‘ ‘ :
Sz==rlogW. . . . . . . . . (60

It was obviously NErNst’s theorem that first started this pre-
ference of (60) over (59), as on the one hand it provided a natural
zero-condition for the calculation of S and on the other a natural
common unit for the estimation of W, viz. any condition of the
system at 7'= 0.

In the majority of calculations of the chemical constants a special
obscurity remains- as fto the way in which the “thermodynamic
probability” of a gas depends on the number of molecules.

We shall try to explain in a few words, how this obscurity is
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connected with the use of equation (60)1): it is genel'ally assumed
as self-evident, that the entropy of a gas is to be taken twice as
large, if the number of molecules and the volume are both doubled.
Now it is certainly true, that the increase of the entropy in a given
process in a gas of twice the number of molecules is twice as large
as the corresponding increase in the original gas. But what is the
meaning of taking the entropy utself twice as large and thereby
settling the entropy-difference between the doubled and the original
gas? By what reversible process is the double quantity of gas to
be generated from the original quantity ? Without that the entropy-

d
difference [—]g cannot be clearly defined. On account of equation

(60) one is then confronted with the difficult problem of choosing
the definitions in such a manner that the “thermodynamic proba-
bility, of the double ‘quantity of a gas is equal to the square of
the “thermodynamic probability of the single quantity. ?)

In order to remove this obscurity it is necessary to return to
Borrzmann’s equation (59) and to apply it to a reversible process
in which the numbers of the molecules change.

We shall now go a little more fully into the relation in which
our theory stands to others which are closely allied to it.*) Special
interest attaches to the manner, in which in the various theories
the terms N;log N are produced. In our theory they originate in
the combinatory factor:

X! rtzl
P— ... . (61)

A N.lG Ny N
NN Nt 6,100 6yt

If instead of a gas-mizture, as in our case, a single gas of mon-
atomic*) molecules is considered, this factor P reduces to

V==l (6D)

1) Q. STERN, quite recently remarks: “The difficulty in this deduction lies in
the introduction of the quantity N, which is done in a very arbitrary manner”.
(Z. f. Elektroch. 25 (1919), p. 79 at the top on the right).

2) Comp. our remarks in notes (1) and (2) § 5 with regard to the quantities
«Q ard I, which in our theory occur in the entropy and in log{y {.

8) As regards the theories of Lmnz (Vortrige der Wolfskehl-Stiftung 1913 in
Giottingen, Teubner 1914, p. 125) and Kresom (Phys. Ztschr. 14 (1918), p.212),
who apply Desue’'s method for solids to gases, we may refer to papers by H.
A, Lorewrz (Versl, Kon. Ak. v. Wel. Amst. 23 (1) (1914) p. 515, §6 — Proceedings
Amsterdam 19, (1917) p. 737) and O. SterN (Ztschr. fir Elektrochiemie, 25 (1919),
79 section G towards the end), where these theories are discussed.

The same holds for a gas with more atoms in the molecule, if ¢ =1,
12
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The question, therefore, is how those authors, who confined
themselves to the consideration of a single gas, were able to obtain
a “thermodynamic probability”, the logarithm of which vields an
admissible entropy-equation, in other words, how do they manage,
that the entropy does not contain a term of the form

%
RlogV' but Rlog—. . . . . . . (63
ny

1. O. Sackur’') reaches the desived result by a special method ot
“quanticising” the motion of the gas-molecules: we may express it
by saying, that he quanticises, as if each molecule were separately

o 14
contained in a cell of volume ——

N

2. M. Praxck?) similarly only obtains the term (63) in the correct
form by dividing the phase-space of the molecules (u-space) into an
increasing number of “elementary” portions, as the number of mole-

cules is larger (G ==Ny). The justification of this procedure and

the fixing of ¢ he considers to be open problems?).

i 1
3. H. Terrove [1%t Paper]*) attaches a factor N to the expres-
7Y
sion for the “thermodynamic probability”, in order that its logarithm
may show the law of dependence on NV which is needed in the entropy.

But he does not justify this procedure on combinatory grounds °).

1) O. Sackur, Annalen d. Physik, 40, p. 76 (1913).

) M. Pranck, Wirmestrahlung, 2 Aufl. § 126, § 133.

%) M. Prancx, Theorie der Wirmestrahlung, 2 Aufl. p, 131; also M. Pranck
Vortriige der Wolfskehl-Stiftung 1918 in Gottingen (Teubner 1914) p. 7; Phys.
Zeitschr. 14 (1913), p. 258. In a later paper (Sitzber. d. Preuss. Akad., Berlin,
1916, p. 6563 —667) Puanck once more returns to the problem ; here he takes in-
to account the permutability of the molecules, but he does not himself look upon
this discussion as giving a combinatory justification of his assumption as to the
“elementary regions”. ‘

%) H. Terroor, Ann- d. Phys. 88, p. 484 (1912).

5 H. A. Lomestz, (Versl. Kon. Ak. v. Wetensch. Amsterdam 28 (1) (1914, p.
515, — Proceedings Amsterdam 19. (1917), p. 737), at the end of section 5 draws
attention to this. H. Trrroor in his 2nd paper, where he gives the new deduction
by means of the process of evaporation, a propos of Lorewiz's remark in an
appendix once more returns to his previous deduction. But again he explains — only
more fully — that the division by the factor N; ! is required, in order that the
entropy may show the desired law of dependence on Ni. P. SCHERRER, Gott.

Nachr. 1916, p. 154 in following the same procedure simply refers to J. W. Gisss,
Statistical Mechanics without any further comment.
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ADDITIONAL NOTES.

L. Elucidation of the choice of the u- and y-weight: {u} and .
(Note to sections 2, 4).

The definitions of {u} and {y} may be elucidated by a simple
example. Consider first a Pranck-resonator. According to the theory
of quanta its phase ¢,p must lie either at ¢ = p==0 or on one of
Pranck’s ellipses & =hv, 2/v,... Now two consecutive ellipses are
known to enclose a ring whose area is '

fj:iqdp::lz.‘. N D))

The classical theory would admit all the points of the plane and
ascribe to any portion of it a “weight” equal to its area jfclg dp.

It therefore seerns natural in the statistical calculations of the
quantum-theory to aseribe a weight A to each of the ellipses, in
particular —also to the point q==p=0. Since in all statistical
calculations it is ultimalely only ihe relative weight that matters,
the essential thing about this assumption 1is, that the same weight
is ascribed to all the ellipses, which moreover is independent of the
nature of the resonator (say its v). 1) :

The choice of / itself as the weight in question has the following
advantage in connection with (64): if in the ¢, p plane any portion
is considered which contains a large number of ellipses, the total
weight of all the ellipses inside.this region coincides with its area
owing to (64).%)

Let us next consider a material point elastically connected to a
given position of equilibrium, say anisotropically, lts principal
vibrations may be parallel to the co-ordinates ¢,, q,, ¢, its frequencies
being supposed very different

% ;o r
vl \< vz SR v: . . e . . B . ? (60)

') The choice of the weight must be subjected to certain limitations, in order
that. the statistical theory may not get into contradiction with the IInd law of
thermodynamics. Comp. P. Enrunresr, Phys. Zeitschr. 18 (1914), p. 6b7; Ann.de
Phys. B1 (1916), p. 340, § 8 — Versl. Kon. Ak. v. Welensch. Amsterdam 25 (1
(1916), p. 423, § 8 — Proceedings Amsterdam 19 (2 part) (1917), p. 576,§ 8. —
The above choice is in accordance with the limiting conditions in question.

%) Hence for sulficiently high temperatures we shall have approximately

12*
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The g-point of the system in the six-dimensional u-space (¢,, . . . p,)
is then limited by the quantum-hypothesis in the following manner:
its projection on the plane ¢,, p, must fall on one of the Pranck-
ellipses; similarly the projections on the planes ¢,, p, and ¢, p,,
If the total energy F is contained between O and a moderate value,
we see by (65) that ¢,, p, may still fall on a large number of diffe-
rent ellipses; (since for this degree of freedom the energy-stages
g, =0,/,2 v, ... follow each other closely), ¢,, p, on the other
hand only on a few ellipses, whereas q,, p, is possibly completely
confined to the position ¢, = p, = 0.

If the limitation which is due to the quantum-hypothesis did not
exist, the “weight” to be given to a given region in the wu-space
would according to Borrzmann simply be its volume

[ qug : ..~...(66)

To each region, whose, three projections are three Pranck-ellipses,
we assign the weight
R (¥4
The joint weight of all phases which the u-point can assume,
when the energy is subjected to an upper limit, will then be
(Pl=X XK, . . . . . . . (68
T T Ty
where the summations are to be extended over all the guantum-
numbers which the first, second and third degree of freedom can
assume. With a moderate upper limit for the energy =, as we saw
would be able to rise to high values, and the corresponding sum

may accordingly be replaced byf dg, dp,; v, on the other hand

would be confined to zero and the corresponding sum reduce to the
first member 4. Hence

y}= fdg,dpl.(;s.‘h).lz;a O 1)
Tg

According as the upper limit for the energy is made to rise or
fall (i.e. the second degree of freedom is made to pass from the
state of being half-excited to that of full excitation or non-excitation)
(69) changes into

y}:f,..fdgldpldg,dp,.kmh‘@"—?f...fd1...dp2 - (70)
y}:f.fdgld’p,./L.]L:]Iﬁ“‘iffd(]ldpl e (Y

or
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Evidently of all the original degrees of freedom only those remain
in the power of h, which are not excited. The other factors h are as
it were absorbed by the intregrals.

1. Caleulation relating to § 6.
We found [eq. (27) § 5.

log§yl=1+4 2 N; [log V —{—%— log K + log ai':l )

- I VA
- 2 Ni(log N; — 1) — 5 log 5= i

If this expression is varied, having regard to
gV =0, dN; == v; dQ, 0l == 0K 4+ 2 i ON; == 0, . (73)
the last equation provided with a multiplier (— #) being added to
the variation of log iy}, we obtain: '

f T

0 =dlogl{yl — O dE = ({{{v} N/;l 4+ 2'dN; [Zoq VA4 log K+ logey
| . /z (74)
— dQ =2 v;log Ni — (loq ;24) Q. Zv; .~ — dK — dQ . & 1)2)“——’
The condition that the co-efficient of dK disappears, gives:
, T
=3%’ (75)

that for d@Q
. fF
2 vilog Ny == 2 »; [ZogV—k{;f log K -+ log o} -wé:-log 3 17 Xi]v (76)
or by (75) after a small reduction
v 2K r o
Zvilog Nij = 2 v, ':log V4 ‘%‘log—[—{; + log o — Ve Xi], (7D

q. e d.
The thermodynamical calculation is entirely similar.

L. Deduction of the vapowr-pressure formula for very low temperatures.

The equilibrium of evaporation at very low temperatures may be
deduced by the same means as that of dissociation. If again there
are X, Y, 7 atoms in a volume V, which, however, may now be
associated in N poly-atomic molecules of one kind, of composition
& %, &, mass and moment of inertia M, P, Q, B and symmetry-
number ¢, NN -of these may be present in the form of vapour
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.potential energy = Ny) and N’ condensed to a crystal (potential
energy == N’y’). :

For the vapour molecules we make again the assumptions I and
Il of section I. As regards the atoms in the crystal our assumption
will be, that

III. In the calculations the motions of the atoms in the crystal
are to be ignored ').

The {y} weight of the condition (N,N’) is then found to be

X! Yiz! 1 . o
frj= S ey onpn, L (V 2K7)oN (4. 2aV M> PQR), (78)
Nl o , I'(3N) :
where

K=FE—3Ny+Ny) . . . . . . (79
On the other hand the entropy and energy of the system are
given by the equations

S== 8 4-n {Clog T+ Rlog— 4 =y +a's,) . . (80)Y
. n

E=n{CT +blLa'b. . . . . . . (81

The condition of equilibrium is given by
dlogly}=0. . . . . . . . . (82

with the conditions o
dgV = 0, JdF — 0, dN 4 dN'=0, . . . (83)
This yields an equation for N’ as a function of } and K sub-

stituting

K==8N.rT r=N"D L (84

p
we find
log p = — XT;," ddlogT +a . . . . . (8%)
7.
where « has the same meaning as e, in (46). The corresponding

thermodynamic calculation gives

") This assumption is again meant not as a physical hypothesis, but as an
-approximation in the calculations. (Comp. note 5, § 1). It comes to neglecting
T

0
(270) in the thermodynamic deduction of the vapour-pressure formula for low
temperatures.

%) Properly speaking the last term should be #s'; but with Pranck we neglect

1

T,
— dT,
f]v

0
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where for shoriness we have put
t—Cp -+ RlogR==0a . . . , . . (87)
The comparison of (85) and (86) produces the equation

- P 88

Pl s JENS S

R R (®8)

or for molecules of different kinds
I

i Yo

IR = .o L (89

R R (89)
Nugnst’s theorem requires for every chemical reaction v, v, .. . »;,

which is posgsible the relation
2visy =0, . . . . . . .. (90)
which is satisfied by '
3'92- =&u 4o G0 . (91)
where w'v’w’ remain perfectly arbitrary.
Bvidently the chemical constant as calculated by means of the
vapour-pressure formula and Nrrnst’s theorem contains similar inde-

“terminate contributions by the atoms as in our deduction from the

dissociation-equilibrium.






