We hope to collect further information by subsequent series of experiments (which have already been commenced) in which in the first place attention will be paid to the basicity of the amines.

The last communication of Tassilly (Bull. Soc. Chim. January 1920) led us to the publication of these first results.

Lab. for Organic Chemistry of the Technical High School.
Delft, February 1920.
Fhysics. -- "On the Critical Quantities of Mercury in Connection with the Increase of the Molecular Attraction on Dissociation of the Double Molecules." I. By Dr. J. J. van Laar. (Communicated by Prof. H. A. Lorentz).

(Communicated at the meeting of May 29, 1920).

1. Already twice I published') discussions of the critical quantities of mercury. Starting from the fundamental value $b_{c}=150.10^{-5}$ holding for 1 gr . atom Hg (calculated from the densities of the solid halogen compounds) and the value $V a_{c}=11.10^{-2}$ derived from it (in connection with the critical temperatures of the said compounds), I calculated for mercury, assuming - what is confirmed in different ways - that this substance is quite or almost quite bi-molecular at T_{c}^{\prime} (ef. among others loc. cit. p. 9) :

$$
T_{c}=1260^{\circ} \text { abs. }\left(=987^{\circ} \mathrm{C} .\right) ; p_{c}=192 \mathrm{~atm}
$$

From determinations of the vapour pressure the pressure corresponding to $T=1260^{\circ}$ abs. was calculated <204 atm. (loc. cit. p. 14). When T_{c}^{\prime} and p are both assumed to be unknown, the same vapour-pressure observations, on assumption of $V a_{c}=2 \times 11.10^{-2}$, yield for T_{c} the value 1242° abs., p_{c} becoming $=187 \mathrm{~atm}$. (loc. cit. p. 15).

In the second of the cited papers 1 made use of Corardeau and Rivière's later vapour pressure observations (1900), which go up to 880°. With $b_{c}=149.10^{-5}, V \alpha_{c}=10,74 \cdot 10^{-2}$ (for 1 Gr. atom.; likewise determined from these observations), I now calculated (loc. cit. p. 144) :

$$
T_{c}=1172^{\circ} \text { abs. }\left(=899^{\circ} \mathrm{C} .\right) ; p_{c}=180 \mathrm{~atm} .
$$

while for D_{c} about 3,3 was found. Through a simple calculation I got at the same time the certainty that mercury is practically quite bi-molecular at T_{c} (cf. loc. cit. p. 139-140).

The same value $b_{c}=149.10^{-5}$ follows also from the limiting density 14,46 at the absolute zero, when 1,2 is assumed for the (reduced) coefficient of direction of the "theoretical" straight diameter. [I determined before $b_{c}=120.10^{-5}$ per Gr. atom. for mercury itself, starting from $D_{c}=3,77$, calculated by Guldberg (1. c. p. 8)].

[^0]Proceedings Royal Acad Amsterdam. Vol. XxIII.
2. It appeared, however, more and more that the critical temperature of mercury lies much higher than 900° or $1000^{\circ} \mathrm{C}$.

Tradbe and Teichner found no critical phenomena at 1000° (... and (Happer $\left.{ }^{\prime}\right)$ calculated $T_{c}^{\prime}=1370^{\circ}$ abs. $\left(=1097^{\circ} \mathrm{C}\right), p_{c}=456 \mathrm{~atm}$, from different observations. This would, therefore, be only 100° higher than my first estimation. W. C. Menzies ${ }^{2}$) came to $1275^{\circ} \mathrm{C}$. (675 atm .), while it became clear from Königsbirgrer's experiments ${ }^{3}$) that the long sought eritical temperature must lie above $1400^{\circ} \mathrm{C}$. (1000 atm.). At $\pm 1200^{\circ} \mathrm{C}$. the meniscus becomes flat; only the liquid is luminous. Below $1400^{\circ} \mathrm{C}$. there are seen small glowing drops, which rise from the liquid and fall back into it, or dissolve in the not-luminous vapour. At $1400^{\circ} \mathrm{C}$. the emission of light of the liquid rapidly diminishes, and the critical temperature seems to be near.

Then followed Miss J. Bundrr's experiments ${ }^{4}$) giving determinations of density of liquid and vapour up to 1400° C. At 1400° C. the vapour was still quite transparent; "the distance of the mercury" atoms, therefore, is still so great that the electron cannot yet detach itself from the atom, and can, therefore, not yet take charge of the conduction of the electricity." At $1500^{\circ} \mathrm{C}$. (one observation) ${ }^{\text {b }}$) there was still liquid mercury present.

When the observed densities are represented in a T, v-diagram, we arrive through graphical interpolation at $T_{c}=1400^{\circ} \mathrm{C}$. about, or slightly higher, hence about 1700° abs. $\left(1427^{\circ} \mathrm{C}.\right)$, whilst p_{c} must be at the least 1100 atm . For the critical density about 4,15 is found. (Guldberg calculated 3,8).
3. It is the question if this high critical temperature of $\pm 1700^{\circ}$ abs. can be theoretically justified. For this purpose it is required, as we shall see, to modify the values of b_{c} and $V a_{c}$ for 1 Gr . atom of mercury somewhat. Instead of $10^{5} b_{c}=150$ the lower value of about 120 must be assumed for it, while instead of $10^{2} V a_{c}=11$ it is necessary to assume 10 (hence $10^{4} a_{c}=100$ instead of 121).

That at such a high temperature as 1700° abs. the values of a
${ }^{1}$) Ann. der Ph. (4) 13 (1904), p. 340 and 620.
${ }^{2}$) Am. Chem. Soc. 35 (1913), p. 1065.
${ }^{3}$) Chem. Zg. 36 (1912), p. 1821. Cif. also RominjanZ and Suchodski, Ann. Inst. Pol. P. le Grand 23 (1915), p. 668.
${ }^{4}$) Physik. Zeitschr. 16 (1915), p. 246; 19 (1918), p. 410.
${ }^{\text {b }}$) Neitler Köngesbrgarr, nor Miss Bender state clearly in what way their observations of the temperature have been made. This remains in my opinion the weak point.
and b will be smaller than those which have been determined at the critical temperatures of the mercury-halogenides (which temperatures lie in the neighbourhood of 1000° abs.) is, indeed, to be expected. For it is known that b and a decrease with increasing temperature.

But there is still something else required. If such a high critical temperature and pressure is to be reached, the double molecules must be dissociated at T_{c} to a slight amount. As at this dissociation the value of a is greatly increased ($10^{\circ} \vee a_{c}$ becomes 40 per Gramatom of the isolated atoms as against 10 in the double molecules), the calculation (which we shall give in the second part of this paper) shows that, even in case of a slight degree of this dissociation, in the formula a pretty large factor will appear for T_{c} on account of the large value of $d a / d x$, which will increase the value of T_{c} by about 30%, and can consequently raise the value of p_{c} to more than four times the amount of the original value (Cf. also $\$ 8$).
Hence it is not because in consequence of this slight degree of dissociation x the value of a_{c} itself is appreciably increased, and consequently T_{c} and p_{c} (which are both proportional to a_{c}) are likewise increased in the same degree (for this the increase of α_{c} at so slight a degree of dissociation is much too small) - but because in consequence of this dissociation, in connection with the very high value of $d a / d x$, the formula which expresses T_{c} in a_{c} obtains a factor that is a function of x and $d a / d x$, and through which T_{c} is increased by the said amount of e.g. 30%, even though the dissociation of the double molecules is only slight. And in consequence of this factor in T_{c} the formula for

$$
p_{c}=\frac{R T_{c}}{v_{c}-b_{c}}-\frac{a_{c}}{b_{c}}
$$

will undergo such a modification that p_{c} is not increased by 30%, but by more than 300%.
Thus the extraordinary circumstances connected with the critical temperature and pressure of mercury have induced me to extend my former theory concerning the critical quantities on association ${ }^{1}$) for the special very important case that a is considerably increased

[^1]in consequence of the dissociation of the double molecules. According to my recent investigations, this case is met with everywhere where the dissociation (as for Hg_{2}) leads to free atoms, for which the increased attractions of valency are so enormously much greater than for the compounds ${ }^{1}$).

4. Vapour Pressures and Values of the Vapour Densities D_{2}.

We shall start with the treatment of the experimental material known at present. To supplement this, it is however necessary approximately to know the values of D_{2} (the density of the saturate vapour). But for this purpose first the values of the vapour pressures must be known in approximation.

When the critical temperature is assumed $=1427^{\circ} \mathrm{C}=1700^{\circ}$ abs., and $p_{c}=1100$ atm., then follows from the known formula

$$
\log \frac{p_{C}}{p}=f\left(\frac{T}{T}-1\right)
$$

at $100^{\circ}, 200^{\circ}, 300^{\circ}, 500^{\circ}, 700^{\circ}$ and $880^{\circ} \mathrm{C}$., where p resp. $=0,28 \mathrm{~mm}$., $17,2 \mathrm{~mm} ., 246 \mathrm{~mm} ., 8 \mathrm{~atm} ., 50 \mathrm{~atm}$. and $\left.162 \mathrm{~atm} .^{2}\right):$

$$
f_{10}=1,82 \quad 1,81 \quad 1,80 \quad 1,78 \quad 1,80 \quad 1,75
$$

increases become resp. 47,7,54,3 and $47,6{ }^{\circ}{ }_{0}$ for ideal substances with the same values of x. Hence already on an average 50% between $x=1 / 3$ and $x=\frac{1}{3}$, which amount is still considerably increased for ordinary substances, and for the case that $\angle b$ is not $=0$.

But when besides $\triangle a$ is so enormonsly large as in mercury e.g. (formerly we always supposed $\triangle \alpha=0$, because we had only to do with substances that do not appear as isolated atoms with the so greatly increased attractions of valency), T_{c} and especially p_{c} is increased in a still much greater degree, even though the value of x be only slight.
${ }^{1}$) These Proc. $18-21$; especially 21 (1918), p. 644. Cf. also Z. f. anorg. Ch. 104, 56-156 (1918) and J. d. Ch. Ph. 16 (1918), p. 411.
$\left.{ }^{2}\right) p_{c}=1150 \mathrm{~atm}$. instead of 1100 atm . would give 1,83 for the first value of $f, 1,80$ for the last, which would render the almost constant course of this quantity still slightly better. The more p_{c} is assumed to be below 1100 atm , the greater the unjustifiable decrease of the f-values on rise of the temperature. The value of 1100 atm . is therefore to be regarded as a minimum, and p_{c} will sooner be found somewhat greater than this amount than smaller. We remind that the course of the values of f is a strict criterion for the determination of the critical pressure. for in the neighbourhood of the critical temperature these values always increase on rise of temperature; for ordinary substances there is a minimum at about $T^{\prime}=3 / 4 T_{c}$; for substances as $H e, H_{2}$, etc., where a continually decreases instead of increasing at falling temperature, f will also continue to decrease from T_{c} to lower temperatures, without passing through a minimum. (Cf. also Recueil des Tr. Ch., No. 3 and 5 of 1920).

With $\left.f_{10}=1,8 \quad(f=4,14)^{1}\right)$ and $p_{c}=1100 \mathrm{afm}$. The following values are further calculated for the temperatures above $880^{\circ} \mathrm{C}$. $\begin{array}{llllllll}900^{\circ} & 1000^{\circ} & 1100^{\circ} & 1200^{\circ} & 1300^{\circ} & 1400^{\circ} & 1427^{\circ} \mathrm{C} .\end{array}$
$p=171 \quad 274 \quad 410 \quad 581 \quad 787 \quad 1029 \quad 1100$ atm.
We can now easily calculate the values of D_{s}^{\prime} from the subjoined values of the vapour pressures, on the supposition that the vapour is and remains monatomic, and besides continnes to follow the laws of the ideal gases.

t	p	${ }_{\text {d }}^{D_{2}^{\prime}}$ (idealc) ${ }^{\text {(calc }}$)	D_{2} (found)	$\frac{D_{2} \text { (found) }}{D_{2^{\prime}}^{\prime} \text { (ideal) }}$
$100^{\circ} \mathrm{C}$	$0,28 \mathrm{~mm}$.	0,0000	-	-
$200{ }^{\circ}$	17,2	0,0001	-	-
$250{ }^{\circ}$	74,1	0,0005	-	-
300°	246	0,0014	-	-
350°	670	0,0034	-	-
400°	$2,06 \mathrm{~atm}$.	0,0076	-	-
500°	8,0	0,0253	-	-
600°	22,3	0,0624	-	-
$700{ }^{\circ}$	50	0,126	-	-
800°	102	0,232	-	-
$900{ }^{\circ}$	171	0,356	-	-
1000°	274	0,526	0,55	1,05
1100°	410	0,730	0,80	1,10
$1200{ }^{\circ}$	581	0,964	1,15	1,19
1300°	787	1,222	1,65	1,35
$1400{ }^{\circ}$	1029	1,503	2,60	1,73
$T_{c}=1427^{\circ}$	$1100=p_{c}$	1,581	$(4,15)=D_{c}$	2,62

The "found" values of D_{2} have been graphically interpolated from the following values of D_{2}, determined by Miss Bender.

$$
\begin{array}{cccccc}
1050^{\circ} & 1210^{\circ} & 1230^{\circ} & 1295^{\circ} & 1330^{\circ} & 1380^{\circ} \mathrm{C} . \\
D_{3}=0,70 & 1,15 & 1,35 & 1,65 & 1,90 & 2,50
\end{array}
$$

[^2]The "calculated" values of D_{2} have been determined from $v_{3}=$ $=R T: p$ for 1 Gr. atom, hence $v_{2}=\frac{R T}{p \times M} \times 22415 \mathrm{~cm}^{3}$ for 1 Gr ., when p is given in atm. and $R=1: 273.1$. Hence we have :

$$
D_{3}^{\prime}=\frac{p}{T} \times \frac{200,64}{22415: 273,1}=\frac{p}{T} \times \frac{200,64}{82,08}=\frac{p}{T} \times 2,444
$$

It appears from the value at 1000° that at this temperature the vapour is still mon-atomic, and the deviation from the law of Boyte is still very slight. The deviation increases more and more, and close to the critical temperature the vapour will be almost bi-molecular like the liquid. As D (calc.) : D (found) is about 2,6 at T_{c}, the deviation from the law of Mariotre would be there about $2,6: 2=1,3$. In an ideal substance $s=2,67$; in an ordinary substance $s=3,8$ to 4 . We see therefore, that the normal value of s is very consider: ably decreased in consequence of the greatly increased value of p_{c} through the small dissociation of the donble molecules at T_{c}. Also the values of v_{c} and T_{c} are modified by this, but not in the same degree as p_{c}. The result is accordiugly that, whereas p_{c} is more than four times greater than the normal value in case of non-dissociation of the double molecules, s will be about 3 times smaller than the normal value 3,8 to 4 , i.e. 1,3 .

We shall discuss this more at length in $\$ 8$.

5. The values of D_{1} and $D_{1}+D_{3}$

We now proceed to the values of D_{1}, i.e. those of the liquid densities. At the same temperatures (to which three more temperatures below $100^{\circ} \mathrm{C}$. have been added) the following values are found. The "found" values of $D_{1}+D_{2}$ (see table following page) have been obtained by addition of the above found values of D_{2} to those of D_{1}.
The "found" liquid densities D_{1} above 350° C. are graphically interpolated from the following values determined by Miss Bender.
$500^{\circ} 600^{\circ} 800^{\circ} 900^{\circ} 1000^{\circ} 11110^{\circ} 1130^{\circ} 1200^{\circ} 1270^{\circ} 1320^{\circ} \mathrm{C}$. $D_{1}=12,5 \quad 12,15 \quad 11,6 \quad 11,15 \quad 10,55 \quad 10,0 \quad 9,40 \quad 8,85 \quad 8,25 \quad 7,8$
As regards the "calculated" values of $D_{1}+D_{2}$, they were calculated from 0° to 350° from

$$
D_{1}+D_{3}=13,5956-0,0024507 t+0,0_{6} 2089 t^{2}, . . \cdot(a)
$$

in which the coefficients of t and t^{2} were calculated from the observations at 150° and $300^{\circ} \mathrm{C}$. The calculated and the found

t	D_{\perp} (found)	D_{2} (found)	$\underset{\text { dound) }}{D_{1}+D_{2}}$	$D_{1}+D_{2}(\mathrm{calc}$.
(trip.) - $38^{\circ}, 85 \mathrm{C}$.	13,6902	-	13,6902	13,6911
0°	13,5956	-	13,5956	13,5956
50°	13,4733	-	13,4733	13,4736
100°	13,3524	-	13,3524	13,3526
150°	13,2327	-	13,2327	13,2327
200°	13,1139	$(0,0001)$	13,1140	13,1138
$250{ }^{\circ}$	12,9957	$(0,0005)$	12,9962	12,9960
$300{ }^{\circ}$	12,8778	$(0,0014)$	12,8792	12,8792
$350{ }^{2}$	12,7640	$(0,0034)$	12,7674	12,7635
400°	12,65	$(0,008)$	12,66	12,66
500°	12,425	$(0,025)$	12,45	12,45
$600{ }^{\circ}$	12,18	$(0,06)$.	12,24	12,24
700°	11,90	$(0,13)$	12,03	12,03
800°	11,60	$(0,23)$	11,83	11,80
900°	11,15	$(0,36)$	11,51	11,48
1000°	10,55	0,55	11,10	11,12
1100°	9,90	0,80	10,70	10,69
1200°	9,00	1,15	10,15	10,15
$1300{ }^{\circ}$	7,80	1,65	9,45	9,46
1400°	6,00	2,60	8,60	8,58
1427°	$(4,15)=D_{c}$	$(4,15)=D_{c}$	$(8,30)$	8,30

values are in good concordance with each other; at 350° a small deviation begins to appear. At - $-38^{\circ}, 85$ the deviation is still exceedingly slight. The fictitious value D_{n} at the absolute zero $\left(t=-273^{\circ}, 1\right.$ is found $=14,2804=14,28$ (if the mercury were still liquid then).
For temperatures above $350^{\circ} \mathrm{O}$, another term must be added to the above formula. As this formula yields somewhat too small values from 400° to about 835°, and on the other hand to an ever increasing degree too large values above 835°, the term

$$
\begin{equation*}
16,4,10-6\left(\frac{t}{100}\right)^{4}\left[8,35-\frac{t}{100}\right]^{2 / 3} \tag{b}
\end{equation*}
$$

has been added to (a) from $400^{\circ} .^{1}$) The calculation teaches that the deviations from the found values are least, when the exponent of the first factor (viz. $t: 100$) amounts to 4 , and that of the second factor to $2 / 8$. Every modification in one of the exponents immediately gives not only greater, but much greater deviations. ${ }^{2}$) Here follows a survey of the values of the two parts (a) and (b), from $400^{\circ} \mathrm{C}$.

	$(a) \quad(b)$
$400^{\circ} \mathrm{C}$.	$12,6486+0,0112=12,6598=12,66$
500°	$12,4225+0,0230=12,4455=12,45$
600°	$12,2004+0,0376=12,2380=12,24$
700°	$11,9825+0,0490=12,0305=12,03$
800°	$11,7687+0,0334=11,8021=11,80$
900°	$11,5592-0,0807=11,4785=11,48$
1000°	$11,3538-0,2290=11,1248=11,12$
1100°	$11,1526-0,4598=10,6928=10,69$
1200°	$10,9557-0,8063=10,1494=10,15$
1300°	$10,7627-1,3050=9,4577=9,46$
1400°	$10,5740-1,9985=8,5755=8,58$
1427°	$10,5238-2,2254=8,2984=8,30$

The first table shows clearly that the thus calculated values are in perfect concordance with the found values. As we have calculated the coefficient $16,4.10^{-6}$ of the correction term (b) exclusively from observations up to 1300° (inclusive), the agreement at $1400^{\circ} \mathrm{C}$. is the more valuable. We may, therefore, safely assume the calculated value $8,30: 2=4,15$ to be accurate for the critical density.
6. The Value of $D_{1}-D_{2}$ near T_{c} and that of γ at different Temperatures.

We have another means to control the approximate correctness of the values of D_{1} and D_{2} e.g. above 900°, and of that of the

[^3]assumed critical temperature (1427°. C.), viz. in the empirical law that below T_{c} (not immediately below T_{c}, however, where $\left.D-D_{2} \because V \overline{1-m}\right)$, the equation
$$
D_{1}-D_{3}=C{ }^{3} 1-m
$$
holds in approximation, so that $\left(D_{1}-D_{2}\right)^{3}$ is proportional to $1-m$, i.e. to $T_{c}-T\left(m=T: T_{c}\right)$. Now we get the following table

	1000°	1100°	1200°	1300°	1400°
$D_{1}-D_{2}=$	10,0	9,1	7,85	6,15	$(3,40)$
$\left(D_{1}-D_{2}\right)^{3}=$	1000	754	484	233	(39)

so that the four first values of $\left(D_{1}-D_{9}\right)^{8}$ are roughly to each other as $4: 3: 2: 1$, which would give the value $1400^{\circ} \mathrm{C}$. for T_{c}.

The corresponding values of $\left(D_{1}-D_{3}\right)^{3}$ are to each other as 100:83:62:38(:11,6), i.e. as $5: 4: 3: 2$ about, which would point to $T_{c}=1500^{\circ} \mathrm{C}$. And as (except close to T_{c}) the \mathbb{B}^{3}-law is sooner fulfilled than the V^{2}-law, T_{c} will lie nearer to 1400° than to 1500° - in concordance, therefore, with our assumption (1427°). A critical temperature higher than 1500°, as would follow from a few values recorded by Miss Bender, is in my opinion in conflict with her own observations concerning D_{1} and D_{3}. When the two last values of $\left(D_{1}-D_{2}\right)^{2}$, viz. 38 and 11,6 are taken as criterion of the 12 law, holding theoretically near T_{c}, then the value of about $1440^{\circ} \mathrm{C}$. would follow from this for T_{c}.

Let us now examine the (reduced) coefficient of direction of the so-called straight diameter. For the total course between the absolute zero and the critical temperature evidently $2(1-\gamma)=14,28: 4,15=$ $=3,44$ is found, hence $1+\gamma=1,72, \gamma=0,72$. But this amount can only be assigned to the last piece between $1000^{\circ} \mathrm{C}$. and T_{c}, where - in consequence of the increasing association in the vapourphase - the straight diameter after its almost linear course between -40° and $+1000^{\circ} \mathrm{C}$. suddenly begins to show an appreciable curvature towards the side of the large volumes

As regards the said part below 1000° (where the vapour phase is still absolutely without influence), we find there e.g. between 0° and $300^{\circ} \mathrm{C}$.

$$
2 \gamma=\frac{13,5956-12,8792}{300} \times \frac{1700}{4,15}=0,9782,
$$

hence $\gamma=0,489=\underline{0,49}$.

And between 0° and $1000^{\circ} \mathrm{C}$.

$$
2 \gamma=\frac{13,5956-11,1248}{1000} \times \frac{1700}{4,15}=1,012
$$

hence $\gamma=0,506=0,51$, almost equal to the value between 0° and 300° O. The value $\gamma=0,5$ is that which is due to "ideal" substances with a and b invariable (chiefly b no function of v). We saw above that below $1000^{\circ} \mathrm{C}$. also the value of $f(v i z, 4,1)$ points to the quasi-ideal behaviour of mercury at those comparatively lower temperatures.

7. General Formulae for $\mathbf{v}_{c}, \boldsymbol{T}_{c}, \mathrm{p}_{c}$ and s .

When v_{c} is the critical volume (expressed in normal units) of 1 Gr. atom, then

$$
D_{c}=\frac{200,64}{22415 v_{c}}
$$

hence with $D_{c}=4,15$

$$
\begin{equation*}
v_{c}=r b_{c}=\frac{200,64}{22415 \times 4,15}=0,002157 \tag{1}
\end{equation*}
$$

Accordingly the value of b_{c} with given D_{c} will only depend on i. If e.g. $r=2$, then b_{c} would be $=108.10^{-5}$, but if r should be $=1,8, b_{c}$ would become $=120.10^{-5}$.
For T_{c}^{\prime} holds the relation $R T_{c}=\frac{8}{27} \frac{a_{c}^{\prime}}{b_{c}^{\prime}} \times \theta$, hence

$$
\begin{equation*}
R T_{c}=\frac{8}{27} n \frac{a_{c}}{b_{c}} \times \theta, \tag{}
\end{equation*}
$$

in which a_{c} and b_{c} refer to 1 Gr. atom (200,6 Gr. mercury), so that in reality $a_{c}^{\prime}=n^{3} a_{c}$ and $b_{c}^{\prime}=n b_{c}$, when $n=2:(1+x)$ represents the factor of association ${ }^{1}$).
In normal cases ($n=1$ or 2) θ is a factor somewhat smaller than unity, which we before represented by λ. (If e.g, $r=2$, we find for λ the value ${ }^{27} / 28$, whilst for ideal substances $(r=3) \lambda$ becomes $=1$).

[^4]But in all cases of association ($n>1<2$) θ will be a function of x, and besides of the contractions Δb and $\Delta V a$, if they exist. As we stated above, this factor can become pretty large, e.g. 1,3. From $p_{c}=\frac{{ }^{\prime} R T_{\mathrm{c}}^{\prime}}{v_{c}^{\prime}-b_{c}^{\prime}}-\frac{a_{c}^{\prime}}{v_{c}^{\prime}{ }^{2}}$ after substitution of the above-mentioned value of $R T_{c}$, and of $v_{c}^{\prime}=n v_{c}, b_{c}^{\prime}=n b_{c}, a_{c}^{\prime}=n^{3} a_{c}$, we find for p_{c} :

$$
\begin{equation*}
p_{c}=\frac{1}{27} \frac{a_{c}}{b_{c}{ }^{2}}\left[\frac{8 \theta}{r-1}-\frac{27}{r^{2}}\right]=\frac{1}{27} \frac{a_{c}}{b_{c}{ }^{2}} \times \pi, \tag{3}
\end{equation*}
$$

when besides $r b_{c}$ is substituted for v_{c}. Then with $r=2$ the factor π becomes therefore $=\frac{8 \times{ }^{27} / 28}{1}-\frac{27}{4}=27 \times\left(\frac{2}{7}-\frac{1}{4}\right)=\frac{27}{28}$, just as θ, the factor of $R T_{c}$ - i.e. in the normal cases ($n=1$ and 2). And if then $r=3$, in which $\theta=1$, then x becomes also $=\frac{8}{2}-\frac{27}{9}=1$.

But for $n>1<2 \pi$ will again be a function of $x, \Delta b$ and $\triangle \vee a$, and in general much greater than θ. If e.g. $\theta=1,363$ (see $\$ 8), r=2$, then π becomes $=10,91-6,75=4,16$, so that x is more than three times as great as θ. The critical pressure will then be $4,16 \times \frac{28}{27}=4,3$ times greater than the normal value for $r=2$, when there is no association, in which case $\pi=\theta=\lambda={ }^{27} /{ }_{28}{ }^{1}$).

From (1), (2) and (3) the following equation follows now further with $v_{c}^{\prime}=n v_{c}=n \times r b_{c}$:

$$
\begin{equation*}
s^{\prime}=\frac{R T_{c}^{\prime}}{p_{c} v_{c}^{\prime}}=\frac{8}{r} \times \frac{\theta}{\pi}, \tag{4}
\end{equation*}
$$

in which $s^{\prime}=s: n$ (where s refers, therefore, to v_{c} per Gr. atom). Now we do not find $r s^{\prime}=8$ as in normal cases - but

$$
\begin{equation*}
r s^{\prime}=8 \times \frac{\theta}{\pi} \tag{4a}
\end{equation*}
$$

in which $\theta: \pi$ can be $\frac{1 / 3}{}$ in some cases (see above). In consequence of this s^{\prime} may be reduced from 4 (the normal value for $r=2$) to $4: 3=1,3$, i.e. to the third of this normal value. (See the table in
${ }^{1}$) We found before that in normal cases $\theta=\pi$. Then $\theta=\frac{8 \theta}{r-1}-\frac{27}{r^{2}}$, from which $\lambda=0=\frac{27 / r^{2}}{8:(r-1)-1}$. When in this $(1+\gamma): \gamma$ is substituted for r, in which γ represents the reduced coefficient of direction of the straight line between D_{c} and $1 / 2 D_{0}$ in a D, T-diagram, we find back $\lambda=\frac{27}{8 \gamma-1}\left(\frac{\gamma}{\gamma+1}\right)^{2}$, the formula derived by me, yielding $\lambda=1$ for $r=3(\gamma=0,5)$ and $\lambda=27 / 28$ for $r=2(\gamma=1)$.
$\$ 4$, in which we found for D_{c} (found): D_{c} (Mariotre) the value $2,62: 2=1,31$, when n is practically $=2$ at T_{c}. The great decrease of s^{\prime} is, therefore, almost exclusively owing to the exceedingly great increase of p_{c} with comparatively little changed value of T_{c} and of v_{c}. (the latter in consequence of a slight modification in the value of r).
8. Calculation of θ and π, and of a_{c} and b_{c} from the given Values of $\mathbf{T}_{c}, \mathbf{p}_{c}$ and \mathbf{V}_{c}.
If $T_{c}=1700$ (abs.), $p_{c}=1100$ (atm.), and $v_{c}=215,7 \cdot 10^{-5}$ according to (1), we find for $s^{\prime}=s: n$ the value (cf. also the table in $\$ 4$; on the supposition, therefore, that n at T_{c}^{\prime} is not far from 2):

$$
\begin{equation*}
s^{\prime}=\frac{1700: 273,1}{1100 \times 215,7.10^{-5}}: 2=1,312 . \tag{a}
\end{equation*}
$$

From (4 4^{a}) follows for θ, the coefficient of $R T_{c}$, from

$$
r s^{\prime}=\frac{8 \theta}{\frac{8 \theta}{r-1}-\frac{27}{r^{2}}}
$$

the value

$$
\begin{equation*}
\theta=\frac{27}{8 r^{2}\left(\frac{1}{r-1}-\frac{1}{r s^{\prime}}\right)}=\frac{27 s^{\prime}}{8 r\left(\frac{r s^{\prime}}{r-1}-1\right)} \tag{b}
\end{equation*}
$$

With $s^{\prime}=1,312$ we find from this the following values for different values of r.

$$
\begin{array}{llllll}
r=2 & 1,9 & 1,8 & 1,7 & 1,6 & 1,5 \\
\hline \theta=1,363 & 1,317 & 1,260 & 1,191 & 1,108 & 1,005
\end{array}
$$

The factor θ becomes, therefore, smaller as r is assumed smaller, which also follows immediately from the formula (b), if only $r<3,05$, which is of course always the case. It also appears from (b) that θ becomes smaller, if n should be <2, for then $s^{\prime}=s: n$ becomes greater.

Then is found for the factor x at p_{c}

$$
\begin{equation*}
\pi=\frac{8 \theta}{r s^{\prime}}=\frac{27}{r^{2}\left(\frac{r s^{\prime}}{r-1}-1\right)^{\prime}} \tag{o}
\end{equation*}
$$

y ielding

$$
\begin{array}{llllll}
r=2 & 1,9 & 1,8 & 1,7 & 1,6 & 1,5 \\
\hline \boldsymbol{\pi}=4,156 & 4,226 & 4,268 & 4,274 & 4,222 & 4,087
\end{array}
$$

Hence the factor π increases with decreasing r, as long as r remains $>1,74 \quad(\pi=4,277)$. For smaller values of $r \pi$ decreases again.

As $\theta=1,36$ is rather great, $r=v_{c}: b_{c}$ will probably lie in the neighbourhood of 1,8 or 1,7 for mercury at the critical temperature 〔as we shall see from the theoretical concluding part of this paper, this decrease is also a consequence of the degree of dissociation, however small, of the double molecules at T_{c}, as soon as Δa is great]. Then θ is 1,2 or 1,25 and π in the neighbourhood of its maximum value 4,28 .

Let us now examine the values of a_{c} and b_{c}, corresponding to the assumed critical data $T_{c}^{\prime}=1700^{\circ}$ abs., $p_{c}=1100 \mathrm{~atm} ., v_{c}=215,7$. $.10^{-5}$) for different values of r.
From $R T_{c} v_{c}=\frac{8}{27} n r a_{c} \times \theta$ follows $a_{c}=\frac{27}{8} R T_{c} v_{c}: n r \theta=\frac{27}{8} \times$
$\times 134,3 \cdot 10^{-4}: n r^{r} \theta$, so that $10^{4} \alpha_{c}=226,6: r \theta$, when $n=2$.
With regard to b_{c} we have simply $b_{c}=v_{c}: r$; hence $10^{\circ} b_{c} \equiv 215,7: r$.
This gives the following values of a_{c} and b_{c}.

$2=$	2	1,9	1,8	1,7	1,6	1,5
$10^{5} b_{c}=$	107,9	113,5	119,8	126,9	134,8	143,8
$10^{4} a_{c}=$	83,13	90,57	99,91	111,9	127,8	150,3
$10^{2} v \overline{a_{c}}=$	9,12	9,52	10,00	10,58	11,30	12,26

We see from this that with $r=1,8$ - in harmony with the slight degree of dissociation corresponding to the increased critical pressure and temperature - the values $10^{8} b_{c}=120,10^{4} a_{c}=100$ (per Gr.atom) are about corresponding. $V a$ is then somewhat smaller than the value determined from the mercury halogenides at about 1000° C., viz. $10 \cdot 10^{-2}$ instead of $11 \cdot 10^{-2}$.
By the aid of these values of a_{c} and b_{c} we shall now calculate back the values of T_{c} and p_{c} by way of check on two suppositions.

In the first place that mercury were not dissociated at the critical temperature, i.e. consisted merely of double molecules $(x=0, n=2)$. If we then suppose that $r=2$, we should get in this case $v_{c}=r b_{c}=2 \times$ $\times 119,8 \cdot 10^{-5}=239,6 \cdot 10^{-5}$ (per Gr.-atom). Further $R T_{c}=\frac{8}{27} \times 2 \times$ $\times \frac{99,91 \cdot 10^{-4}}{119,8 \cdot 10^{-5}} \times \frac{27}{28}$, as $\theta=2=27 / 28$ corresponds to $r=2$ (see above); hence $R T_{c}^{\prime}=4,766, \underline{T}_{c}=1302^{\circ}$ abs. The following equation is then found for p_{c} :

$$
p_{c}=\frac{1}{27} \times \frac{99,91 \cdot 10^{-4}}{143,5 \cdot 10^{-8}} \times \frac{27}{28}=248,6=249 \mathrm{~atm} .
$$

With the now assumed values of a_{c} and b_{c} these would be the values of the critical temperature and pressure of perfectly undissociated $H g$, at the critical point. They would give for
$s^{\prime}=R T_{c}^{\prime}: p_{c} v_{c}^{\prime}$ with $v_{c}^{\prime}=2 v_{c}$ the value $s^{\prime}=\frac{4,766}{248,6 \times 479,2 \cdot 10^{-5}}=\underline{4,00,}$ which value properly corresponds to $r=2$.
The equation of state is, of course, also identically satisfied. For $\frac{\boldsymbol{a}_{c}}{v_{c^{2}}{ }^{2}}$ is calculated $\frac{99,91 \cdot 10^{-4}}{574,1 \cdot 10^{-8}}$
$:\left(p_{c}+a_{c} / v_{c}{ }^{2}\right)$ becomes:
i.e.

$$
2(239,6-119,8) 10^{-5}=\frac{4,766}{248,6+1740,3},
$$

We may state here that $a_{c} / v_{c}{ }^{2}$ is also properly $=\left(f_{c}-1\right) p_{c}=7 p_{c}$, because $f_{c}=8$ corresponds to $r=2$.

But all these values are totally changed, when only, in the second place, the slightest dissociation of the double molecules exists at T_{c}, (which we shall further develop theoretically in the second part of this paper).

Let us suppose for convenience that then n remains $=2(x$ will possibly be 0,01 , so that strictly speaking $n=2:(1+x)$ would become 1,98 , but in the calculation of θ and π above we have also left $n=2$), and further that in this case in consequence of the slight dissociation at T_{c} the value of r would have become 1,8 instead of 2 (this too will be further elucidated in the second part); then v_{c} becomes $=1,8 \times 119,8^{3} \cdot 10^{-5}=215,7 \cdot 10^{-5}$. Further with $\theta=1,260$ and $\pi=4,268$ (see above) $R T=6,228, T=1700 \mathrm{abs} .$, $p_{c}=1100 \mathrm{~atm} .$, all of them being the values from which we have started for the calculation of the factors θ and π, and which will give back the value 1,312 for $s^{\prime}=\frac{6,228}{1100 \times 431,4.10^{-5}}$

Accordingly the value of T_{c} has become $\frac{28}{27} \times 1,26=1,31$-times greater, that of $p_{e} \frac{28}{27} \times 4,268=\underline{4,43}$-times greater, and that of s^{\prime} 3,05-times smaller.
The equation of state becomes in this case:

$$
2(215,7-119,8) 10-5=\frac{6,228}{1100+2147} \text {, or } 192.10^{-5}=192.10^{-5} \text {. }
$$

Now $a_{c} / v_{c}{ }^{2}$ is no longer $=7 p_{c}$, but only slightly less than $2 p_{c}$. In the above discussion we have always supposed n in the neighbourhood of 2. It might, however, be asked, how high e.g. T_{c} might become, if n was in the neighbourhood of 1 . As $\sqrt{a_{c}}$ would then be $=40.10^{-2}$ (increased attraction of the isolated atoms) instead of 11 à $10 \cdot 10^{-2}$, we should get (b remaining $=120.10^{-5}$):
$T_{c}=273,1 \times \frac{8}{27} \lambda \frac{1600.10^{-4}}{120.10^{-6}}=$
whereas in reality T will Total dissociation of $\mathrm{H} g_{2}$ into $\mathrm{Hg}+\mathrm{Hg}$ is, therefore, impossible at the critical point. Only a value of x in the neighbourhood of 0 (n in that of 2) can represent the critical quantities as determined experimentally.

In this first paper we have only specified the experimental data known at present more closely, and drawn from them all the consequences to which these data gave occasion. If really $v=216.10^{-5}$, $T_{c}=1700^{\circ}$ abs. and $p_{c}=1100 \mathrm{~atm}$. - and there is no longer any doubt that this will appear to be the case approximately .then belong to the values of r mentioned in $\$ 8$ the values of θ and π placed under them, viz. the factors for $R T_{c}$ and p_{c} in consequence of the small degree of association at T_{c} in connection with the very great value of $\triangle \mathcal{V} a$. And this on the strength of the relations derived in \$7, which are of general validity.

But this is only the foundation of our real task. To supplement our former theory of the critical quantities on association, we must now examine theoretically what follows, in the case of such great values of $\triangle V a$ on dissociation, from $\frac{d p}{d v}=0$ and $\frac{d^{2} p}{d v^{2}}=0$, and derive the relations which are valid for $r=v_{c}: b$, and also for θ, the factor of T_{c}-all in function of the degree of dissociation x and of $\triangle V a$. Then the value of π, the factor of p_{c}, is known at the same time.

And then we shall also be able, on account of the found formulae for r and θ, to define more closely the values of them; which was not yet eutirely possible in this paper, because the choice between different values of r had still remained open.

La Tour près Vevey, spring 1920.
 To be continued.

I state with pleasure that the execution also of this work has been greatly facilitated by the aid of the $V_{A N}$ 'т Horr-fund, for which I express my thanks to the board.

[^0]: ${ }^{1)}$ Cf. among others These Proc. 19, p. 6 (1916); 20, p. 138 (1917). Also Zeitschr für anorg. Chemie 104, p. 84 and 126 (1918).

[^1]: ${ }^{1}{ }^{1}$) Arch. Teyler (2) 11, 3e Partie (1908), p. 1-96; These Proc. 17 (1914), p. 598 We remind the reader that the mere fact of the dissociation at T_{c} (hence Δb and $\Delta a=0$) causes the values of T_{c} and p_{c} to increase considerably. Thus we found for $x=1 / 3$ already an increase of $10,6 \% / 0$ for T_{c}; for $x=1 / 2$ of $11,5 \%$, and for $x=2 / 3$ of $9,9 \%$ (for $x=0$ and $x=1$ the factor is of course $=1$), i.e. for ideal snbstances. For "ordinary" substances and for the cases that in the association e.g. Δb is not $=0$, these amounts are considerably increased. And as regards p_{c}, these

[^2]: ${ }^{1}$) It appears from this value of f that - at least at temperatures below $1000^{\circ} \mathrm{C}$. - mercury behaves almost as an ideal substance (for them $f_{c}=4$, and $f<4$ below T_{c}).

[^3]: ${ }^{1}$) Below 400° the correction term (b) is no longer valid. For 300° it would yield $+0,0041$; for $200^{\circ}+0,0009$ and for $100^{\circ}+0,00006$, which values are too great.
 ${ }^{2}$) We point out that the exponent ${ }^{2 / 3}$ is assumed not to influence the sign of $8,35-t / 100$, so that this remains negative for $t>835^{\circ}$.

[^4]: ${ }^{1}$) From 1 single molecule (or atom 1) $1 / 2$ double molecule $\frac{1}{2} \cdot(1-x)+1 / 2(2 x)=$ $1 / 2(1+x)$ molecules arise on dissociation of the double molecule. These molecules occupy the molecular volume b_{c} (leaving contraction out of account; this has been reckoned with in the factor 0), so that every molecule on an average occupies the volume $b_{c}{ }_{c}=b_{c}: 1 / 2(1+x)=b_{c} \times 2:(1+x)$. If the degree of dissociation x of $t_{\text {he }}$ double molecules $=0$, then $n \equiv 2:(1+x)=2$, hence $b^{\prime} c=2 b_{c}$ (all the molecules are then double molecules). And when $x=1$ (all the molecules single), then $n=1$ and $b_{c}^{\prime}=b_{c}$. And the same thing holds with regard to $V a$ and v.

