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§ 1. Introduction. The equilibrinm between two phases has been
fully investigated experimentally and theovetically. Little, however,
is known about the cases in which there is no equilibrium, but
one phase is converted into another. In the first case the thermo-
dynamic laws may serve as basis of all considerations; in the second
case, however, such leading principles are entirely wanting. The
researches on the dynamics of the conversion of phases are quite
detached, and are often restricted to the collecting of empirical data
the meaning of which is not quite clear.

It would be very desirable to develop a general theory of
dynamics, which will have to include “thermodynamics” as the
special case of its statics. Whether this is possible from a purely
phenomenological point of view, further experiment will have to
teach.

In what follows 1 have worked out a general method for the
treatment of the special case of the solidification of a chemically
simple substance.

On transition of a supercooled melt into the solid condition the
following processes should be sharply distinguished:

1. The formation of particles of the solid phase in the supercooled
liquid *).

2. The further growth of each of these particles, and also the
growth of a particle of the solid substance put into the liguid
purposely *). ‘ ‘

Only the second point will be treated in this communication. In
this the particularities which are in connection with the anisotropy
of the solid substance will not be taken into account. In this way
the problem is simplified, but at the same time the idea of accounting
for the formation of the crystalline form is abandoned.

%) D. GerNEz, Compt. rend. 95, p. 1278, 18892,
B. Moorg, Zeitschr, f.- Phys. Chem. 12, p. 545, 1893,
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The question which should be posed when one wishes to examine
the course of the process of solidification, is the following:

Given a supercooled liquid, in which there are one or more pieces
of the solid substance. At a. definite moment the temperature is
given as function of the place. Required to determine for every
successive moment the temperature as function of the place and the
velocity with which the boundary surface of the two phases moves
in consequence of the solidification.

When the general principles and methods that may serve to solve
this problem, are known, all the cases that present themselves can
in principle be ftreated by the aid of them. This treatment only
requires the surmounting of mathematical difficulties, The theory
must be developed for a particular case and compared with the
experiments. As is the case in every phenomenological theory, certain
constants or functions which are characteristic of the substance,
remain undetermined & priori here too. Comparison of theory and
observations makes us acquainted with these constants or functions.

When the above mentioned questions are .answered, it should be
borne in mind that in a substance in which the temperature differs
from point to point, conduction of heat takes place. The conduction
should not be considered as accessory, for without transport of heat
solidification cannot take place.

In a substance moving with a velocity V' the temperature 6 satisfies

a generalized differential equation of the conduction of heat

0
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This equation contains the quantities ¢, ¢, and 1, (resp. specific
heat, density, and conductivity of heat), which refer to the phase
for which (1) holds. An equation of the shape of (1) exists for the
solid as well as for the liquid phase. In these equations there ocenr
constants which are characteristic only of one of the phases separately,
and mnot for the heterogeneous reaction between the two phases.

As in every problem of conduction of heat theré are here too, by
the side of the differential equation, boundary conditions which the
temperature & must satisfy, viz.:

1. At the boundary plane of two media the temperature is
continuous. This refers both to the boundary surface of the solid

“and the liquid phase and to the sarfaces along which each of the

phases touches the wall of the vessel in which they are contained. -
2. At a boundary surface the normal component of the current
of heat is continuous, when no generation of heat takes place at
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the surface. If this is the case, the normal components of the current
of heat in the two substances at the two sides of the surface together
lead off a quantity of heat equal to the generation of heat taking
place at this surface. '

The boundary conditions 1 and 2, however, together with the equation
(1) are not yet sufficient to determine the condition for every succes-
sive moment. For one thing, the velocity with which the boundary
surface of the solid phase moves is not known, hence it is not
known either at a definite moment, at what surface the conditions
1 and 2 are valid. The velocity of the boundary surface of the
phases is directed from solid to liquid during the solidification. This
velocily can only depend on the condition of the substance at this
surface, hence on the nature of the substance and the temperature
there. As third limit condition we get, therefore, the relation that
must exist between the linear velocity of crystallisation (or solidi-
fication) and the temperature at the boundary.

When the value of a quantity in the solid phase is denoted by
the index 1, and in the liquid phase by the index 2, and when »
is the normal at the boundary surface solid-liquid, we have at this
boundary surface the conditions:

,=6," . . . . . . . . (20
99, 96,
Zlné—;—wl,waj_":vng R (Zb)
v:—.f(?)')_ oL (20

When vg, is the mass solidifying per unit of time and per unit
of suvface, vg, Q) represents the difference of the normal-component
of -the current of heat on the two sides of the boundary surface,

at this surface. -

The differential equation (1) with the boundary conditions (2) now
determines the course of the process of solidification. (1) and (2) can,
however, not be solved, when the function f, which is characteristic
of the substance, is not known. It might be tried to make different
suppositions about the relation between & and v, e.g. that @ is equal
to the temperature of melting. Every supposition leads to a definite
value of the temperature as function of place and time. Each of
these results might be compared with the observation, and in this

way it might be found what relation there exists between & and v,

3 A horizontal line indicates the value at the limit.
%) Of course inversely 6= ¢ ().
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As we a priori do not even know the form of the relation (2¢),
the following course is, however, (o be preferred. A value is chosen
for the velocity »'). When further » is considered as given, the
temperature can be determined from (1), (2a), and (26), hence also
the temperature & at the boundary. By causing the solidification to
take place under different circumstances, different values of » can
be obtained, and for each of these values the corresponding tempe-

rature € can be calculated, and in this way the relation between

be determined experimentally, but this is not necessary in order to
find the relation given by (2¢) for a definite substance.

§ 2. Theory of the solidification e a cylindrical tube.

One of the simplest phenomena of solidification, which hasg also
been studied most fully experimentally, is the crystallisalion of a
supercooled liquid in a eylindrical tube.

Let the solid substance be in one part (4) of a straight tube, the
supercooled liquid in the other part (5). The whole is surrounded
by a space of constant temperature, which must also prevail in 4
and B within the tube at infinite distance from the boundary surface.
This temperature must, of course, lie under the melting-point of the
substance used, because else no solidification takes place ).

The solidification now proceeds as follows. Heat is liberated at
the boundary surface of the phases (heat of melting). It tlows off
on both sides through the solid substance and the liquid, and finally

‘passes through the wall of the tube to the sphere of constant tem-

perature. In every vertical section of the tube the temperature is
highest in the axis of the eylinder and decreasestowards the outside.
This is also the case at the boundary surface of the phases. Hence
the normal velocity at this surface cannot be the same everywhere,
but must increase or decrease from within outward as the velocity
of solidification v increases or decreases with diminishing temperature.
Both cases may occur. The velocity v is, of course, zero at the
melting-point, then increases with decreasing temperature, after which
it begins to diminish again, as experience teaches, approaching asymp-
totically to zero at sufficiently low temperature. '

Let us suppose the temperature of the surrounding space to be

") The velocity v can be determined in a simple way experimentally, and cah,
therefore, conveniently be used as basis for the calculation.

%) A process of melting, analogous to the process of solidification treated here,
is impossible, because a liquid can -exist under its melting point, but a solid
substance cannol exist above ils melting point.
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only little under the melting-point of the substance, so that the velo-
city of crystallisation increases with falling temperature. Then the
velocity of the boundary surface must be smaller in the axis ofthe
tube than at the periphery, i.e. this surface becomes concave towards
the liquid. The form of the surface can, however, not remain
unchanged during the increase; as the velocity in normal direction
is smallest in the axis of the cylinder, and increases towards the
outside, the curvature will always increase, as is easy to understand,
and at last a hollow may even arise, which is shut off, and is then
filled up. At the same time the more rapid growth has proceeded
at the periphery, and the same thing is repeated. The growth will
further not be symmetrical round the axis. When through a slight
disturbance the substance grows somewhat more rapidly at a point
of the circumference than at the other points, the surface gets here
further from the places where the crystallisation takes chiefly place,
i.e. at points where the temperature is lower and the rate of solidi-
fication, therefore, greater. Consequently the growth in the considered
point takes place still more rapidly. Hence the condition is unstable.
A small accidental disturbance will have great influence on the form
of the boundary surface, hence on the process of the solidification.
In this case the solidification is a very irregular phenomenon, and
a theoretical = treatment of the problem proposed on p. 619 is
impossible.

This is, however, entirely different when the temperature of the
surroundings, hence that of the tube, is chosen lower, so that the
velocity of solidification becomes smaller with decreasing temperature,
Then the normal velocity is greatest in the axis of the cylinder
where the highest temperature prevails. The surface of the solid phase
becomes, therefore, convex towards the liquid. This convex surface
now begins to move parallel to the axis, and in this it assumes a
very definite form. The normal velocity during this displacement is
greatest in the axis, and decreases towards the periphery. This decrease
must be such that in every point the velocity v has the value that
according to (2¢) corresponds to the temiperature & prevailing there.
There can, and will, arise a condition in which the boundary surface
moves uniformly and with constant form parallel to the axis. Every
‘disturbance in this condition will disappear again of its own accord.
It is also easy to convince oneself that everything around the axis
of the tube must be symmetrical. If this is not the case at a moment,
the growth and conduction of heat takes place in such a way that
the symmetry is restored.

Though in this way one can see that the differential equation (1)
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with the boundary conditions (2) perfectly determine the form of the
boundary surface of the phases on solidification in a tube, this
determination is attended by great mathematical difficulties. We shall,
therefore, suppose for simplification that the surface of the solid phase
is a plane at right angles to the axis of the tube’). The constant
velocity v, with which this plane moves, is determined according to
(2¢) by the temperature 6 at this plane.

When there shall actually arise a condition in which the boundary
plane, preserving its shape, moves uniformly, the whole distribution
of temperature also in solid and liquid phase will have to move
with it with this velocity, in other words, the temperature will only
depend on the distance from the boundary surface. That a solution
of (1) and (2) with this property actually exists, will now be shown.

In the solid substance, where the matter is at rest, and the condition
round the axis is symmetrical, the differential equation (1) assumes

06, {08, L 0/ 00, : )
‘\a_t_ povsscnn (Xl dg’ -f ,’T a—; 7 '—é’,r" B . . . « .

in which «, = —> and & is a coordinate, which is measured along
6,0,

the. form:

the axis of the tube in the direction of the velocity v with which

the boundary surface moves, and r the distance from the axis.

On solidification contraction takes place. In consequence of this the
liquid moves in a direction opposite to that of the positive S-axis
with a constant velocity ¥V, which in the densities ¢, and ¢, of the
solid and the liquid phase can be expressed thus:

04
Accordingly the differential equation holding in the liquid, becomes

06 (024, 10/ 90, 0,—0, 00,
) 06, 10 90, L
% s ar(’” m-) o, O @
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When the temperature in the solid and the liquid phase is sup-
posed only to depend on the distances x, resp. z, from the boun-
dary surface, the differential quotients according to time may be

‘expressed in ‘those according to place:

94, 04, 00, 00, -
el R R B €3} ]
o0t da, ot 0w ,
Further:"
1) As in the cases thal occur most frequently the velocity v depends only little
on the temperature, the bhoundary.surface will generally be only little eurved.

40"

Proceedings Royal Acad. Amsterdam. Vol. XXIIL,
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When (5) is substituted in the equations (3) and (4), and when
in these equations the following form is written :

Vo= v, & v ==,
Qs
it is found that:
' g, 0’9, 1 0/ 06, ©)
7)1‘671——“1 &;12"1“;6; 1”5 g o e e
04 0'¢, 1 0/ 06
R Y 7
. o, da,® +7~ ar(y‘ 67') @

Besides there ave still the limit conditions (2a) and (28), which
are in this case:

(01)@:0:‘:(0,)@2:0 B 1))

04, :
S ( ) — 2, af)") == Qo,v» . . . . {(8b
a &y ) oy=0 aﬂf, Zq=20

The liquid having a normal velocity V7 at the boundary surface,
it is not self-evident that (20) may be applied unmodified. A closer
examination, however, teaches that this is, indeed, the case, and
that therefore (8) is correct ).

Besides the relations (6), (7), and (8) the temperatures must satisfy
other conditions which hold at infinite distance and on the wall of
the tube. The tube being in surroundings of constant temperature,
this femperature in both phases must exist at infinite distance from
the boundary surface, where the influence of the generated heat of
melting is not felt. The zero-point of the temperature being arbitrary,
the temperature of the surroundings is chosen for it, and thus the
following conditions are obtained : ,

O)emeo =0 5 (O)ry=ew =0 . , . . . . 9)

It is less simple to take the influence of the wall of the tube
into account. When one wants to solve the problem accurately, also
a differential equation must be drawn up for the temperature in
the wall of the tube, and this temperature must be brought in connec-
tion with the temperature of the solid and the lignid substance in the
tube by means of boundary conditions corresponding to (2a) and (24).
At the outer surface of the wall the temperature must be zero, i.e
equal to that of the surrounding space.

To put this train of reasoning into practice, though notimpossible
in prineiple, would lead to very e elaborate calculations. In the cases

1) Compare also w. HLRGI‘SELL Ann. de Phys. u. Chem. 15, 1882, p. 19.

function Of' order zero.:
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that have been examined experimentally, the conduction of heat
throngh the wall is very great, however, because the wall is not
very thick, and consists of a substance (mostly glass) that conducts
heat pretty well. Consequently the influence of the resistance to heat
of the wall of the tube is slight, and the following approximation
may be used. When the current of heat in the wall is supposed to
be radial, and when d and A, represent the thickness resp. the
conductivity of this wall, a quantity of heat given by:
A0
R
flows ‘through the wall per unit of time and surface.
In this ¢ is the temperature of the substance on the inner side
of the wall of the tube.
When a is the radius of the interior width of the tube, we get
the boundary conditions: '

A 80, 3,
.- -1 = 20, resp. — i [ 2 = — 0 . (10
2, ( 5 ): o 0 vesp ( 5 ): 5 0 (10)

Both members of this equation express the current of heat per
unit of time and surface. :

In order to solve the differential equation (6) with the conditions
(8), (9 and (10), we seek a particular solution, which is a product

of two factors, one that depends on 2, (X,), and one that depends

on 7 (Rl). When we substitnte'
‘ 0, =X, R,
in (6), we may write for thlb equation :

'R, dR, v, dX, d'X

Vit T dr e de, day )
As in this relation the first member depends only on » and the
second member only on w,, both members are constant, e.g. — (.
Then the following-equations are obtained for X, and I;:
'R, dR, : ‘ SR
Pl b O R=0 L (1)
dr* ; :
&X, v, dX,
S D G N F S 1))
dr? a, dr

The solution of (11a) which remains finite for r =0, is the Brsskr

SR =J,000 . . L (12)
40%. "~
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As 6, must satisfy (10) for all values of »,, this is also the case
with each of the products X,R,, of which 4, is built up, hence
also with £,. When in (10) the value of R, given by (12) is sub-
stituted for 6,, we find:

— B, VCT, (@ () = 'l( (a0,

When in this

ay/ C=E§E,
and
)
ZL:}",. S ¢ 3
@

is put, this equation assumes the form:
YlglJl(gl)r:Jﬂ(El) T § E3)

This equation has an infinite number of roots, which ranged ac-
cording to ascending value may be called:

§W, 5@, o, W, L

They depend on the quantily y, defined by (13).
To every root § belongs a value of the function B,. These func-
tions become:

o PE, ~
_Rl(/c):.fo( ),(k:l,z, R S ¢ 1)
a

Like (11a), (116 has also two particular solutions, one of which
becomes zero for @z, = », and the other infinite. In connection with
(9) the former must be chosen. Apart from a constant factor, this
solution is:

) .
X, =e L (16)
p, is the positive root of the equation: |

v, {g (k)}’
{pl(k) }g -+ ;;l.pl(k) - ‘a,..... =0,

1

which is found by substitution of (16) in (114), and replacement

of C by:
B

The value of p,@ is

v v * :
() == — L [/—_—. { } e e
Py 2a + ‘ 4a’+ at ‘ (17

of normal functions, viz. J,
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The general solution of the problem must be composed of special
solutions in the following way :

(0,
e UL L L L (18)

0, =3 A,0J,

377 gl(k)
k=1 !

The constants A,(® can only be determined in connection with the
value of 8,. The expression given by (18) satisfies the boundary condition
(10), which holds at the boundary surface of the solid substance and
the wall of the tube, and is also in agreement with (9).
~ The value of the temperature ¢, prevailing in the liquid is found
in an analogous way. It is:

P §;(70) k),

0, =3 A0 J e T L (19)
fo=1 a
The quantities §,(%) are the roots of the equation:
Y? §2 Jl (52) _ JD (-‘é:?)’ . * . M . * . (20)
in which:
| 11 ’ 21
/,-—-—;; . . . . . . . . f ( )

From &% follows p,:

, v, v,! R
pg(m:é&’AJﬁl/Zﬁ_iri—_’;y ------ Coe (29

In conclusion the constants A,® and 4, occurring in (18) and
(19), must be determined from the conditions (8) at the boundary
surface of the solid and the liquid phase. By the aid of (18) and
(19) these conditions become:

» e & () @ £ () ‘
s 400, 50 =S g (TEL_) N 1)
k=1 ( a =1 a

® r& (k) 7~§2(k

k§] [Al(k k ] ;_‘-1'“2 + 4, 2 pa 'o __;l """" :] Q Qv (24)

Both equations must hold for all values of 7.
The difficalty to find the constants A, and 4,% from (23) and
(24), consists ‘in this thatin these equations there occur two series

£, *®
"o '5’1- 77777 g These series

and J,

are, indeed, each in themselves orthogonal; but the functions of one
sevies are not orthogonal to those of the other. The most symmetrical
way would be to try and find normal functions belonging to the
whole space, and not, as had been done up to now, eitherto space
1 (solid substance) or to space 2 (liquid). There exists, however, a
simple — though asymmetrical — method, which leads to the pur-
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pose with comparatively little trouble. It is possible to develop the
functions for one region into a series of normal functions of the
other region. The following development is then obtained:
o]
»
=2« Jog é’ (25)

The constants ay; form a twofold infinite system of values that

, ,
do not depend on the variables —, but on the constants y, and 7,
a

defined by (13) and (21). As we saw before, they depend on the
dimensions of the tube used, and on the conductivity of the sub-
stances that play a part in the problem.

For the determination of e;; both members of (25) are multiplied

rs . N : .
by »J, ’ dr, and an integration is carried out with respect

to » from zero to «. When for this purpose use is made of the
known properties of the Brsser functions, and of the equations (14)
and (20), the following form is found :

28,W &0 (y,—1) /i {6, ™)

— — 26)
G — @Y & e @

By substitution of (25) in (23), we get:
A8 == 2 a AG L o0 L0 o0 (27

If this relation between the coeiﬁcmnts A® and A,® is sahsﬁed
(23) holds for all values of ».

Also in (24) all the occurring fuucnonb of7 must be developed

r§,

(k)
AT T g ,,,,,
a

with respect to J, ’ 77777777777

; (25) gives this develop-

ment: we write for the second member of (24):
ré,

a

Qo,v, —-Ep’k (28)
o=l
The coefficients Br are found by multiplication of both members

rE, (%)

by »J, dr, and integration with respect to » from zero

to a. Then follows from (20) and the properties of the Brsser functions::
2
Q()l V7, Lo ) (29)
4 7, 50N, 6,%) '

B ==

When (25) and (28) are substltuted in equation (24), it appears
that this is identically satisfied when the following relations exist
between the still unknown coefficients 4,9 and 4,(®: ‘
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»
Ag(/ﬂ)pg(k) 4+ 2 Ax@ 4 p1<l> ap=gk. . . . . (30)
(=1

When finally the constants 4,0 are expressed in 4,(® by the aid
of (27), then follows from (30):

= A0 alk (p DA, + p,02,) == p N 1))
[=1

The equations (31) are infinite in number and contain infinitely
many unknowns A,¥. As we have not used orthogonal normal
functions, we do not find the coefficients 4, expressed explicitly,
but as solutions of a system of linear equations. Practically this is,
however, not a very serious drawback. For the quantities ey are
small for k=/; hence they differ only little from one if k=1
In the first of the equations (31) all the terms but one can be left
out in the first member in first approximation. The value of 4,
thas found is substituted in the second equation, in which all the
terms following the second, are left out. Thus an approximated
value of 4,® is obtained from this equation. Proceeding in the
same way, an approximation is found for all the values 4,(0. Now
the calculation is repeated, but no terms are left out. The terms
which were neglected in first approximation, are now replaced by
the value which they appeared to bave in first approximation. By
this method of successive approximation, which quickly converges,
the values of the coefficients 4,9 are found. The values of the
constants 4, (or A,(®) are then found from (27).

The temperature &,  in the solid substance and 6, in the liquid
is found by substitution of the values found of A,®) and A4, in
(18)- and (19); the problem we had proposed to ourselves, has
therefore, heen solved.

The above-developed theory becomes of importance when. it leads
to a clearer understanding of the result and the interpretation of
observations. Experiments on solidification in a tube and their rela-
tion to the theory will be found in a subsequem communication.

Institute for Theoretical Physics.
Utrecht, June 1920, '






