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~ 1. Irltl'oduction. rrhe equilibrium between two phases bas been 
fully investig'ated experimentally ancl theol'etically. l~itt.le, howevel', 
is known about the cases in whi~h there is no eqllilibrium, but 
one pbase is converted into another. In the fit'st case tbe thermo­
dynamic laws may serve as basis of all consiclerations; in the seeond 
ease, howevel', snch leading prineiples are entil'ely wanting. The 
researches on t.be dynamics of the eonvel'sion of pbases are quite 
detaehed, and are often restricted to t.be collecting of empirical data 
the meaning of whicb is not quite elear. 

It would be very desirabie to develop a general theory of 
dynamics, which will have 10 include "therrnodynamics" as the 
special case of its statics. W hether this is possible from a purely 
phenomenologieal point of view, fUl'tber experiment will have to 
teaeh. 

In what follows I have worked out a general method for the 
treatment of the special case of the solidification of a chemically 
simple substance. 

On transition of a snpercooled melt into the solid condition the 
following processes should be shal'ply distinguished: 

1. The formation Qf partieles of the solid phase in the supercooled 
liquid 1). 

2. The fur/her growth of each of these pal'ticles, and also the 
growth of a partiele of the solid substanee put into the liquid 
purposely !). 

Only the second point will be treated in this eOll1munieation. In 
this (he particulal'ities which are in connection with the anisotropy 
of the solid substanee wil! not be taken into aceount. In this wa)" 
the problem is simplified, but at the same time the idea of aceounting 
fol' the forll1ation of the erystalline form is abandoned. 

1) G. TAMMANN, Zeitschl'. f. phys. Chem. 25, p. 442, 1898. 
2) D. GEENEZ, Compt. rend. 95, p. 1278, 1882. 
B. MOOEE, Zeitschr. f. Phys. Chem, 12, p. 545, 1893, 
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rrhe questioll whiel! ShOldd be posed when ane wishes to examine 
the COllrse of the proeess of solidifieation, is the following: 

Given a supercooled liquid, in whieh there are one Ol' more pieces 
of the soHd snbstance. At a definite mOUlent the temperatUl'e is 
given as function of the place. Requil'ed to detel'mine fOl' every 
successive momellt the ternpel'atu!'e as fnnct.ioll of the plat~e anel the 
velocity with which the boundary s\ll'face of the two phases moves 

in consequenee of tbe solidification. 
VVhen the general prineiples and methods that may serve to solve 

this pl'oblem, are known, all the cases that present themselves can 
in principle be tl'eated by the aid of them. This treatment only 
requires the Sllrtnounting of mathematical difficnlties. The theory 
must be developecl fol' a pttrlicnlar case and compared with the 
experirnents. As is t.he case ill eve!'y phenornenologieal theory, eertain 
constants Ol' funetiomi whieh al'e ehal'acteriHtic of the sllbstanee, 
l'emain IIndetermineci à priori here too. Comparison of theory and 
obsel'vations makes us aequainted willt these eonSIants Ol' funct.ions. 

'Vhen the above mentioJleci questions are .allswcl'ecl, it should be 
borne in mind that ill a snbstance in wbieh the temperature cliffers 
from point to point, eonduetion of heat takes plaee. The eonduction 
should not be eonsidered as aecessol'y, for without trallsport of heat 

solidifieation Call1lot take place. 
In a substance moving with a velocity V the temperature () satisfies 

a generalized difI'erential equation of the conduction of heat 

Cl? ao = À b. () ._- cf! div (fFV) . at (1) 

1'his equation contains the quantities c, Q, and À, (resp. specifiè 
heat, density, and conduetivity of heat), whieh refer 10 tbe ph ase 
fol' which (1) holds. An eqnation of the shape of (1) exists for the 
solid as wel! as fol' the liquid phase. In these equations thef'e occnr 
constan ts which are eharacteristic only of one of Hw phases separately, 
and not for the heterogeneous reaction between the two phases. 

As in every problem of conduction of heat there are here too, by 
the side of the diffel'ential equation, boundary conditions which the 
temperature (J must satisfy, \'iz.: 

1. At the boundary plane of two media the temperature is 
continuons. This refers both to the boundary surface of. the solid 
and the liquid phase and to the surfaees along w'hieh each of the 
phases touches the wall of the vessel in wbich they are contained, 

2. At a boundary surface the normal component of th~ current 
of heat is continnous, when no generarion of heat takesplace at 
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the sUl'face. If Ihis is tbe case, the normal components of the cUI'l'ent 
of heat in the iwo slIbstances at the [WO sides of the slll'faee togethel' 

lead oif a quantitJ' of heat equal to the genel'ation of heat taking 
place at this sllrface. 

The boundal'Y conditions 1 and 2, howeve1', togethel' with the equation 
(1) are not yet sufiicient to determine the condition for every sucees­
sive moment. For one thing, the velocity with whieh the boundary 
sUl'face of the solid phase moves is not known, hence it is not 
known eitbel' at a definite moment, at wllat sUl'face the eonditions 
1 and 2 al'e valid. The velocity of the boundal'Y surface of the 
phases is dil'eeted from solid to liquid dUl'ing the solidifiealion. This 
velocity ean only depend on the conditiOll of tbc substance at this 
sUl'face, henee on the nature of the substance and tbe temperature 
th ere. As third limit eondition we gel, therefol'e, the relation that 
must exist between tbe lir1eal' veloei ty of cr.)' stallisatioJl (Ol' solid i­
fieation) and the tem peratul'e at tbe boundal'Y. 

When the value of a quanWy in the solid phase is denoted by 
the illdex 1, and in the liqllid phase by the index 2, anc! wllen v 

is the normal at tbe boundal'Y slll'faee solid-liquid, we !Jave at this 
bOllndal'j' sul'face tbe. eonditiollS: 

el = e. 1) (2a) 

ae1 a8, 
Al Tv -)"-a; = VQl Q (2b) 

(2c) 

When VQ1 is the mass solidifying per unit of time and per unit 
of sUl'faee, V!?l Q repl'esents the diiferenee of the normal-component 
of the current of heat on the (WO sides of tbe bounda1'Y sUl'faee, 

when Q 1'epresents the melting heat at the temperature lJ prevaiJing 
at this sUloface. 

The diflerential equation (1) with the boundary conditions (2) now 
determines the course of the pl'oeess of solic!ification. (1) and (2) ean, 
howeve1', not be solved, when the fUllction f, whieh is chal'acteristie 
of the substance, is not known. It might be tried to make different 

sn ppositions about the relation bet ween iJ and v, e.g. that () is equal 
to the temperature of melting. Ever,}' snpposition leac!s to a definite 
mlue of the tempera/ure as funetion of place alld time. Baeh of 
these results might be eompat'ed with the observation, anc! in tbis 

way it might be found what l'elation there exists bet ween fi and v. 

1) A horizontal line indicates the value at the limit. 
2) Of course inversely G = (I' (1'). 
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As we à priori do not even know the form of the relation (2c), 
the fol1owing course is, however, to be preferred. A value is ehosen 
for the velocity v 1). Wilen furthel' 'v is eonsidered as given, the 
ternpemture can be deterrnined from (J), (2a), and (2b), hence also 

the temperature e at the bOllndal'y. By causing the solidificatioll to 
tttke place IInder different circllrnslances, different values of v ean 
be obtained, and fol' each of these \'alues the eOl'J'esponding tempe-

ratme l) can be ealeulated, and in Ihis Wity tbe relation between 

v and ij ean be fonnd. To eheck the theory, tbe temperatureiJ may 
be detennined expel'imentally, but this is not necessary in order to 
find the relation given by (2c) fol' a definite snbstanee. 

~ 2. Tlwo}'Y of tlte solidification in a cylindTical tube. 
One of the sirnplest pllenomena of solidifiealion, which has also 

been st.ndied most fully expel'imentally, is the cl'ystallisation of a 
su pereooled liq u icl iJl a ej' lind rieal tu beo 

Let the solid sllbstance be in onc part (A) of a straight tube, the 
supercooled Iiquid in the otller part (13). The whole is slll'rounded 
by a spaee of cOllstant temperatlll'e, which mllst also prevail in A 
and B within the tube at infinite distance from the boundm'Y sUloface. 
'rhis temperatul'e mnst, of eourse, lie under the melting-point of the 
substance used, because else no soIidifieation takes place '). 

The soliclifieation rlOW proceeds as foliows. Heat is liberated at 
the boundary snrfaee of the phases (heat of melt.ing). lt tlows off 
on both sides thl'ough the soUd substance and the liquid, anel finally 
passes throngh the wall of thc tube to the sphel'e of constant tem­
pe!'atul'e. In every vel'tieal seetiol1 of the tube the temperature is 
highest in the axis of the cylin.der and deel'easestowards the outside. 
'rhis is also the etlse at the boundary surface of the phases. Hence 
the nOl'mal velocity at this surface canllot be the same everywhel'e, 
but must inel'ease Ol' decl'ease from within ontward as the velocity 
of solidification v Încl'cases or decrcases with diminishing temperature. 
Both cases may occU!'. Thc velocity v is, of couJ'se, zero at (he 
melling-point, then incl'eases wiLh decreasing temperatul'e, afterwliieh 
it begins to dirninish again, as expcl'ienee teaches,apPl'oacbing asymp­
totically to zero at sufiiciently low tempel'ature. 

Let us sl1ppose the temperatlll'e of tbe sllrrollnding spaee to be 

1) The velocity v ean be determined in a simple way experimentally, and can, 
therefore, conveniently be used as basis for the caleulation. 

9) A proeess of melting, analogous to the proeess of solidifieation treated here, 
is impossible, beeause a liquid can exist under its melting point, but asolid 
substance cannol exist abovc its melting point. 
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only liUle lUIder the melting-point of the slIbstance, so that the velo­

city of cl'ystallisation incl'eases with falling tempemture. Then the 

velocity of the boundary sllrfaee must be smaller in the axis of the 

tube than at the pet·iph81'y., i.e. this surface becomes concave towards 

the liqnid. Tbe farm of the slll'faee ean, howevel'. not remain 

unehanged during the inerease; as the veloeity in nOl'mal direetion 

is srnallest in the axis of lbe cylinder, and increases towards the 

olltside, the eut'vature will always increase, as is easy to understand, 

and at last a hollow may even arise, wbieh is sbut off, and is then 

filled up, At the same time the more rapid growth has proeeeded 

at tbe periphery, and the same thing is l'epeated, The growth will 

further not be symmetrical round the axis. When through a slight 

distut'bance the sllbstanee grovvs somewhal mOl'fl I'apidly at. a point 

of the cil'eumfel'ence than at the otber points, the snrfaee gets here 

fllrtber from the plaees w bere t he el'ystall isation takes ehiefly place, 

i.e, at pointswtlere the tempemture is lowel' and the rate of solidi­

lication, therefOl'e, greatel', Consequently tbe growth in the considel'ed 

point takes plaee still more l'apidly. Hence the eondition is nnstable. 

A small accidental distLll'banee will have great inflnenee on the form 

of the bOllndary snrface, henee on the proeess of the solidification. 

In this ease the solidification is a very ilTegular phenomenon, and 

a theoretica! treatment of the problem proposed on p. 619 is 

im pos si bIe. 
This is, howevel', entil'ely different when the temperatllre of the 

surl'oundings, hence that of the tube, is cbosen Inwer, so that the 

veloeity of solidifieation becomes smaller with deereasing temperature. 

Then the normal velocity is gl'eatest in the axis of tbe ey linder 

where the highest; temperatllre prevails. The surfaee of the solid phase 

becomesJ therefore, convex towards the liql1id. This eonvex surface 

flOW begins to move parallel to tbe axis, and in this it assumes a 

very definite form. The normal velocity during this displacement is 

greatest in the axis, and decreases towards the periphery. This deerease 

must be sneh tbat in every point the velocity v bas the value that 

according to (2c) eorresponds to the temperatllre & prevailing tbere, 

'l'bere can, and will, arise a condition in which the boundary surfaee 

moves uniformly and with constant form parallel to the axis. Evel'y 

disturbanee in this eondition wil! disappear again of its own aceord. 

It is also easy to convince oneself that everything around the axis 

of the tube must be symmetrieal. If this is not the case at a moment, 

the growth and conduction of heat takes plaee in su eh a way that 

the symmetry is I'estored, 
Though in this way one can see that tbe diffel'ential equation (1) 
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with the boundary conditions (2) perfectly determine the form of the 

boundary sUl'faee of the phases on solidifieation in a tube, this 

determination is attended by great mathematieal difficulties. We sba]], 

thel'efore, suppose fol' simplifieation that tbe surface of the solid phase 
is a plane at right angles to the axis of the tube 1). The constant 

velocit.y v, witb whieh th is plane moves, is determined aecording to 

(2c) by the tempel'atUl'e1f at this plane. 
When there shall aetuall'y arise a eondition in w hieh the bonndary 

plane, preserving its shape, moves uniformly, the whole distribution 

of temperature also in solid and liquid phase wil! have to move 

with it with this veloeity, in othel' words, the temperature wil! only 

depend on the distance from the boundary sllrface. That a soilltion 

of (1) and (2) with this propert.Y aetnallyexists, will now be shown. 
In the solid substanee, wbere the matter is at rest, and the condition 

round the axis is symmetl'ieal, the differential equation Cl) assumes 

the form: 

(3) 

III which Hl = -~- .and ~ is a cool'dinate, whieb is rneasllred along 
Cl!,)l 

the axis of tbe tube in the direction of the velocity v with whiC'h 

the bOllndary snrfaee moves, and r the distanee from (he axis. 
On soliditieation eontraetion takes p]a('e. In consequenee of this tbe 

liquid moves in a di,'eetion opposite 1;0 that of the positive §-axis 

with' a constant veloeity V, whieh in the densities (1J alld Q. of the 

solid and the tiqnid phase ean be expressed thus: 

v= _Ql=~!. v. 
Q. 

Aeeordingly the differential eqllation holding in the liquid, beeomes: 

o~~ = a.l ?;~. + ~ :~ (r o~,:) \ ~lQ:~' v~: . (4) 

When the tempel'ature in the solid and the liqllid phase is sup­

posed on!y to depend on the distanees :V l resp. x. from the boun­

dary sllrfaee, the differential qnotients according to time may be 

expressed in tbose aecording 10 place: 

~~2 = v a&2 oB. = _ 1) ~~: (5) 
at a a; 1 at 0 IV • 

FUl'ther: 

1) As in the cases that occur most frequently the velocity v depends only little 
on the temperature, the boundary surface wil! gene rally be only little cUl'ved. 

40" 
Proceedillgs Royal Acad. Amsterdam. Vol. XX lil. 
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o o 
d~ oXI resp. og-a.'lJ.-· 

When l5) is sllbstitl1ted in the eqllations (3) and (4), and when 
in these equatiolls the following form is wl'itten: 

(IJ 
v -cc:c V I ; ~ V = v.' 

I? 
it is found that: 

(6) 

(7) 

Besides theJ'e are still the limit conditions (2a) and (2b), which 
are in th is case: 

(Sa) 

(Sb) 

The liqllid having a norrnal velocity V at the boundary sUl'face, 

it i snot seU-evident that (2b) may be applied unmoditied, A closer 

examination, howevel', teaches that th is is, lndeed, the case, and 
that .therefore (8b) is COl'l'ect I). 

Desides the l'elations (6), (7), and (8) the tempel'atUl'es must satisfy 
othel' conditions whieh hold at intinite distance and on tbe wallof 

the tube. The tube being in surrollndings of constant temperatllre, 

tbis temperatllre in both phases must exist at infinite distance from 

the bOllndal'y sUl'face, whel'e the influence of the gen'erated heat of 

melting is not feit. Tbe zeJ'o-point of the tempel'atuJ'e being aJ'bitl'ttl'y, 

the tempel'atlll'e of the sUl'J'oundingsis chosen fol' it, and thus the 
following conditions are obtained: 

(OJx=oo = 0 «()2)X2=OO = 0 . (9) 

It is less simple to take the influence of the wall of the tnbe 
into account. When one wants to solve the pl'ohlem accurately, also 

a differenrial equation must be drawn up for the temperature in 

the wal! of the tube, and this temperature must be brought in connec­

tion with the tempeJ'ature of the solid and the liqnid substance in the 

tube by means of boundal'Y conditions cOl'l'esponding to (2a) and (2b). 
At the outer surfa.ce of the wall the temperature must be zero, i.e 
equal to that of the surrounding space. 

'1'0 put this train of reasoning into practice, thOllgh not impossible 
in principle, would lead to very eJabol'ate calculations. In thecases 

1) Compare also W. HERGESELL, Ann, de Phys, u, Chem, 15, 1882, p, 19. 
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thathave been examined experimental!y, the conduction of heat 

thl'ongh the wall is ver)' gl'eat, howevel', hecause the wall is not 

vel''y thick, and consists of a substance (mostly glass) that conducts 

heat pretty weIl. Consequently the influence of the resistance to heat 

of the wall of the tube is slight, and the following approximation 

may be nsed. When the Clll'l'ent of heat in the wal! is supposed to 

be radial, and when d and Às represent tbe thickness resp. the 

condl1ctivity of this wal!, a quantity of beat given by: 

) .. () 
ó 

fIows throllgh the wal! per unit of time and sUl'face. 
In this f) is the temperature of the sllbstance on the inner side 

of the wal! of the tube. 
When a is the radim; of the interim width of the tllbe, 

the boundary conditions : 

(OOI) 28 
- 21 ;;--- = -- 01 resp. 

vr "=a Ó 

we get 

(10) 

Both members of tbis equation express the CUl'rent of heat pel' 
unit of time and. surface. 

In order to solve the diffeJ'ential equation (6) witb tbe conditions 

(8), (9) and (10), we seek a particulal' solution, which is a produet 

of two factol's, one that depends on :C I (Xl)' and one that depends 
on l' (Rl)' When we substitute: 

0l = Xl Rl 
in (6), we may write for this equation: 

d'R I dR I 
r--~--

dr' dr 

rRI Xl' 

As in this l'elation the fil'st membel' depends onJ'y on l' and Ihe 
second member only OniI\, hoth members are constant, e.g. C. 
Then the following equations 11,1'e obtained I' Ol' Xl and Rl: 

d'R I 
r -----

dr" 
(11a) 

(IIb) 

Tbe sol u ti on of (:11 a) which l'emains finite fol' l' ----.:0; is the BESSJi:L 

fUlletion of order zero: 

RI =)0 (r V C) . " (12) 
40*·' 
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As &1 m nst satisfy (10) fa I' all valnes of .'IJ l> th is is a!so t he case 

wiLh each of tlte pl'oduets XI Rl' of whieh &1 is built up, henee 
al80 wit.h R" When in (10) tbe value of R, given by (12) is sub­

stitllted for BI' we find: 

WheTl in t.his 

and 

-- À, V·C .11

0 
(a VC) = ,taa Jo (a VC). 

d 

aVC=~1! 

ÀIO 
-=Y" 
À,a 

is put, this equation assumes the farm: 

II ~I .11 (~J c= Jo (~I) 

(13) 

( 14) 

This eqnation has an infinite number of roots, which I'anged ac­

cOl'ding to ascending value may be called: 

~1(1), ~1(2), •.• , ~I(k), 

They depend on the quantiiy YI defined by (13). 
Ta every root g belongs a val ue of tbe function RI' These fune­

tions become: 

, (lc= 1,2, ... ). (15) 

Like (Ha), (11bî has al80 two particulal' solutions, one of wllien 

beeomes zero for XI = TJ, and the other infinite. In connection with 
(9) the former must be chosen. Apart from a constant fat·tor, this 

sollltion is: 

(le) 
--PI XI 

Xj=e 

PI is the positive root of the equation: 

2 VI ! ~1(k)l' 
{PI(k)l +_-PI(k) ___ = 0, 

al a' 

(16) 

which is found by substitutio.n of (16) in (11b), and replacement 
of C by: 

(17) 

62.1) 

The genera! solution of the pl'oblern must be eornposed of special 

solutions in the following way: 

(18) 

The eonstants A, (k) ean only be detel'mined in connection wilh the 

value of 0" The expl'ession given by (18) satisfies the bonndaJ'Y condition 
(10), which holds at the bonndal'y surfaee of the solid substance and 

the wal! of the tube, and is also in agreement with (9). 

The value of the temperature O. pl'evailing in the liquid is fouTld 

in an analogous way. It is: 

00 ) r !: (Ic) l (k) O. = .2 A.(k) Jo _~~___ e-l" .1, 
k=l a 

(19) 

The quantities g.(1c) are the roots of the equation: 

I. ~2 .11 (~.) = Jo (~2)' (20) 
in which: 

(21) 

From g/k) follows P.(le): 

P.(Ie) = ~- + V~~::-~-L~~~~~l: (22) 
2a. 4a,' a' 

In conclusiOIl the cOllstants AI(k) and A/k) occnrring in (18) and 

(19), must be determined from the conditions (8) at the boundal''y 
sUl'faee of the solid and the liquid phase. By tbe aid of (18) and 
(19) these conditiolls become: 

~ A/k) Jo 1 __ -_1_ =.2 A.(k) Jo ~-'- . 
00 r ~ (/c) l 00 (r "C (k)) 

k=1 I a k=l a 
(23) 

:;, LA (k) À P (le) J I ~ ~ I (Ic) ! 1- A (k) À P (le) J l r ~~~: t J - Q () V 
I I I 0 I.., 0 - ,1 I' 

k=l . a a 
(24) 

Hoth equations must hold for all values of 1'. 

Tbe difficulty to find the eonstants A1(lc) and A.(lC) from (2:3) and 

(24), consistsin tbis that .in these equations there occur two series 

\ l' ~ (k) I . \ 'f' g (k) I 
of normal fllnctions, viz. Jo 1- -~-- \ and Jo 1 ~1-·· . These series 

are, indeed, each in themselves orthogonal; but the fllnetiOllS of one 

series are not orthogonal to those of the other. The most symmetl'ieal 
way would be to try and findnol'mal flLrlctiollS belonging to the 

whole space, and not, as had been done up to now, either·to space 
1 (solid sllbstance) Ol' to space 2 (liquid). Thel'e exists, bowevel', a 

simple - though asymmetricaJ - methad, which leads to the,pur-



E SP 

626 

pose with comparatively little trollb!e, H is possible to develop the 
functions fol' one region into a series of nOl'mal functioIlFi of the 

other region, The following development is then obtained: 

Jo \~gl(~)1 = i aki Jo \~~t(I)1 (25) 
I a \ 1=1 I a \ 

The constants (1kl form a twofold infinite system of values that 
r 

do not depend on the variables -, but on the constants y and 1. 
a I 

defined by (13) and (21). As we saw before, they depend on the 
dimensions of the tube used, and on the conductivity of the sub­
stances that play a part in the problem, 

}1~or the determination of arel both membel's of (25) are multiplied 

by l' Jo 11' S , (k) I dr, and an integration is carried out with respect 
ft ~ 

to l' from zero to a. W hen fol' this purpose use is made of the 
known properties of the Bgss~]J, functions, and of the equa/ions (14) 

and (20), the following form is found: 

2 6l (k) S,\l) (Y.-Yl) J I ! SI (k)l 

alel = r(gl(k)r-=-(g~)2~1! 1 +~y: (g.(l)'TJ;rg~~· (26) 

Bj' substitution of (25) in (23), we ge!: 

A,(k) = 2: alle AICl) 
1=1 

(27) 

If this relation bet ween the coefficien ts Al (k) and A/k) is satistied, 

(23) holds fol' all yalues of 1'. 

Also in (24) all tbe oceuning funetions of l' must be developed 

. \ r L(k) I " ~ 11' S 1 (k)? ' 
wüh respect to .J 'I--a-~~~ \. Bol' J. -~-a-~ (25) gi yes this develop-

ment: we write for the second member of (24): 

00 I r' ~ (k)! Q Ch VI = 2: (3,c Jo -~~- , 
lc=l a 

(28) 

The coefficients Ih are found by multiplication of both mem bers 
\1,g (Tt)/ 

by l' Jo I ~-I dr, and integration with respect to l' from zero 

to a, Then follows from (20) and the properties of the HESSEL functions: 

2QQl v, y, 
(ile = [1+ y: (g7kl) 2! f:7.,?,:(kl) (29) 

When (2b) and (28) are substïtuted in equation (24), it appears 
that this is identicalJy satisfied when the following relations exitlt 
between the still unknown coeffieients A /k) and A/lc): 
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00 

A
2
(k)p.(lc) +.2 Al(I)).l p/I) Uilc= rfk, (30) 

1=1 

When finally (he constants A.(lc) are expl'essed in A1CIc) by the aid 

of (27), then follows ft'om (30): 

2: A 1(l) alk (PlCl) )'1 + P2(k) ),.) = {h (31) 
1=1 

The equations (31) al'e infinite in numbel' and contain infinitely 
many Ilnknowns A/I). As we have not used orthogonal nonnal 
functions, we do not tind the coeffirients Al expressed explicitly, 
but as solutions of a system of linear eqllations. Practieally this is, 
howevel', not a ver,}' serious dl'awbark. Fot' the quantities aid are 

smal! 1'01' k =: I; hen ce tbey differ only little from one if k = I. 
In the first of the equations (31) all the terrns but one ean be left 
out in the first member in tirst appl'oximation. The value of Al (1) 

thus fOlmd is substituted in the second equation, in whieh all the 
tel'lllS following the second, are lèft out. Thlls an apPl'oximated 
value of A I (2) is obtained from this equation. Pl'oeeeding in the 
same way, an approximation is found for all the values Al(I). Now 

the caleulation is l'epeated, but no terms are left out. The terms 
wbicb were neglected in fir'st approximation, are now replaced by 
the value whieh tboy appeal'ed to bave in th'st appJ'oxirnation. By 
this method of successive approximation, which qlliekly converges, 
the values of the eoeftieients AIU) are found. Tbe values of the 
constants A2~1) (Ol' A.(lc)) are 'then fOllnd from (27). 

The tempel'atul'e &1 in the solid substance and &2 in tlte liquid 
is found by sllbfltitution of the values found of A/le) and A.(k) in 

(:18) and (19); the problern we had pl'oposed to ou!'selves, has, 
thel'efore, heen sol ved. 

The above-developed theory becomes of importance when it leads 
to a elearer undel'standing of the resu lt and the interpl'etation of 
obseJ'vations. Experiments on solidification in a tube and thei!' rela­

tion to the tbeol'y will be found in a subseqllent communication. 

lnstitute lor l'lt13o}'etical Physics. 
Ub'echt, June 1920. 




