
Physics.-- "On the Critical Quantities in t!te Case of Association, 
when theMoleculflr Attraction is considerably lncreased on 
Dis50ciation of the Molecules to t!te Lwlated Atoms, also in 
Connection 1.vith the Critical Quantities of Mercury" . 11. (Con­
clusioTl). By Dr. J .. J. VAN LAAlt. (Communicated by Prof. H. A. 
LOREN'rz). 

(Communieated at the meeting of June 26, 1920). 

~ 9. General Relation fol' the Degree of Dissociation :x 
of the Double Molecules. 

If Z is the thermodynamic potentialof the mixture of double and 
single molecules, th en it may assumect tobe known tbat I) 

Z = n l Cl + 11, C. --JPdV! pv + Rl' (nJ log n l + n. Log n.), 

when n
l 

and n. repl'esent the numbeJ' of molecules resp. of the 

single and the double molecules, and G\ and C. are given by 

Cl =--kl 'J'(log 7'-,1) (eJo - l'(.~I)ol 

c. = -1~. T (log 7'-1) + (e,)o - T (8,)0 \ • 
In th is kt and k. are the capacities of heat at intlnitely large 

constant volume, (e,)o and (e.). tbe eonstan(s of energy, (S1)0 and (s,)o 
the constants of entropy of the components. 

With equilibrium between the two components we have: 

PI - 1/. Il. = 0, . (a) 
az 

when [,tI and [,t, represent the two mo/ecular potentials (viz. IlJ = ~ 
Unj 

and (I. = - of tbe eomponents. [11'1 refe1's, thel'efore, in mercury OZ) 
on. 

to 200,6 Gr., [,t. on the othe1' hand to 2 X 200,6 Gr. me1'cury J. Now 

[,tI = Cl -- ~(j) + RI' (1 + log (nI + n2» + UT Log Cl 
unI 

1) Cf. among others Arel!. '!'EYLER (2) 11, 3ième Partie, p. 1-97 (1908). 
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+ log (nI + n~) -+ log (\, while w has been written fol' J pclv-rJV · 

Rellce (a) beeomes: 

(CI--I/, C.) - (OW __ 1 ~~) + ~RT(l+ log (nI in,)) 1 tRTlog~~=O. 
Onl 2 On. c. 

Furthel' evidelltly n l = 1/. X 2x = x, n. = 1/. (1---x), because fl'om 
1 single molecule = 1/. double molecule arise 1/. (1-.x) double 
molecules and I I. X 2x single molecules. 

Ow Ow dn l dw dn. dw 1 dw 
Now -=-,- +- - -- -- --- so that we get: 

o.v Onl dm on. d,v On l 2 on; 

Ow ' c 2 

(CI __ 1/. C.) ,_._- +- ~ RT(l + log ~ (1 + x)) -1- ~ RTlog -:'-=0. 
Ow c. 

i.e. 

, 1/.(l+x)RT a . } j r' F rom p = 1 '-- -; follows for w = pav·-pv in which 
v - J v' 

in .fPdv .v must be kept constant, because in thp original equation 

for Z (which holds for any mixture, wbethel' in equilibrium or not) 
the late!' possible state of equilibdum of the components, gh'en by 
(a), must not be taken into account, so that n 1 and n., hence iJ] 

remain constant]: 

[ J'dbJ a w=~(1+,v)ll7' log(v--b)-+ -_. +---pv. 
v--b v 

, (x=konst.) 

ln genera! b is still a fllnction of v, henco in J pdv the part 

( dl'- wil! be represented byJd (v.~b) + (d?_ = log (v--b) + (_iJL. .J i'-b v-.. b J v-h' J ?J·--b 
[We may point out that in the assumed equation of state the· 

qllantities v, a, and b of the mixt1\['e refer to simple mo!eculal' 
quantities (e g. 200,6 Gr. mercu1'Y)' Fo!' witb VI = nv, b' = nb, 
a' = n'a, in whieb n is tbe degt'ee of association 2: Cl + .x), the 

.• I . RT a' h f' h' orlgma equatwn p = ------ (cf. t e tirst part 0 t IS paper) 
v'-·b l v" 

passes into the given equation. Lf e.g. 1/. (2.x) simple and 1/. (l-.v) 
double molecules al'ise from 1 single = 1/. double molecule, then 
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b = :ebI + 1/. (i-x) b. - when bI represents the co-volume of 1 
single molecule and b. th at of 1 dOllble molecllle - wbicb quantity 
refer's, thel'efor'e, to the original single-molecular quantity, Bllt b' 
r'efers to the molecnlar quantity, wbich on an ftvemge yields 1 
moleeltle aftel' the association, and wbich is 2: (1 + ,r) times greater 
than Ibe single-moleclllal' quantity. [i.e. at x = 0 (exelnsively double 
molecules) twice gl'eater'; ftt ,r = 1 (exclusively single molecules) 
onee gl'eater; etc.]. Fot' from the original single molecule tbere have 
been fOt'lned 1/. (1 + x) new molecules. so that every new molecule 
cOI'l'esponds avemgely to 2 : (i + ;v) ol'iginal single molecules]. 

aw 
We can now compllte --. As b is a funetion of v (through bI and a,v 

ó,) and of x, and also v a fUlle/ion of x on account of the equation 
of state v = f (p, T, x, a, b), in whieh also a and bare funelions of 

x, we have: 

dd~(log(v b)+&)-- _~.[~~_(ah) dv __ (ab) J+[_l (ab) dv + (ao) J 
w - v-ob diJ] au x d;v aa; v v-b av x d~ a:~ v ' 

1 O · 'tt f J db J ~t d d w len IS wn en or -- = _.- v, au because evidently 
v-h v-b 

;x=const. x=const. 

C:V)v= v 1 b (}~l· Hence 

~ (log (v _ b) + ())= __ .~_ dv ___ ~_ (ab) + (ao) . 
da; v-b dPJ v-b a;/J v aa; v 

For the further calculation of (~.~1 the quantity () must be 

known, i. e. b in fUllction of v. Wben we assume for this the 
appl'oximate relation del'ived by me before 1): 

v-b b 
----.- = fl- , 
v- bo b. 

in which [3 is a coefficient that. depends on the nature of the 

(
ab) (1 - ~~) b~ [3v (v-b o) . 

substanee, then àv x=--N--;- and v-b = ---~- easJly follows 

b 
bov 

from = .~.. .- -- . In consequence of this () becomes: 
~v+ (l-~)bo 

-J (1--~) b~ -J[ [3 1/(3 1/(3-1J 
ti ~ ~1' (v":"'b

o
) (rJv + (I-=-~) b

9
) dv - #v+(l- p)bo - -;- + -;~b; dv, 

x=const 

1) See Recueil des Trav. Chim. N°. 3 and 5 of 1920. 
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i,e, 
1 1-fl 

() = log (flv + (l-fl) bo) -- ~.log v + {j- log (v-b o), 

whieh propel'ly beeomes= 0 for fl = 1 (ideal substances, where b 
is independent of v). 

For this mayalso be written, beeause (see above) {3v + (1--{~)b. = 
bev 

=-y;: 
bov 1 1-fl 1-fl v b 

() = logb-- - (i log v + -~-log (v-b o) = - {j-log v-b: -log ~ . 

(1-~)b ó-bo 
Now v = I=-fJb/bo' henee v-bo = I-fb7~' and () becomes: 

1--fl (I---fl) b b 1-fl 1 1--[3 () = -11- log - b~b;--log ~=-{i-log (b-bo)-~logb+logbo---~-log(l-{3).I) 

Thus we find for (aa()): 
x v 

(ao) = I-i! __ 1_ ((.~~) _ (~bo) ) _~ .~ (ab) + ~ (~~o) , a.'/] v [3 b-b, aiJ] v aa; v [3 b d,'/] v bo èb v 

or also: 

Now 

For 

v~b ~: - ~ v lb G~o)~ l.e. v-~ b ~~ :0 ~~~. For as bo = 

(ab o) = x (b1)0 + 1/. (l-x) (b 2)0, we have a.; v = (bl)o - 1/. (b. )., 

which quantity we shall represent by Lbo. This is accord­
ingly the inel'ease of volume, when 1/. double molecule passes 
into j single molecule. From the above given expression 

1) In () = ~- we nlJght at once have substüuted v - b = b .. ~~-._.-j . db. . [3(b/bo- 1) 

v-b l-[3b/bo 
(derived from the above given expression for v) for v - b, and 

() = J~~(b (3:o) db = JCt~ b~ - 1~~) db = (~ - 1) log (b - ba) _. ~ log b 

might have been written, but then the constant term (i.e. constant with regard 
to v) log bo, essential for the differentiation with respect to x, would have been 
wanting, and () would not have become = 0 for (3 = 1 (the integral is inclefinite). 

19* 
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dw 
for w we now find fOl' ~l : 

G tV 
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dv 
In Ibis all the terms with -l- are eliminated in conseqnence of 

(X 

the equation of state, and we keep: 

I dw b b. bo Ida 
-~--- = ~ [log (v-b) -+ 0] -- ~ (1 + al) ------~ -+ -;------- , 
Rl d."C bo v- b Rl V drc 

With I'egard to t.he quantity a, the following eqllation may be 

given: 

Va=x Val -+ I/.(l--x) Va,=I/. Va. + m(l/a l _1/, Va.)=I/. Va, -I mb.Va, 
wh en Val l'efel's t.o one single molecnle and Va, to one don bie 
molecule, and b.Va rept'esents the inc1'ease of the attraction, when 

-1/. double molecule passes into -I single molecule (atom). As fol' 
mercury 1/. Va, is abollt = 10 .10-- 2 and Val about = 40 .10--2, 

b.Va has th ere the exceedingly high valne 30.10--2, i.e. b.Va three 

times the value of Va,. 
Hence from a = (Va)' follows da/d~ = 2 I/a. b.'Va, and thus the 

equation (b) becomes finally: 

1 x· 1[ v-b ] b b.bo , 2Va.b.Va 
-log--- =C-+-- log ------- -+ 0 _1. (l-tx)---- i ----~---- (c) 
2 1--x' 2' I/,(I-tx) 2 bov-b RTv ' 

1/ C- C 
when we combine --'-R'r 1 __ ~ --- lap 2 to one constant (tempera-

ture function) C\, and write for Cl and c. resp. Cl = x: 1/, (1 + a;) 
and c. = 1/. (i-x): 1/, (l + x). 

It is now this lust equation that serves as basis fol' the determi­
nation of the degl'ee of dissoci~tion .1~ of the double molecules, i. e. 

f h d .. f' I . dx h' I. '11 1 or t e etet'mmatlOIl 0 tie qua,ntl!y --, w lC11 WI ocenr in tlle 
dv 

dp d'p 
expressions for --c- and --. In the equation mentioned the quantity 

dv dv~ 

b.bo wil! probnbly be always exceedingly small, and may be neglect­
ad in most cases, whereas on the contrary in this special case, 

where the dissociation of the double molecules Eg~ leads to isolated 
at01ns Eg, b. Va wil! possess a very large value, which quite governs 
the modification of the eritical q uan tities. 

t 
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~ 10. Determination of (dX) 
dv t' 

IJet us now difI'el'entiate the l'ela!ion ,(c), i.e. x = f (v, T) at T 
eonstant with l'espeet to v, again taking' into aecormt that b =f(v,x) 

and a = f (x). We th en get: 

~(~ + 1
2;vx') ~': =~ [;-~-d 1-- G~l- G~)v~: 1+ 

we get: 

b. bo dm 
--_ .. _--_._-

2{3 (1) -- bo) dv 

or also 

-I I (?~) I (~~) ~.v 1-1 __ ~ 1 dilJ_ 
av:c a,"C v d1) ,_ 1 -+.:IJ dv 

b 1 
ean also be written fol' -- ---. (see ~ 9). As fllrthel' 

bo v~b 

\Vhen to obviate unneeessary eomplieations in what follows, we 
disl'egard all the terms with b.b o ~- which rnay the sooner be 

done, as at the limiting volume Va = bo the volume of 1/. double 
molecule will probably be equal to that of 1 single molecule, and 
as besides b.Va is ver)' Inl'ge with l'egard to b.bo we thus get: 

1 1 2 Va. b. Va 

(
dX) 2 v-b RTv· >- === -------------"-------"----_._- , 
dv t 1+ 1/.x(1--x) 2(b.Va)2 

-- -- -- --"-------~-" - ._-----~_.-

.:IJ (l-x~) Rlv 

i.e. 

.- " 
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(
dX) 1 l/.,V(I-m)(I- v v·~ ~~~~~) 
d-; t= ~-=-b (T~ 1/. ,v) - 2iV (l--,v)(L. Va)2 : RT~ = 

1 üJ(I_,1:)(RTv-4
V 
;~Va.L.Va) 

v-b (2-x) RTv--4.v (1-,1:) (L. Va)' 

because 1 + 1/. ,1: (l-x) : (1+x) is = 1-1/. :c. If we put for brevity: 

v--b 
-~Va=a and L.Va=L., 

v 

we have finally: 

(
dm) 1 x (1-,v) (RTv-4a L.) 
dv t=;;=t; (2-x) RT1)-4 .. v (I-x) 

(1) 

When L. = 0, or may be neglected, as in all cases óf dissociation 

b· td' . I d (cl;))) 1 ,v(1--x) 
W ICI) 0 not eventuate In lSO ate atoms, then -- = ------- -------- , 

dv t v-b 2--x 
the all'eady known expression, which is always positive, and which 

becomes = ° for x = ° and x = t. 
But if L. is large, as with Hih ~ 2 H,q, tben in consequenee 

f } JT: - - v--b [a v --b L.Va] o I- v--4aLi=RTv---4-- Va.L.Va=v RT---4- ------
v _ v v Va 

the quantity dx/dv ean become negative at lowel' t.emperatures or 
comparatively smal! values of v. In merCll!'y, where Va = 1/. Va. + 
+ x. L. Va is = (10+ 30x) .10-2, L.Va: Va will appl'oaeh 30 : 10= 3 
with small values of m,' so that then the transition from positive to 

negative is reached, when Rl'= 12 ~ v-b. If v - v then witl v 1) - C'. 1 

ve = 1,8 be, and a about = 8/. ac, b = =/. be, 

be given by RT= 12 X 0,75 ~_~ 1,8-0,_75 
1,8 be 1,8 

this tempet'ature wiJl 

35 ae 12 b
e

' And as in mer-

R T
· 8 ac . 20 ae 

cury. e IS 27 b
e 
X 2 X (about 1,25) = 27 b

e 
(compare the fir'st part 

in these Proc.), T becomes about = 61/ 16 Te, i.e. 

T ~ 4 Tc (at v = vel, 

so that with a volume = t'c the quantity dx/dv becomes positive 
again only above about 6700° abs. 

$ 

T 
", 

Fic" I 
v -l» 00 
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Hence dx / clo is al ways nl'!gatioe at 
the C1'itical temperature itselj, wben 
L. Va has such a high value as in 
mercmy and similar substances. Then 
the degree of dissociation of tbe double 
molecules Hg, clec?'eases when the 
volume becomes greater, instead of 
increasing - as it general!y does. 

As Cl (v-- b) : v' (a and b assumed 
constant) bas its maximum value at 
v = 2b, the transition temperature for 
values of v both about < 2b and 
> 2b will be lower than that (Tl) at 
only little higher than that at v = V e v = 2b, which latter wil! be 

(about 4 Tc) 1). Ree fig. 1. 
The decrease of x with increasing volume is of comse accounted 

for in tbis way, thaI on incl'ease of the degree of dissociation x wit h 
increasing volume also Cl becornes greater. But this canses the volume 
to decrease again, in which the deel'ease in the end exceeds the 

original increase. 
At high temperature tbe pressure willbe comparatively great, 

so that then, in consequence of an increase of a, p + a/v2 will be 
increased little; v-D, bence also v, will then be lowel'ed compara­
tively little. Fot' this reason dX/df) wil! always be positive at high 

1) The righthand branch of the transition curve (dotted in the figure) will get 
more to the left, and Tl possibly slightly lower tlwn would follow from the above 
calculation, becallse then x can no more be assumed near O. The intersection with the 
vapour branch of the saturation curve takes place at T = about 0,8 Te. l~or 

[rom pv = 1/
2
(1 + x) RT and p = Pe e---4,14(1/m-ll, where 4,14 is the vapollr pressure 

factor f = 1,8 X 2,303 and m = T: Tc, follows Pe V e-elc. = 1/2 (1 + x) mR7'c. When 

x is put approximately = 1/2, th en ne -ete, becomes = 8/4 ms. (with v = nvc and 
R7'e: pcvc = sj. Now in mercury s = 2,62 (see the cited first part), so that finally 

n = 1,965 m e,j,14(1/rn-l) (saturation curve). This must now be combined with 

a v-b L. Va. , . 
RT = 4 - -.- V·--. In thls t,v a = 30. 10-2, whlle Va becomes = 25.10-2 

v v a 
with x = 1/

2
, When at the point of intersection a is put about = Jl/4 a~. b = 11/4 be, 

ac n1'e-- 11 /4 be . . 20 ae 
then mRTe == 6 --------, 1. e. wlth Ve = 1,8 be and RTe = 97 -{ (,see 

nvc nvc ó.J Ie 

5
1j8n-l'/. . . . ' fi d above) m = 2, ---. -- (transJtlOn curve). Both equatlOns are satIs Ie by 

n 
m = 0,778, n = 4,99 (point of intersection), so thaI, this wil! lie at about 

T = 0,8 Tc, where v = 5ve· 
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tem]Jeratut'es (higbel' thall the eritieal transit.ion tempel'ature TI> = 4l'c 
in Hg). The same thing is also the ease with great vallles of v, 
for then a//)2 has only sliglJt influence by the side of p. 

As regards Ihe vallles of V f1eat' b, here too dX/dl) wil! alwaYH be 

positive, beeanse v eannot becorne smaller thall b, _and x not smaller 

than 0, In consequence of the inel'ease of !l tbe volume will 

in deed beeome somewbat smaller; but this decrease ean only be 

exceedingly smalI, as v is all'eady al most = b. 
Rell1al'lc. In the equation (c) the constant C will eontain the 

term C/o (e.)o-(e1)0): Rl'= --Qo: Rl' (on aceount of C/2 C.-CJ: RT), 
in wbich Qo represents tbe ---- always positive --- heat of dissocia­

lion (see ~ 9), while (j contains tllO terln (1/15 ---1) log (v - b) (1'01' 
V -~ b = (v - bo) X [3 "/bo); henee x: vr~-.::::. :è- wi11 have the form 

1/ (- '20+ ~_':'-~~('!)- : R7' 
lc )<,_ (v--b) .B >< e v , in which Ic will contain ex-

pOllentially neither v -- IJ nOl' 1'. H, therefore, the term with b. Va 
is smaller than Qo, then x will approach 0 exponentiaJly at l' 0, 

v = b. (If the term with b. Va should be larger than Qo, i- x 
approaches 0 exponentially). Hence according to (1) the differential 

qLlotient dx/dv will approach exponentially 10 0 at any rate at l' 0, 
v = b, as it eontains the factor x (i-x) : (v--,-b). J f, hO\,vever, l' is 

> 0, everything depends al v = b on the exponent of v-b, which 

will evidently be 1/2r-i, In "ideal" snbstances, where I~ = 1, this 

exponent is negative, hence d.T/ d" approaches to 00. But for "ordinary" 

substances, in which 1/15 ranges between a little more than 2 and 

a little more than 4: (aecording as, in view of the factor 1 : a oc­

cLll'l'ing in (3, the temperature is higher or lower), tbe exponent in 

question will be positive, and dxldv will thus approach 0, 

~ 11. The Differential Quotient C~} and the Value of RTc• 

1/. (i + x) Rl' 
From tlle equatioll of state p = - b 

!l 
follows: 

v' v-

::la 2 Va. b. Va (dX) + -- ---- --------- .. _- . 
v 3 v' dv t 

Putting again (àà~;) = L.b = 0, ,jl1st as befoJ'e b.bo, and writing 
(J, ~' 
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bi fol' (~~ }t~ we ge!: 

(~E)= ~(dllJ) [!!T -~-~~ct-.• b.J!(lJ _ l/.d! ___ ±'~)iR~'(l_bl) 
dv t 2 dv t v-b v (v-b) 

2a 

Now substituting fol' dx/ dv its valne from (1), we find: 

(~~}= ~- x_~_~~xl (2=;)--~~~~ =~ 4:7f~--;)E.[ ~~-~~) -~{;-~b) J ---~ 
1/. (1 +m) RT I 2a 

-- --------~- ( l-b ) +. -- , 
(v-b)' v3 

writing simply cr v/v_ b fol' Va (see ~ 10) and b. for b.Va; hence aIso: 

(~P.) = _____ . ___ 2.. _____ [ __ .: (1--=~v.) (I~'~=4a ____ ~L ____ _ ~ (I +.1)) RTv (1 ---.-bIH- 4a'J. 
dv t 21' (v-- W (2---~m) RTv-4,x (I-[lJ) b.' 

This must now be = 0 at the critical point; Lhus we have: 

.v (1'---iV) (RT1!--4ab.)' = [(2-m)RTv 4ü' (l·m) b. 2J [(1 + m) RTv) 1 bi) 4a2], 

i,e. aftel' some redllction and division of tbe two members by RTv: 

I)J (l.-m) RTv - 8 m (l.v) ab. = (2-x) (1 + m) R'l'v (l---b l
) --- 4 (2-m) u'-

._.- 4 x (lx') (I----b') b.', 

and from tbis: 
1 '" (2-x) a' -- 2 [IJ (l--·x) a. b. -+ .v (I·_---m 2

) (I-bi) b.' 
"4 R leve =---._------- 1-' . (2) 

(2--,1;) + x) (1-- b ) ----- IV (I-x) 

fol' which we mayalso write: 
1 rl (a -~ (1 + m) (I-bi) b.) «2~{1J) L(-m (I-iV) b.) 
"4 R.7 e Vc = ab.+- ----------------------.-------------------------------- . (2a) 

(2-x) (l+x) (l--b')-.1) (1-~x) 

This is, therefol'e, al ready the expl'ession for R 1~, expl'essed in 

ve, be, etc. As a cbeck may serve that at b. = 0 this passes info 

" 4 (2-[lJ)u' 4(2-.'V)ac (v c------be}' 
Rl. =--.... -----.- = --------- ---------

t 7\1, N 8' 1\VC V e 

out' former expression (Areb. Teylel' lOc. cit.), derived fot' the case 

that tbere does not take place any change in the molecnlar attrac­

tion in eonseql1ence of the dissoeiation of the double molecules. 

If also .x"':" 1 (all the molecules single), then becornes 
" 2ae (vc-bc)' 2 (r-l)2 (Ic 

R 1 - --- ----------- - -------_ .. ------ ----
c- 1---- b'c vc 3 -l---b'c r 3 be' 

as we also found before. (Ut'. among othel's These Proc, Vol. XVI, 

p.45, and Ibid., p.810). In this tbe value of l' = Vc : he can 

(
d'P) of course not be determined until we have also pnt .. - = O. 
dv' t 

ln ideal substaJl(~es b'C =0,'l'=3, hence Rl~=287~::' In ordinary 

-r 
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substanees, where b'e appl'oaehes l/S and l' approaches 2, RTe becomes 

8 ae . 
- 28 b~; both known expressIOns. 

We wil! now flrst substitule the found value of RTe in (1), in 
order to deterrnine tbe value of dx / dI) at the crit.ical point. If we 
write for bl'evity: 

a-- (l + ,v) (l-b') 6. = A j (2-x) a-m (I-.'I;) 6. = B I 
(2-.v) (1 +x) (I-b') _. ,'I; (l-m) = 2 - (2-m) (I+x) b' = NI' 

we get, aftel' substitution of 

1 Dl' "AB 
T.n e Ve = a LJ. -t -N ' . (2b) 

In 

the eqnation 

(
d.v) oT (1-.'1;) AB: N ,-
ä.-;, t --;=b (2-m) a 6. + (2-,'1;) AB: N--m (1-a;) 

In this (2-m)a 6. - x (1--x) 6.' = B6., hence also 

(~:}=:~~~b'V) N6-+ 12-=~)A=m~1~~m~~, 

because NL. + (2--x) A is evidently = B. Hence we have now for 

(
dm) ,-d-;; t at the critica! point the exceedingly simple expression 

m(l-m)A m(l-m) a-(l+o')(l-b')6. 
------._~... - - ~---- --~._---_ .. _._--, 
t'e-be B vc-be (2-x) a-m (I--x) 6. (~}= __ e 

. (3) 

in whicb .1], b', ot, and 6. all refer to Tc. 
It is self-evident that it is unnecessary to derive an expression 

for pc, as it follows immediately from the equation of state aftel' 
substitution of the obtained value of RTe. (Compal'e the first paper). 

§ 12. The Second Differential Quotient (~2r:) and the Value 
dv' _ t 

of l' = Ve : be, 

As we observed all'eady above, we cannot detel'mine the final 
eXjJression for BTe, until also Ve has been expl'essed in be.But for 
this the knowledge of the second differential quotient is reqllired, 

which must again be put = 0 at the critical point. 
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As (rfE) = 0 is identical wi th tbe expression (2) or (2b) deri ved 
dv t 

from it, (~~} = 0 is identical with :v [1/4 BTv - (a 6. + A:) J=o, 
When we take (2) instead of (2b), 

1/4 BTv N = (2-m) a' - 2 1/' (i-m) a 6. + x (1_m2) (1-b') 6.' 

should be differentiated witb respect 10 v (1' constant); which yields, 

when again, as in ~ 11, G~)v = 6. b is put = 0, so that b is only 

a fnnction of v: 

(~) (~) t RT (N + N'v) = 2 (2--m) a a'-a'- - 2x (1-m) a'6.+ 2 (2,v--l) a 6. -- --
dv t dv t 

(
d.v) - m (i-m') bil 6. 2 

- (3 .v 2-1) (l-b') 6.' -- . 
dv t 

Aftel' multiplication by v and substitution for 1/4 RTv of its value 

(2b), we get: 

( a6. + :'!.B) (N + ,:1] (1-,v) (2 .v-l)-~ b' ~ - (2-.11) (I + x) bllV) __ = 
. N v-b B . 

= 2 a' v B-v (~;} [a 2-2(2.v-l)a6. + (3x 2 -1 )(1-b')6. 2 ]-m(I-.v')b
ll
V6.

2
, 

Fol' from N 2 -- (2--x) (i+,:c) b' follows N' = -(2-.:c)(1 +x) b" -+ 
+ (2x -1) b' (~:), hence N'v becomes with (dX) = :(1-=;:c)_~., 

dv t dv t v-b B 
which is written down above. Furthel' (2-x) a-.v (i-x) 6. has 

been replaeed by B. 

(da) d (v--b ) For a' = -- =_. -- Va 
dv t dv v t 

(
l-b' V-b) we find .. ------ Va + 

v v' 

+ v-b 6. Va (dm), bence 
v du t 

a'v =a (.'!!..- (l-b')--l)+.V(l-m)~ 6.=a -~--(lb')--BI (aB--.v(l-X)A6.), 
v-b B v-b 

so that we find: 

(
a6.+ A~) (N + m (l-,v) (2 m-1) _v_ b'~-)-N r-b B 

(1 I x) b" 1) [ ] - ~N--- 2-.v) (N a 6. + AB) - x (I-x) N 6.' = 
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= 2B [a~-~ (l---b') a B=_:11:. - (0~~/~Ó]' _ 
v-b B 

- m (I-a:) -~ - a'-2 (2m-~1) a 61- (3m'-1) (l-b) w' . v A[ 'A] 
v--b B 

Wben now fol' bl'evity C is written fol' 

Na6 + AB = (2--m) (X'-2m (1---m) (.(6 aJ (1--.1;') (l-b') 6' 

(accol'ding to (2) and (26)), then 

v AC 13' 
C + aJ (l-m) (2m~-I) -~--- b' -N-~- - (1 +m) -"'- b"v = 

v-b B N . 

v v A 
= 2lJ(!-~ ~l-- b') - 2 C -IV (l-m) ----Ia' -~ete.l, 

v-b v-bB 

because a B--rc (l--m) A6 is = C and (2--ru) C--~.:r (l~-m) Nt::. i = B'. 

Hence we bave also: 

SC- (l+m)l!' b"v=2(lB-1!-~ (11/) m(l--m) 1- -~-J.(2aJ l)b'~Y+(a' etc.)]. 
N vb Bv-b[ N _ 

Fo!' (2m-~-1) b' C + N(a' -- etc.) may be written B' (1 --- b') -
~- A'(,v 2--4m---2), hence we have: 

(1+.v)B' IJ. A v B·(1-b')-.fP(aJ·~4<v+2) 
3C ~ --~----- b"v = 2aB -- --(1 -b') --II)(l-aJ)----.--~ -~----------~---~----. (a) 

N v~b B v-I! N 

80fol'e proeeeding, we sha!! apply a eontl'ol-caleu!ation to this 

equation. When 6 is = 0, then A beCOlnes = a, B = (2~-m) a, 

[. = (2~---m)a', so that tben (a) passes into ' 

(1 + a;) (2-.v)' (x' v .. 
8 (2-aJ) a' ------N-------- bI/v = 2 (2-aJ) a' v~b (l~-b') 

.v (I-a;) v (2-m)' a' (I-b') - a' (.v·- 4x + 2) 
------

2-w v-b N 

i.e. a.ftel' division by (2-m) (!' : 

(1-Hv)(2-,v)" ,1), " (1-b')~(a;2-4.v-j-2):(2-m)2 
3' - ------ N---- b v = 2 ~-~b (1- b) ~ aJ (l-m) ~=b---------N ---------~ 

in which N = (2---m) (1+.v) (1-- b')--'ilJ (l+,v) = 2 --- (2 - .1:) (1+ m) b'. 
This gives: 

3 __ /"v,) ______~ \l-=~,~Y'--- = ~v-b [2 (1-- b') __ ~ m (l----~(l-b') 
1 - .. ~._------~--~----

(2-111) (1 +.1;) (1- b') 

aJ (l-aJ) «2-aJ)'-2)] + ---~----------- , 
(2- aJ)' N _ 

Ol' 

29n 

3 -- i~~bï 1 J ; = -;-~b [2 ~ 1-b') --- <~~~~~~~~ 2-~-~2--~~~-(~r~-~)UJ. 
In ideal snbstanees, whel'e b' = 0, b" = 0, the equation wou!d 

become: 

v [- ,v (l--m)] v 8-9IV + SaJ' 
3 = ---- 2 --------; = -~--------~:-;-----, 

v-~b (2-aJ) v-b (2-.v) 

identical with what we have already derived. (Al'ch. TEYLER and 

these Proc., 10e. cit.). 

If rc = ° Ol' 1, we get: 

b"v _ v < 

3 -----~ = 2--- (l-b), 
l-b' v-b 

and this too is a known l'esult (These Proc., loc. cit.), which with 

• 2 v. 3b b' = 0 b" = ° redIlees t.o H = -~-i' I.e. V e = . c· , v-u 

We shall now I'educe the above equatiol1 (a) still somewbat. 

When we divide by (2 --;v)a" we get (he foJlowing forrn (see beJow 

fol' the mea.ning of '1:): 

( 
.v(l-.?;) 6)' 

(l-!-.v) (2-aJ) I ---~-- ... 

r 2a;(I-ic) 6 .v( I-x') (I-b') 6' -1 3-aJ a " _ 3 I ~-------~--- --- -j-- --.------------.---------- ----. - -------------------------------.-~-----~-- b v-
2-,v a 2---m a' _ (2-.v)(1 +,v)(l-b') (1--'1:) 

,1.:::. 

[

" 1 - (1 +aJ) (l-b) 
=_v_ (1~b') '2 (1 _ :Q'-aJ) !:..) _:?:~l=,~~ ___ .----..... --:-----ct- X 

v-b '. 2 -.1] (X 2 - IV aJ (i-m) I.:::. 
1 ---- ------ -----

2--.v a 

( 
aJ(l-aJ) 6)' (/)'-4';;+2 ( . ,1.:::.)"] (2-/0) 1 - ~---- - - -------, 1- (1 +m) (1--b) --- . 
2~-.1) ex (2--.x) (1- b ) (X , >< ._._-~--~------------------------------------------------ --_ ..... _------.--

(2-.v) (1 +m) (l-b')(l -- '1:) 

t::. 'IJ 6Va 
in whieh - = --~ -----. When we rlOW 

a /)---b Va 
pnt: 

, 6 m (l-IIJ) 6 
(1 +.1;)(l--b)- = Q ; ------ --- = 0 

a 2---m a 

80 tbat a = TQ, the above becomes: 

(1-0)' b"v 
3 (1 -- 2a + Qa) ---~---~-- ------.: 

, 1-1:' I-b' 

or 

.v (l--,v) 
----~---.-.-----------.------ = 1:', 

(2---m) (1 +m) (l-~b') 
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(1-0)' bI/v 
3 (1 + rQ (Q-2» - --~ -,= 

1-1:' I-b 

= _v_ (I-b') [2 (1-0) - ~_l-Q l (1-0)' __ '-4X'+2 ,(l-Q).I J. 
v-b 1-1:' I-IJ ,(2-m)' (l-b) \ 

.6t/a .6 v v 
W hen further --= cp is put, tIJen - = (jJ ~-, hence --- X 

Va a v--b V - b 
.6 1-b' (! b"v 

X (1-b')= - -- = ; so that with -- --- = fl and 
Ct cp cp(1 + x) 1-b' 

x' -4x + 2 _ 1 (1 2 -) <ti we get: 
(2-x)'(1-b') -1- b' - (2-,X)2 = 

(I-rQ)' 
3 (1 + TQ (Q-2) +- ~-~ fl = 

I-T 

=---~-[2 (I-TI,) +_1:'_ I,)-=~ l(l-TI,)~-W(I,)-I),IJ, . (4) 
(p(l+m) I-Tl-TQ \ 

whell - (Q--1) is substituted for l-Q, because (! is alwaYI:! > l. 
v 

In this latter equation Q = cp (1 + JJ) (l-b') X - -c-
b

' being in direct 
ve- e 

connection with r = vc : be• the principal unknown quantity; i.e. 
it expresses Q (hence l' = ve : be) in b', bil (or fl), a' 1) and the para-

.6Va b" .. h .6Va V V meter (p = -V --, emg m eonnectlOn wit '1/---:-;-' as a. = 1/. a2 + 
a .v a. 

3 + ,x.6 Va. For mercury cp is therefore = -1 _ -3 -, because then + ,x 

.6Va: 1/. Va. = 30: 10 = 3. 
With small values of ,1) T is very slight; then (p is in the neigh­

bOllrllOOd of 3, and w in that of 1 : 2 (l-b'). 

When we now express also the values of RTc and (dl ,X) , found 
(V tc 

in § 11, in the auxiliary unknowns assumed just now, we may 
write for (2) in the first place: 

, 4 (2 -on) a' (1 + TQ (Q-2» 2 2 (t'c-bc)'ac 1 +r(J «(>-2) 
Rl c = - ------------------------= ---- ------~ --------, 

- vc (2-m) (l+.v) (l-b') 1-"(,) l+,'l) vc 8 (l-b') I-r 
I.e. 

, 2 2 (r-I)' ae l+T(> (Q-2) 
Rl c = 1"+; . 0=b);a-b~ X ---I =-T -,. . . . (5) 

in which Vac = 1/. Va, + m .6Va = 1/. Va. (1 + 3m), whilstr= vc : blO 
is determined by (4). 

And in the second plaee we may write fol' (3): 

1) The value of x at the critical point wil! be determined by (c), and depends 
besides on Tc and Vc also 011 the constants of energy and entropy (contained in Cl· 

. . . . (6) 

Hl which Q = 1J) (1 + ,v) (1- b') 
V c 3 (1 + x) , r 

b = 1 + 3 (l-b) -:---1 (see 
Vc - c X 1--

above). In mercnry, where (Po = 3, 1-1,) will, therefore, always be 

negati ve at Tc, hence also dx{ dv . 

§ 13, Calculation of some Numerical Values. 

The valne of ,x being always very small at Tc, we way wl'ite 
approximately fol' (4), when 1-T = 1 and 1 + ,1) = 1 is put: 

3 (1 +TQ ((,)--2» + i1(l-TQ)'= ~[-2 (l--rI,)H-1:' (>-::.~j(l-T(J)· -00 «(1--1 )'(J. 
cp _ l-rQl. ~ 

and from this follows fol' T ( = 2 (1~b')' when x is smal! (see abOVe)} 

2(' 
--- (l-rQ) - (3 +- fl (1--TI,) ') 

cp 
T = ------------------------~~~ 

l---TII UI Q (0-1)3 
3Q(Q-2)--- Q(Q-l)+- ------- ----'---

cp l-TQ (jJ 

2 [(I-rQ) _~ +- fl ~I_=-T_Q)'~] 
_~_, ____ .. __ ._e_" _____ "_, __ •• _, ________ · __ 

3(p «(1-2)-(I-TQ) «(1-1) +- ~- (Q_1)3 
1-"(,(.1 

With very small values of:o also 1 - "(, Q can be put = 1, and 
we bave approximately: 

2 L 1 - 2 ~l±Sb'):-'r 1 J 
T = ----------------------- --~-- . 

3(p(Q-2)- «(.'-1) + w (Q_I)8 

With small x we way wl'Ïtel: 2 (1-b') for oo. Now Q is large 
(6 or 7), and it can easily be ealculated that in the denominator 
the two fir'st terms may be neglected by the side of W (Q_l)3, provided 
the lattel' is provided with a factor abollt 1,35. When we also write 

8 for 1 - ---- -- ó becomes 3 + fl 1'-1 [ 
2 (l-b') r 

then = we g'et: 3+ 8 J 
2(1-b') , 

r o at x = D (T = 0) and --- is 
1'--1 
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2ó 

1 
1,35 )< 2(1=-b') «(! ___ 1)3 

Now 1 + T (!! - 1)' may be written for the factor (1 + T!! ((>-2)) : 
(l--T) in (5) fol' small values of T, which in view of the above 

. ' 3 (l-b')rl 
approxlmated relatIOH becomes 1 + -.--------. 

Q-1 
~ l' 

Now Q=3 (l-b') ---- for small values of ,'IJ. This being about 6, 
r-1 

l' 
2,5 (i-b') ----- may be put for (>-1, so that we get approximately 1'--1 

61'-1 
1 + 5--;- (~ fOl' tbe factor in ql1estion., Rence the factor, (j in 

1 2 8 ac ft 1 c = -1 --- -- X f), referred to in the first part of this paper, '. + [IJ 27 be 

wil! evidently aceording to (5), when for rJ its vaille is substituted, 

amount to: 

f) =~_(1'-:2r. X~? [1+ ~ r-1 \ 1 _ 3 + ~ :-1IJ 
(1_b')1'8 8 5 l' I 2 (1- b') l' \ ' 

holding for very small values for [IJ. Only a small value of }', e.g. 
r = 1,5, sat.isftes this. If (1 has then become = 0, and bI = 1/ •• f) 

beeomes 

while with r~.1,5 (see the first part ofthis Paper in these Pl'oceedings, 
~ 8, p.278) f) should ce exactly =1. Possibly [IJ is not smaIl enough 
to justify the above approximations and the neglect of eerta.in values, 
and then it is possib!e th at r> J,5 drops out. But the calculations 

get very intricate tben. 
At any rata the formulae (4), (5), and (6) contain the fuU solution 

of the problem put by us. 

La TOUT près Vevey, spring 1920. 

Chemistry. - "Cata!ysis" VIII. By Nn, RATAN DI/AR (with A. K. 
DA'l'TA and D. N. BHATTACHARYA). (Communirated b,v Prof. 

JijRNS'l' COHB:N). 

(Communicated at the meeting of September 25, 1920). 

a. Reaction between silver nitrate ancl fel'rous-amrnonium snlp/wte. 

I tl'ied to detel'mine the kinetics of the l'eaction between ferrous 
ammonium snlphate and silvel' nitrate. The reaction seems to be 

very l'apid. 
When NI50 silver nitrate and NIH ferrous ammonium sulphate are 

mixed at 25°, a bimoleeular velocit,}' coefficient of 0.0007 is obtained, 
but unfortunately this coefficient falls off as the chemical reaction 
proceeds. Since tbe metallie sil \'er formed reaets on the ferde salt 
produced and we get t'\,f\ equilibrium of this nature 

2 Ag + Fe, (S04)3 ~ Ag.S0 4 + 2 FeS04 
Ag + Fe (NOa)s ~ AgNO s + Fe (NOs). 
(Fe++) (Ag+) .,. 

01'------------ at eqmhbl'lllm = 0'128 
Fe+++ ' 

(ef. NoY1~s en BRAuN, Jour. Amer. Chem. Soc. 1912, 34, 1016) the 
l'eaetion bet ween fel'l'ous ammonium sulphate and silvel' nitrate is 
rapid even at 0° and has a smaIl val1l8 for its temperature coeffieient. 

The reaction is markedly accelerated by acids; nitric, sulphuric, 
citl'ic, tartaric, and aeetic acids have been tried; the greater the 
eoncentration of hydrogen ions, the gl'eatel' is the velocity. rrhis 
catalytic activity ma,}' be utilised iu detel'mining the concentration 
of hydrogen ions. 

Magrletic force has pl'actically no effect on this reaction. It is 
extl'emely sensitÏve to the influence of dirt etc. 

Potassium nitrate appreciably retal'ds the reaetion, so do manganese ' 
salts vel'y markedly. 

Carbonic acid markedly aeeelerates the l'eaction. Bode acid is 
practically witbout any influenee. So is phenol, which is probably 
slightly retarding in its effect. Glucose mUl'kedly aecelerates the 
reaction. This is a ease of indllced l'eaction. A mixture of excess of 
silver nitrate and very little of ferrous ammonium sulphate was 
prepared and divided into equal parts, to one of which glucose was 
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