Physics. — “On the Critical Quantities in the Case of Association,
when the Molecular Attraction s considerably Increased on
Dissociation of the Molecules to the Isolated Atoms, also in
Connection with the Critical Quuntities of Mercury”. 11. (Con-
clusion). By Dr.J. J. van Laar. (Communicated by Prof. H. A.
Logrxnz).

(Communicated at the meeting of June 26, 1920).

§ 9. General Relation for the Degree of Dissociation x
of the Double Molecules.

If Z is the thermodynamic potential of the mixture of double and
single molecules, then it may assumed to be known that’)

Z=n,C, 4+ n,C, —*fpdv + pv -+ RT (n, lbg n, -+ n, log n,)’,

when 7, and n, represent the number of molecules resp. of the
single and the double molecules, and () and C, are given by
C,=—k, T (log T—1) + (&) — T (s1)s
Cy=—k, Tlog T—1) | (&) — T ()}

In this 4, and £, arve the capacities of heat at infinitely large
constant volume, (e,), and (¢,), the constants of energy, (s,), and (s,),
the constants of entropy of the components.

With equilibrium between the two components we have:

o — Yty =0, . . . . ... (@)
. » . . 0Z
when @, and g, represent the two molecular potentials (viz. u, =3
1
and y, = 5;1») of the components. [p, refers, therefore, in mercury
to 200,6 Gr., u, on the other hand to 2 X 200,6 Gr. mercury ). ’Now
do ;
My = CI - a‘(i) -+ RT (] + lOg ("’1'+ nse)) -+ RT lO‘(/] 0
nl
dw , : '
g = Cu - 5*” + RT(l '+’ l()g (nl‘Jf nz)) + R-Tlog Cq
7, :
as e.g. (n, logn, -4 n, loqna)m.i + log (n,-}-n,) +]oq7~—~}—&n =1

Yy Cf. among others Arch. Teyirer (2) 11, 3itme Partie, p. 1-—97 (1908).
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-+ log (n, + n,) + log ¢,, while ® has been written for fpdepv.
Hence (a) becomes :

ey ey (22 10N yrrag \RTlog t
(C,—', Cy) — 5;’;”26“71: Ay BT (14 log (n, +mn,)) + % 09;;—0-

Fuarther evidently n, =1/, X 22 = 2, n, = !/, (1--2), because from
1 single molecule =1/, double molecule arise '/, (1—=z) double
molecules and '/, X 2a single molecules.

do Odwdn, Odwdr, do ldw
= -, 80 that we get:

Now S = on, dw | om, s om,  Zo0m,

2

oo
O,y €)= 5= + 4 BT (L log § (1 + #)) + § RT log =0,

2

ie.
0w
]l e 3C,—C, Ox .
g 09'; “Er TRy T A Alogs(d+a) . . . ()
1 RT ' . :
From p“%w -1% follows for w :fpde-pv[in which

in fpdv @ must be kept constant, because in the original equation

for Z (which holds for any mixture, whether in equilibrium or not)
the later possible state of equilibrium of the components, given by
(@), must not be taken into account, so that n, and n,, hence =z
remain constant]:

. ' * db
w=14%(+ 2) BT [:log (v—b) +J——b] —+ e pv.
: v-— v
' (wz=konst.)

In general & is still a function of v, hence in fpdv the part

dv d (v—0b) db db
f - will be represented byf —3 —{—f = log (v—>b) + s

[We may point out that in the assumed equation of state ‘the
gnantities v, @, and b of the mixture refer to simple molecular
guantities (eg. 200,6 Gr. mercury). For with v’ = nv, &' ==nb,
a’ :n’a, in which n is the degree of association 2:(1 4 ), the
- RT o’ ) .
original  equation D=y (cf. the first part of this paper)
passes into the given equatlon. If e.g. '/, (2z) simple and '/, (1—a)
double molecules arise from 1 single — '/, double molecule, then
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b==ab, +'/,1—a)b, — when b, represents the co-volume of 1
single molecule and b, that of 1 double molecule — which quantity
-refers, therefore, to the original single-molecular quantity. But &’
refers to the molecular quantity, which on an average yields 1
molecule after the association, and which is 2:(1 - ) times greater
than the single-molecular quantity. [i.e. at 2 =10 (exclusively double
molecules) twice greater; at x==1 (exclusively single molecules)
once greater; ete,]. For from the original single molecule there have
been formed '/, (1 4 2) new molecules, so that every new molecule
corresponds averagely to 2:(1 4~ ) original single molecules].

We can now compute gt-:)— As b is a function of v (through b, and
b,) and of x, and also v a function of @ on account of the equation
of state v=/f(p, T, @, a, b), in which also a and b are functions of
2z, we have:

d I NV 1 [dv. /Ob\ dv [0b I 796\ dv 06
(1t )= @) o @) ZL(BZ)JJ'"(EZ)J'

when 0 is written fmfdb fdv dv, aud because evidently

a==const. x===const.

08 1 /ob

(5;) po— 6(6) Hence |
d I dv 1 /0b 04
d—m(h’g ¢=9 “) v—bds  vb (a)*(a—)

06
For the further calculation of (5;) the quantity 6 must be

known, i.e. b in function of v». When we assume for this the
approximate relation derived by me before *):

wa___lgb
=6

¢ ]

in which B is a coefficient that depends on the nature of the

A

0b 3) b2 —
substance, then (—) :&,#J_) by and vy—b = {iv_(l;_wb_,,) easily follows
x .

0v N? N
from b ::ﬁvv_Jr ?10?1—3)* In consequence of this 6 becomes:
— f (1—8 4 dv = f [_‘_ﬁﬁ — i@ . 1_/@:_1]011,
Bo (v—>0,) (Bv + (1—B) bo) Bo+(1—-p)b, v v—b,

x==const

1) See Recuexl des Trav. Chim. N° 3 and 5 of 1920.
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1.e. ) 1—3
6= Log (80 + (L—B) b)) — 5 log v+~ log (r—b.),

which properly becomes =0 for 6——1 (ideal substances, where b

is independent of v).
For this may also be written, because (see above) v -4+ (1—P)b, =

_ b,
==,
Owlogz‘wé—logv 4 ?Elog(v~ o)mm}—é—éloq 1b;~logbﬁo.
Now v == 1(1 ﬁﬂb)/ . hence v—>b, ::i.y%%;o’ and @ becomes:
0= g 0o =g 1) G bt P92

6
Thus we find for (g‘")
X

‘Jv

Y, 1—3 1 3b 9, 11 /06 L1 (ab
=5 (- ()5

or also:
00\ _ fs—b (b tofg—D (ab)
a«) b(b—b)\0x )y b, (b—0b,)\0z
Now v—b = b (b—b,) : (%/-—b) (see the note), hence finally:
o0 .1 [9b b 1 bbg)
ﬂ)v‘“vmb (bx s byv—b\0z J,
For &d— (log (v —b) + 6) may therefore simply be written
x .
1 dv b 1 (Obo) _ 1 dv b A,

dz /,

For as b, =

v—b ds b, v— b dw b, v—b
e
= & (bl>o "l" 1/2 (1—-&’) (bn)o’ we have (6;) - (bl )o - 1/z (bz )o’

which quantity we shall represent by Ab, This is accord-
ingly the increase of volume, when '/, double molecule passes
into 1 single molecule. From the above given expression

® b __.‘1
1y In 6 :j~d—bz we might at once have substituted v — b =0 M ~~~~~~ )
v— ]

(derived from the ahove given expression for v) for ¥ — b, and

Bb p—1 e ‘: 1 B 1
=[5 f(ﬁa—b)db (1) oo 0—t0- 5 ug0

might have been written, but then the constani term (i.e. constant with regard
to v) logb, essential for the differentiation with respect to z, would have been
wanting, and ¢ would not have become = 0 for @ =1 (the integral is indefinite).
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d
for w we now find for e,

daz
G RT [log (v—b 4 6] 1§ (14 o)R']’[ L dv b LG, } —
de * : * v—>b da l) v—b
' adv 1da  dv
Tt ede P

I . dv - :
In this all the terms with e Are eliminated in consequence of
' da

the equation of state, and we keep:

1 dw b Ab, 1 de
i = L [} —b) 4 G —- 1- G A TR
g = I =) 0 () e O

With regard to the quantity a, the fol]owmg equation may be
given:
Va=aya,+,(1—a)Va,=="/,Va, + a0 a,—"/,V a,)="/,V a,-} aLrV a,
when @, vefers to one single molecule and y/a, to one double
molecule, and AV a represents the increase of the attraction, when
'/, double molecule passes into 1 single molecule (atom). As for
mercury !/, Va, is about =10.10~2 and Va, about=40.10-2,
Aya has there the exceedingly high value 30.10-2, ie. Ay a three
times the value of {/a,.

Hence from a == () a)" follows 41/, = 2V a. A}y a, and thus the
equation (b) becomes finally :

. ] 1 — £
Jog~_“__—-0+ [ _°h 0]_-%(1 +m)zb- Ch 2 A'/a,((f)

1—a’ 1/2 (I +a) Zv—b Rl
. . O~ C,
when we combine WMRT — — § — log 2 to one constant (tempera-

ture function) C,, and write for ¢, and ¢, resp. ¢, =wa:'/, (1 + @)
and ¢, ="'/, 1—a):'/, (1 4 2.

- It is now this last equation that serves as basis for the determi-
nation of the degree of dissociation x of the double molecules, i. e.

for the determination of the quantify g which will oceur in the
1)

2

d, d
expressions for f&ndf In the equation mentioned the quantity
v v

Ab, will probably be always exceedingly small, and may be neglect-
ed in most cases, whereas on the contrary in this special case,
where the dissociation of the double molecules Hg, leads to usolated
atoms Hg, Ly’a will possess a very large value, which quite governs
the modification of the eritical quantities.
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d o
§ 10. Determination of (gﬂf)
v/t

Let us now differentiate the relation (c), i.e. a=f@®1) at T
constant with respect to v, again taking into account that b= f(v,x)

and @ == f(x). We then get:
0b 0\ da
B (55)[ (&)UZJZ

172 22 N\ da 1
(2 ) = 1
2 (@ 1-w’) dv [U—mb
L1/} 00 da |
z(av) o pdv |

1 dil}
T d

1[ Lb, do  (I4+a)ld, d 1 2V a. Ly a 2(A1/a)’da,
ét‘fvf) L S o R RTv dv’
1 , b 1
because -z can also be written for —— - (see § 9). As further
B (v—b,) b,

o6 1 0b 04 1 /0b b,
(67}) - (55) and (Gm)v ;;::7)(5;;), sy e d 9)

we get:
1 11 Nda 1 1 Db, da
(m(pxﬂ) Toihw)de 2| o—b  Flo—byde|
- d/v.,
_ 1- A by— ,
1 Ab, dx  (I4w) LD, dv 2V a. by e 2(L1a)t du
Bw—b)dw B8 (v—0,)" | RTv? RTv dv'
or also .
LY (l—a) | BAb, (L) (AB) 2(A Y
2 (1--a?) 3 (v— 0) 8 (v—0b,) RTw dv
11 L (14a) Ab, 2|/a.A Va
T 2v—b ' 2 B(v-by) RTv*

When to obviate unnecessary complications in what follows, we
disregard all the terms with Ab, — which may the sooner be
done, as at the lmiting volume v, = b, the volume of ‘/, double
molecule will probably be equal to that of 1 single molecule, and
as besides Ay/a is very large with regard to Ab, — we thus get:

11 2Va.LVa

(m)m 2v—b  RITv
)i L+, a(l—a) 2(Lyar’

@(l—a*)  RI»
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v—>b 4y a. A Va

(dm) 1 fao(l=) (1 Ty RET“_) _

dv ). v—b (I—/,2)— 20 (l—a) (A pa) : RTv

—b
& (1— &) (RTU 40 Va. [/a)
v
To—b  (2—a) RTv — 4o (1—a) (A Vo)

b

because 1 -/, & (1—a): (14a)is = 1—"/,«. If we put for brevity:

v-—b

v

Va=ea and AVae=A,

we have finally :

(dw) 1 @ (1—a) (RTv—4a L)

v );  v—b (2—a) RTv—4z (1—a) A

When A =0, or may be neglected, as in all cases of dissociation
dx) 1 a(l—a)
12

which do not eventuate in isolated atoms, then <—~ e et

dv v—0b 2—-x’

the already known expression, which is always positive, and which
becomes = 0 for # =0 and z=1.

But if A is large, as with Hg, —> 2 Hg, then in consequence

of RTv—das—RTy—4"—" ‘/a.m/a::v[RT__-zﬂ ﬂ—A—'@}

v v v Va

the quantity 9¢/g, can become mnegative at lower temperatures or

comparatively small values of v. In mercury, where V'a ="'/, a, -}-

4. A Vais= 104 302).10-2, Ay a: y/awillapproach 30:10=3

with small values of @, so that then the transition from positive to

—b

negative is reached, when R7'= 12%3—;—. If v == v, then with

v,=1,8b, and a about="1/,ac, b=="2/,b, this temperature will
0,75 a.1,8—0,75 35 a,

18 ?).; 5 =155 And as in mer-

be given by RT =12 X

. 8 a.. , 20 a,
cury RT; is Y X 2 X (about 1,25) = 57 % (compare the first part
in’ these Proc.), 7' becomes about = °*/, T, i.e.
T~ 4 Tc(at 'U"—'——Uc)a

so that with a volume ==u, the quantity 9¢/; becomes positive
again only above about 6700° abs.

e
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Hence /4, is always negative at
AN I, the critical temperature itse(f, when
g A a has such a high value as in
mercury and similar substances. Then
the degree of dissociation of the double
molecules Hg, decreases when the
, volume becomes greater, instead of
T . increasing — as it generally does.
; As aw—20b):v* (@ and b assumed
: constant) has its maximum value at
S p = 2b, the transition temperature for
v 0 Fro/ v-rco values of v both about < 26 and
' > 26 will be lower than that (7)) at
v == 2b, which latter will be only little higher than that at v == v,
(about 4 77) "). See fig. 1.

The decrease of # with increasing volume is of course accounted
for in this way, that on increase of the degree of dissociation a with
increasing volume also « becomes greater. But this causes the volume
to decrease again, in which the decrease in the end exceeds the
original increase.

At high temperature the pressure will be comparatively great,
s0 that then, in consequence of an increase of @, p — %/ will be
increased little; »—»b, hence also », will then be lowered compara-
tively little. For this reason d¢/g will always be positive at high

o The righthand branch of the transition curve (dotted in the figure) will get
more to the left, and 7} possibly slightly lower than would follow from the above
calculation, because then  can no more be assumed near 0. The intersection with the
vapour branch of the saturation curve takes place at IT' = about 0,8 T,. For
from pv=1/(1 4+ ) RT and p =p, g4 140/m—1) where 4,14 is the vapour pressure
factor f=1,8><2,803 andm = T': T, follows pc v e =1/, (1 + x) mRT,. When
x is put approximately:i/g, then 7 e *® becomes == ¥/, m s. (with 1)# noe and
RT:: peve = §). Now in mercury s = 2,62 (see the cited first part), so that finally
n = 1,965me"’14(1/”“1) (saturation curve). This must now be combined with

—b A
RT=14 ﬁ’f.T ‘7‘2‘3 In this Ve = 30.10—2, while Vo becomes = 25.10-2
v .

with @ = 1/,. When at the point of intersection @ is put about = 11/, g b =11, be,

« o nre— 11,06, . . 20
then mRT, = 6~a——~n-1~cww-ﬁf—c, i.e. with v, = 1,80, and RT, = 55 e (see
7 nve nu, 27 b,
1,8n—1%/, . . .
above) m = 2,6 ————" (transition curve). Both equations are satisfied by
n

m = 0,778, n == 4,99 -(point of intersection), so that this will lie at about
T = 0,8 T,, where v = 5ve.
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temperatures (higher than the critical transition temperature 7, =417
in Hg). The same thing is also the case with great values of v,
for then ¢/, has only slight influence by the side of p.

As regards the values of v near b, here too “*/y, will always be
positive, because v cannot become smaller than 6, and x not smaller
than 0. In consequence of the increase of a the volume will
indeed become somewhat smaller; but this decrease can only be
exceedingly small, as v is already almost == 0.

Remark. _In the equation (¢) the constant C' will contain the
term (*/, (e,)y—(,)y): RT = —@Q,: RT (on account of (*/, C,—C): BT,
in which Qo 1epresents the — always posilive — heat of dissocia-
tion (see § 9), while 8 contains the term (1/,; —1) log (v — b) (for

v—b==(v—>0,) > B8%); hence a:V1-—2* will have the form -

2V a. Al/(z

k< (vwb)l/"@ e ( ot ) Rl, in which £ will contain ex-
ponentially neither #—-& nor 7' If, therefore, the term with AV a
is smaller than ¢J,, then 2 will approach O exponentially at 7'=0,
v=~. (If the term with A} a should be larger than (@, 1-—~
approaches 0 exponentially). Hence according to (1) the differential
quotient 92/, will approach exponentially to 0 at any rate at 7=
v==~>0, as it contains the factor 2 (1—=z): (v—>). If, however, T is
> 0, everything depends al v ==0 on the exponent of v—>b, which
will evidently be '/os—1. In “ideal” substances, where g =1, this
exponent is negative, hence %¢/4, approaches to 0. But for “ordinary”
substances, in which 1/g ranges between a little more than 2 and
a little more than 4 (according as, in view of the factor 1: a oc-
curring in B3, the temperature is higher or lower), the exponent in
question will be positive, and 9¢/3, will thus approach 0.

§ 11. The Differential Quotient C%) and the Value of R7..
1e D ,,

Yy —{—w)_[i’lw’ | a .

From the equation of state p = — — — follow

dp\ _LRT (AN (1) RT db A6\ [du
-ty (o) e,

2¢ 2Va.DVa/dw
+ T IR A
v ) dv /;

0b '
Putting again (5;> = Lb=0, just as before A0, and writing
2 ) v
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L e (90
o' for (Ov),,.’ we get:

dp\_ 1(d\ [RT _dye.bya) ‘LAJo BT, %
<d”)t 2(%) l:vmb B v* ]’ (v—0b)* ‘ ot

Now substituting for 4%,4, its value from (1), we find:

(dp) 1la (lﬂ—m) RTvy —4da A [RT da L }
t

dv 2 v—b (2—a) RTv— 42 (1—a) L v—b v (v—1D)
N o1 RT
/2 ( j:_ﬁ),_ww ( l “__bl) _{ e
{(v—

writing simply « ¢/, for V'a (see §10)and A for Al/a; hence also:
(dp) 1 [ @ (L—a) (RTv—4a L) () REo(l )4 4a]
dv )i 20 (v-—0)*| B—a) RTv—4a (1—a) XE
This ‘must now be =0 at the critical point; thus we have:

@ (1) (RTv—4al) = [(2—a)RTv— 4o (1) L] [(1 + &) RTv) 1--0) — 4a*],
i.e. after some reduction and division of the two members by RTv:
(1) RTo— 80 (1) a & = (3—a) (1+2) RTv (1) — 4 (2—a) a* —

doa (La?) (1) A%

and from this:
2—a)a® — 22 (1—a) a b + & (1—a?) (1—b) A*
(2—2) 1 +42) (1-—0b") — @ (1—a)
for which we may also write: .
(@ — A+ 2) (1) DY (@ —a)e—a(l—a)l>) (24)
C—a)(l+4+a)(1—b)—2(l—a)

This is, therefore, already the expression for R7,, expressed in
Ve, bg, etc. As a check may serve that at & == 0 this passes into
4(2—w) e  42—a)a, (vo—b)

]Wc = N ve? !
our former expression (Arch. Teyler loc. cit.), derived for the case
that there does not take place any change in the molecular attrac-
tion in consequence of the dissociation of the double molecules.

If also #==1 (all the molecules single), then becomes
2a;  (ve—0bc)? 2 (r—1) q,

18, v’ 1o b, ot ?):’
as we also found before. (Cf. among others These Proc. Vol. XVI,
p. 45, and Ibid, P 810). In this the value of r=—w.:0, can

L RT,v, = )

L RT ve=a b -

RT, =

RT, =

of course not be determined until we have also put <v~~)— 0.

, , : 8 a, .
In ideal substances &', ==0,r = 3, hence R7, = 97 ;— In ordinary
e
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substances, where b', approaches '/, and r approaches 2, BT, becomes
8 a ‘
= g 1—): both known expressions.

We will now first substitute the found value of RT; in (1), in

order to determine the value of 9/y, at the critical point. If we
write for brevity:
—(l+a)(l—=b)A=4; @—-2)a—a(l—2)L=2D"B
(2—a) (1 +a) (1=b) — a(l—2) = 2 — (2—a) (14+2) b' = N\’
we get, after substitution of

AB ‘
——Rf'cvc._aA+—-—~ e e e . (2h)

in

(dw) & (1—a) Y RTv —a
dv /)i v—b (2—a)'), RTv—a& (1—s) AY

the equation

(dﬁ)_a‘(l———m) AB:N -
dv ), v—b (@—a)al + (2—a) AB: N—o (l—a) A*

In this (2—a)x A — @ (1—a) A" = BA, hence also

(%) @ (1——_’0_) A & (1-—a2) 4
dv ),  v—=b NALO +(2—a)A v—b B’

because NA -+ (2—z2) 4 is ev1demly B. Hence we have now for

( ) at the critical point the exceedingly simple expression
t

do\ _w(l—a)d__ a(l—a) a—(1+40)(1—b) A
(dv>r _M;,’;—bb Bw 'Uc_‘bc’ (2__w) oO—x (1__"‘%) Ay . . (3)

in which @, 6’, «, and A all refer to T..

It is self-evident that it is unnecessary to derive an expression
for p,, as it follows immediately from the equation of state after
substitution of the obtained value of RT.. (Compare the first paper).

2

| .
§12. The Second Differential Quotient ( .ng) and the Value
GV /g

of r=uw,: b,

As we observed already above, we cannot determine the final
expression for RT,, until also v, has been expressed in b.. But for
this the knowledge of the second differential quotient is required,
which must again be put == O at the critical point.

. d e
+ (22— 1) b’ (Zix) , hence N’v becomes with (d—
v
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d . .
As (f) — 0 is identical with the expression (2) or (2b) derived
; :

v

) d'p . _ .d ) AB
from it, (———~) — 0 is identical with — | '/, RTv — |« &+ —— ) |=
dv* ), dy N

When we take (2) instead of (20),
Y, RTv N =(2—wa)a’ — 2« (1—a) a & + & (1—a?) (1—0") A
should be differentiated with respect to v (ﬂT constant); which yields,

0b
when again, as in §11, (5;) — A b is put == 0, so that b is only

U
a function of v:

de da
L+ RT (N4 N)=2(2—a) a a'—a* ((7 ) — 2 (l—a)a' 42 (2e—-1) e A(u&—)w
) v/

v/t

d:
— (l_wl) b” AAﬂ i (3 mz___l) (1-——6,) Az(_f) .
dv t
After multiplication by v and substitution for '/, RTw of its value
(2b), we get:

(:a\A -+ jj\—?) (N 4 & (1—a) (2 2—1) 1:117) o %—« (2—a) (L + 2) 0" v),::

da

v

=2d vB—-—v( ) [ ~2(2a— 1)(1A—[~(3x ~1)(1-0"A :l—.z(l )b v,
For from N=2-— (2—=) (1—}~.7c) b’ follows N’ == —(2—uz)(1-4-2) 0" -
dx) a(1—w) A

t v
which is written down above. Further (2—a)a—a (1—a) & has
been replaced by B. -
d d (v—Db 1% —
For a’ = (—(Xf) Bl Va) we find (»~—~-——~v—~ Va +
dv J; dv\_ v ‘ v

( ) hence
2

aw—a(—- (18— )—}—m(l—.@ A—*a—~(1 b)——%(ab’f«‘ w(l— .L)AA)

go that we find:

(aA+ )(N T L Pt

( +X7)»b-“£ [Z—m) (Na b4+AB)y— o (1—a) N A’} =
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— 2B l:a "3’73 (1—b') —

[} p—

aB—a(l—a)Ad A]

B

— & (1—a) b%gt‘ﬂ“z @o—1)a b | Bat—1) (1—b) A ]
When now for brevity (' is written for
Neb 4 AB = (2—a) a*—2a (1—a) «b -+ o (1—a?) (1 —0') A
(according to (2) and (24)), then

~{ a (1—a) Qe— 1)--0—«46’% ~~~~~ e

B
(1+a) A

—2Ba (1 b) — 2 —a (1 7)Al“‘ t
=B U ) = 20— (L) g Lt e,

because a B-—a(1-—a) AL is

Hence we have also:

2

B
3C - (1—}—@) ----- v—-2aB ~Z)(l/)’) )

For (Qa—1)b'C -+ N (a*

— A*(a@*—4x—2), hence we have:

o (ta)B
N

-—

by 2aB — b(l 0y~ (l-a)-

= C and 2—a) C—a(1—as) NA? = B

(1_»3;)45:)[ (24 1)/)’C+(a etc.)}.

tc.) may be written 5* (1 — &) —

A v B(1-b)-A¥a'-4x+42)
B v-b N

(a)

Before proceeding, we shall apply a control-calculation to this

equation. When A is =0,

then A becomes = a, B=(2—2a)q,

C = (2—wa)e*, g0 that then (a) passes into

3Q2—a)a® —

(1+42) (2—a)® &

N

z(l—a) o

v=— 2 (2——-’(’) af — (1__ )_

2—w

g 0T __27)(1 By - (L—a)

P

in which N = (2—a&)(1-a)(1— 6

This gives:

b 1
3 .

(2—n)* 0;2 (l—b’) —a (' —4da + 2)

U—&-b N
i.e. after division by (2—a) a*: "

(1 b~ (w*- 4w+ 2): (2-2)
v—b N ’

p(14e) = 2 —(2—a) (14 2) b".

1 o (I—a)

@) (1)

or

I—b')

- vib [3 (1—b) - v(-—2) (1—4)

o (1—a) (2—0)'—2)
e N ]
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5 w“' bl 1 _ Y [2 Aty v(l—2) 2—0Q2—a)¥ ,J-
1 1—7 v—b @—a) 2 2—a)(lfa)b
In ideal substances, where &' ==0, 0" = 0, the equation would
become: ' ’
g " "2 & (1——«.2;)] v 8—9u 4 347
T o—b | Q—a) | v—b (Q2—a)?

identical with what we have already derived. (Arch. Tryrrr and
these Proc., loc. cit.).
If =0 or 1, we get:
by
3~~~-———::‘; 1—%
1_6! ( )
and this too is a known result (These Proc., loc. cit.), which with
v
b =0, b'=0 reduces to 3 =2 — i.e. v, == 3b,.
We shall now reduce the above equation (a) still somewhat.
When we divide by (2 —a)«’, we get the following form (see below

for the meaning of ¥):
' a(l-2) &
(1-1-2) (2~ x)(l A e

2u(l-w) & w(l-2%)(1-0) L% Q—a o
31— SR A S b'y=
[ 2—a «a 2 a’_ (2-2) (1 +2) (1-0") (I-%)
1 1 1-% &
T Y R AN S
=TS ) T T s S
Em—_—

& (l-a Pt -da 2
”(1_“5_7);> @ ;”‘(;z,)(]“(” (- “)}

>
) @—a) (1) (1=0) (1 - 7)
A\
~ in which— = v——%z) 7‘/(;” When we now put:
#(l—a) b & (1—=a)

4

(”')(1*6) """" R T Y Ny S Y G I S

$0 that 6 = v¢, the above becomes:

(1____6)2 by
3 (1 e 20 + ()0) Rl T o

(@—a)?(1—=0)"
(2—a)(1 + a)(1--b)(1—)

zf’:ff (1_-411') 2 (1—6) — i (1—a) 1'—

¥

or
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1—o0)* b
S8 —I‘T(’(Q“‘z))—(_{__r) it

_—_-_L(1~b')[2 (1—6) — 2
v—>b 1—r1—

\ e da -2 \
(1“0)' —("2*_:;)7(1—:2;5 (1—0) s:l

AVa A
When further —— ==¢ is put, then — =—¢ v , hence v X
. ‘/a [£4 b

U~ PV —
| ’ Ll ¢ . )]
X (1—=b"= s Zoita ¥ that with — = =8 and
v—dr+2 1 1 2\ "
(2—a)*(1—b")  1—10’ Oy )T @ We sel:
1—10)?

3(1+ 7o (0—2)) + %:f)—ﬁ::

M—“Q_'Z(l— ) + i 1 2 1)? 4

~g(iia) W) i (T e le]) H L4
when — (p—1) is substituted for 1—p, because ¢ is alwayy > 1.

In this latter equation ¢ = ¢ (1 -+ 2) (1—06") X w?f_, being in direct
Ve—

c
connection with #»==w,: b, the principal unknown quantity; i.e.

it expresses ¢ (hemce r==wv.:b) in b’,8" (or #), ') and the para-
LV sV a1
:1/"/‘aiaa’s (l,-——-- /2 (l,,"l‘

+ xAy/a. For mercury ¢ is therefore =

Lyvie . . . . .
meter ¢ = ml/‘—é—, being in connection with
a

HE;:’ because then

Lyia: '/, vVa,=30:10=23.
With small values of « = is very slight; then ¢ is in the neigh-
bourhood of 3, and w in that of 1:2 (1—b").
When we now express also the values of R7%: and (dTv) , found
av /.
in § 11, in the auxiliary unknowns assumed just now, we may
write for (2) in the first place:

4 @—a)a* (1+70(0—2)) 2 2(ve—bo)’ac 1+70 (0—2)

Ale= @—a) (14 2) (1—b)1—1) " 1+a v’ (L—b) 1—t

]

i.e.

, 14a (1—0)* b, 1—7
in which ya, =1/, Va, + « Aya ="/,1 a, (1 + 32), whilstr = v.: b,
is determined by (4).

And in the second place we may write for (3):

1) The value of x at the critical pdint will be determined by (¢), and depends
besides on 7T. and v. also on the constants of energy and entropy (contained in C).
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da 1 a(l-—a) l—p
(Zi-'()—)f—q 'U(:‘-bc 2—ua 1_1()’ . . . . . (6)
| . 3(1
in WhiCh 0 — IP (1 + JZ') (1___ b/) ?—)_’?Jj - 1(+-+:;:§2 (1——[),) 71_‘“1 (See

above). In mercary, where ¢, =3, 1—p¢ will, therefore, always be
negative at 7, hence also %/g,.

§ 13. Calculation of some Numerical Values.

The value of 2 being always very small at 7, we way write

" approximately for (4), when 1—v=1 and 1+ 2=1 is put:

| Q M( ()‘1
3(14-7e (0—2)) + B(l—r0)'= ZZ[ 2(l—ro)+= 1—_;9‘ (1-rp)* —w (()—»])"%J,

and from this follows for « (x T when 2 issmall (see above)):

20
r (1—r9) — (3+B8(—70)7)

T = —_

l—1g w (o—1)°
Sele—2)———ele—D+ y— ¢ p )

3 ] — 10)* ‘
2 l:(lm'rg) — miﬁi‘;‘w_g)_ 5:‘

34 (¢—2) — (1—¢) (p—1) + 7%; (o—1)*

With very small values of & also 1 — 7o can be put =1, and
we have approximately :
3 e
o1 3B =t
, 2(1—b) »

" T80 —(e—1) +we—1)"

With small 2 we way write 1:2 (1—6") for o. Now ¢ is large
(6 or 7), and it can easily be calculated that in the denominator
the two first terms may be neglected by the side of w (¢—1)°, provided
the latter is provided with a factor about 1,35. When we also write

3+ r—1 o . r )
o for 1 — m:j)—fj—’r—[ becomes O at x =— D (T puament O) and -7—:*:1 18
3
then =— iﬁj—;—[ﬁ},—)} we gel:
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2d
T - , hence r(o—1)* = 3(1--d) d.

1
1,35 > — —(p—1)?

Now 1+ (¢ — 1)* may be written for the factor (1 + 7o (¢—2)):
(1—=) in (8) for small values of 7, which in view of the above
3 (1—b')d

N(;V o=3 (1—b") M:i for small values of 2. This being about 6,
4/‘__...

approximated relation becomes 1

2,5 1—b%) ———?—Li may be put for ¢—1, so that we get approximately
e

-6 r—1 . .
1 +5 ~~~~~~ —0 for the factor in question. Hence the factor & in
” :
RT 2 8 a % 4, referred to in the first part of this paper
= , referred to in the fir ,
=14 270, P pap

will evidently according to (5), when for ¢ its value is substituted,
amount fo:

g2 2T [H E?ij“lg _ 848 =l ]

Ty 8 5 2(1—2) » V|

holding for very small values for @. Only a small value of r, eg.

p==1,5, satisfies this. If § has then become ==0, and b’ ="/, 6

becomes
2
—=1]14 20— =1,
[ P )]

while with 7=1,5 (see the first part of this Paper in these Proceedings,
§8, p.278) 6 should be exactly ==1. Possibly & is not small enough
to justify the above approximations and the neglect of certain values,
and then it is possible that » > 1,5 drops out. But the calculations
get very intricate then. : ' '

At any rate the formulae (4), (5), and (6) contain the full solution
of the problem put by us.

P

La Tour prés Vevey, spring 1920.

Chemistry. — “Catalysis” VIII. By Ni. Rarax Dupar (with A. K.
Darra and D. N. Buarracuarya). (Communicated by Prof.
Ernst COHEN).

(Communicated at the meeting of September 25, 1920).
a. Reaction between silver nitrate and ferrous-ammonium sulphate.

I tried to determine the kinetics of the reaction between ferrous
ammonium sulphate and silver nitrate. The reaction seems to be’
very rapid.

When ¥/, silver nitrate and ¥/, ferrous ammonium sulphate ave
mixed at 25° a bimolecular velocity coefficient of 0.0007 is obtained,
but unfortunately this coefficient falls off as the chemical reaction
proceeds. Since the metallic silver formed reacts on the ferrie salt
produced and we get an equilibrium of this nature

2 Ag -} Fe, (80,), 2 Ag,S0, + 2 FeS0,

Ag -+ Fe (NO,), 2 AgNO, + Fe (NO,),
(Fet+) (Agt)
PR
(ef. Novms en Bgaun, Jour. Amer. Chem. Soc. 1912, 34, 1016) the
reaction between ferrous ammonium sulphate and silver nitrate is
rapid even at 0° and has a small value for its temperature coefficient.

The reaction is markedly accelerated by acids; nitric, sulphuric,
citrie, tartaric, and acetic acids have been tried; the greater the
concentration of hydrogen ious, the greater is the velocity. This
catalytic activity may be utilised in determining the concentration
of hydrogen ions.

Magnetic force has practically no effect on this reaction. It is
extremely sensitive to the influence of dirt etec.

" Potassium nitrate appreciably retards the reaction, so do manganese
salts very markedly. ’
~ Carbonic acid markedly accelerates the reaction. Boric acid is
practically without any influence. So is phenol, which is probably
slightly retarding in its effect. Glucose markedly accelerates the
reaction. This is a case of induced reaction. A mixture of excess of
silver nitrate and very little of ferrous ammonium sulphate was
prepared and divided into equal parts, to one of which glucose was
20

at equilibrium = 0128
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