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The so-called cyanogen-bands have completely disappeared; it
follows that these bands do not belong to nitrogen, but to a much
‘more easily condensable substance, probably cyanogen.?)

This is in accordance with StruBING’s observations; the latter found
no trace of the cyanogenbands in his experiments, where the presence
of any carbon was excluded. ?)

Probably Grorrian and Runew’s nitrogen was not completely free
from carbon. This may be due to the fact that they purified their
nitrogen. by pyrogallicacid-solution; during this operation small
quantities of carbon monoxide are usually developed.

Eindhoven. Laboratory Philips’ Incandescent
Lamp works Ltd.

1) In some of our experiments we completely immersed the discharge-tube in

liquid oxygen, the spectrogram being takeu through the walls of the Dewarvessel.
During the operation of the Tesla transformer the walls of the Dewarglass show
the green fluorescence of cathoderays. In one of our experiments however some
gas was liberated in the space between the walls of the Dewarvessel, so that a
red glow appeared, the radiation of which is superposed on that of the discharge-
tube. The so-obtained spectrogram is shown in fig. 3. A peculiar phenomenon may

be observed. Some of the cyanogen-bands, namely 3855, 8883 and 4168 A. come
out very strongly, whereas the other ones are absent. So it is not impossible.
that the cyanogen-bands are due to two different carriers.

?)- Simular results have been obtained by L. HamBurerr, who also found no
trace of the cyanogenbands in extremely pure nitrogen. Chem. Weekblad (15) 931
1918. (Added in translation).

Physics. — “The geodesic precession: a consequence of FINSTEIN'S
theory of gravitation.” By Dr. A. D. Fokkrr. (Communicated
by Prof. H. A. Lorgenrz).

(Communicated at the meeting of October 30, 1920).

It is well known at present what parallel displacement or geodesic
translation. means in non-euclidean space'). And we know also that
a compass rigid, moving parallel to itself and compleling a closed
cirenit, in consequence of the curvature of space, will not regain
the same orientation which it had before: a certain rotation of
curvature will become apparent. Now it occurred to Scnouren that
the earth’s axis of rotation — provided the earth were a sphere —
should remain parallel to itself in the general geodesic sense during
the motion of the earth round the sun. Thus, after a year, we must
expect the earth’s axis to point to a slightly different point of the
heavens according to the curvature of space produced by the sun’s
gravitation. This affords an additional precession which superposes
itself on the precessions due to other cauges known in astronomy *).

The problem however is not so simple as it is put here. Though
it can be proved that the axis of rotation will remain parallel to
itself in the geodesic sense, yet in reality we have to consider the
dragging of the earth’s axis along her four-dimensional helicoidal
track through time-space and not a circuital displacement in the
ecliptic at some definite instant. The problem should be put as one
of four-dimensional geometry; it is a problem of mechanics, and
not a problem of three-dimensional geometry. If this be done properly,
then the result is that we are to expect a precession one and a
half times the precession foreseen by Scmourrn, viz. 0.019 of a
second of are per annum *). This will be shown in the present paper.

The idea at the bottom of the argument is the following. Imagine
that in order to describe motions taking place in the neighbourhood
of the earth’s centre we choose axes such that the time is always

1) Lewt (,«IVITA Rendic. Cere. Mat., Palermo, 42, p. 1, 1917; Scrouvren, Direkte
Analysis zur n. Relativititstheorie, Verhandelingen Kon. Akad v. Wetensch. Amster-
dam, XII, no. 6, 1919; Weys, Raum, Zeit, Materie, Berlin 1920, 3rd ed.; Cf.
also an article of the present author in Proceedings Kon. Akad. v. Wetensch
Amsterdam 21, p. B0O5, 1918.

%) Scmouvren, Proceedings Kon. Akad: v. Wetensch. Amsterdam 21, p. b33,1918;
w1th appendix by Dz Sirrer.

%) Gf. also a paper by Kramrrs, Proc. Amsterdam, September 1920;%‘
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directed along the earth’s four-dimensional track and that the origin
of space-axes falls along with the earth. Moreover, the original
directions of these space-axes al successive instants are to remain
parallel to themselves in the general, or natural sense. If our axes
~of reference are chosen in this way, we may confidently expeet the
equations  of motion to assume a particularly simple form: in fact,
as a first approximation, when motions take place very near the
origin (i.e. within a domain the {wo-dimensional cross-sections of
which are small compared with the reciprocal of RiEMANN’s measure
of curvature) then this region may be considered to be homoloidal,
that 1is, free particles are moving in gtraight lines under no force,

and a top spinning round ifs axis of symmetry will keep its axis

of rotation in a fixed direction relative to the axes of reference. As
the latter are carried along the axis of time parallel to themselves,
so it follows that the same is (rue for the axis of rotation. H

If we proceed to the second approximation, we find that free
particles are subject first to forces which we know are the canses
of the tides due to the sun’s action, and secondly, to forces depending
on the velocity of the particle in a manner which in-a certain
respect resembles Corionis’ forces in a centrifugal field. The latter
were called by Poixcarsi “forces centrifuges composées”. Accordingly
the new forces might be designed as compound tidal forces.

In order to obtain the second approximation, it is necessary to
specify our codrdinates in greater detail. In every point-instant of
the axis of time we draw all geodesic lines which are perpendicular
to the time-track and we desire that these shall define space, three
of them being chosen as the axes of space. or convenience sake
the latter may be chosen perpendicular to each other.

It will be seen that this space cannot coincide with space as
defined by an observer who is at rest with the sun. The two spaces
of rveference interseci in a surface, which, in each point-instant of
the earth’s helicoidal track contains the direction in the ecliptic
perpendicular to the velocity and the direction perpendicular to the

) In much the same manner during the moon’s motion, as a first approximation,
— apart from the sun’s perturbing forces, which arise in the second approxi’
mation, — the plane of the orbit must keep its position unaltered relative to the
falling axes of reference. This results in a motion of the nodes equal to the motion
of these axes. De SrrrEw, proceeding in a fotally different manner, arrived at a
nodal motion of 1”.91 per century, which is exactly the amount given above for
the precession. (Monthly Notices R. A. S. 77, p. 172, 1916). A comparison with
observation could only be made if the nodal motion, resulting {rom other causes
and computed with Newron’s law of force, were known to one further decimal
place than it is at present. (Dg S1rTER, l.c.).
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acliptic. This involyes a complication in comparing ‘the relafive
positions of the two sets of spatial axes of .t'efergr}ce. In‘ .thex(,;fe
of a planet moving in a circular orbit this difficulty is readily
vafl'(}(z;::l we compare the falling axes, bei‘Ql'e and after a yefn"s
revolution, with axes fixed to the sun and directed to fixed points
in the heavens, we find a precession to the‘amouTxt stated apox'eaci
As pointed out by Du Sirrrr the difﬁcnlt.yj in ?estmg the pred1}ct§
precession by a comparison with observation lies not so much in
the limits of accuracy of observation as in the’fact. thgt owing to
our ignorance of the true values of the e‘arth 8 p1:n1(:1pal momenfs;
of inertia we do not know with the precision I'equ.'ed h(,)‘iv much o
the observed precession is accounted for by the actions of sun and

moon according to NewroN’s law. ' ,
We now proceed to the analytical treatment of the problem.

The geodesic falling coordinates.

Consider some point-instant in an arbitrary field of gmvitan?n,
where the potentials are denoted by gas, (@,06=0,1,2,3), », being
the time and 2V, a®, a® space-coordinates. In the usual way we

write the symbols of CHRISTOFFEL:

b ab ; m 99|
an == gnm{m‘] == dad ' Owe  dam |

where ¢° are the algebraical complements of the gm.‘
A vector Ve is displaced parallel to itself over an interval dam,
if its components decrease during the displacement according to the

ﬂ'_agmn 7 a{)bm a_,(]ab_

formula
bm

dVaz= — X Vb dam.

a

In the point-instant considered: ae, (a==0,1, 2, 3), choose a vector
of unit length baving time-character A :

‘ S gap Ao, Ab, = 1,
and three other vectors of unit length, all perpendicular to the
former and to one another: As,, Aa, A, such that
S g Aty Aby = — 1, and 3 g A4 Ab =0 if i),

As in our argument the component of time and the compogents
of space will be treated in a different way, we shall establish th'e
rule that whenever a suffix is indimted by a Greek character, it
will not be liable to take the value 0. ‘ . |

We change variables by introducing the coordinates 2 according
to the following formulae:
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i , bm o
v who == & Aty g — § = Ab; Amy gt z) —
LS ___(?N bm bn bs | {mn
i 0an | a T s\ la P Ab; Amy Any i 20 2k —

. .
— ¥ > Qab,mn Ab/,, (Amv A”o — An, Amo) zt oy g%
1 ;
— o Z Quy Aby (Amy Ay — An A 2v 20 20 .
‘ By Q%,.. we have denoted the same form within brackets which
is four'ld in the foregoing line. Note the symmetry possessed by
Q% in the suffixes & and m. If
we put
Rab,nm == Q”’h,nm "" Q“b,mn )
then R, is the same as a four-index symbol of Riumany:
Ry == § bay, mn},
and. for its covariant components we have the identities which will
be used in the following:

Rab,mn = e ~Rba,mn T »Hab,nm == I'Emn,ab s
and

nb mn ‘!L Rbm an 4 I ma,bn == 0,

We proceed to show that the above transformation actually affords
the geodesic falling coordinates alluded to in the introduction.

v,

The axis of 2° comcides with a particle’s mclc Put every 2 =0,
and we get

bm

1¢ P 0
& a0 ==Ao 2 —

Abo Amo zﬂzo e %_ 2 Q”’b,mn A»boAmoA”oZoZoZ”

‘ As a second approximation, this is the equation for the geodesic
line starting from the point-instant z¢, with initial direction para-
n.neters Ae, and where 2z° is the interval along the arc. Thus our
time-axis is along a particle’s track. Denote the second member of
this equation by &e, ‘

Tlhe awes of space are everywhere geodesics, as far as the approxi-
mation goes, and perpendicular among themselves and to the axes
of time. For put z°=1v and let the other coordinates vanish with
the exception of one z#; on rearranging terms we get

za — g0 — £ = Ay, g —

bm
I b ' Oa
= “ Aby, Any zrr — § Z Quy, AL, Am AP T ¥ 28—
S 5 . ,
52 . Aby Amy 2zt — 4 3D Q0 g ALy AN, AT ¥ 20 2

. .
- % = Qab,nm Ab# Am# An# A

733

This is, to the second approximation, the equation for the geodesic
starting from the point-instant 2, -- & with initial direction para-
meters

bm

Ao, — 2 Ab, Am v — § 3 Q0 Ay, AMy Ar T T,

a
and where z# is the interval measured along the arc. We notice
that these parameters are the componenis of the untt vector A4¢,,
translated  geodesically from the origin of time along the timetrack,
wilh an accuracy up to the second approximation. As a geodesic
translation does not alter the mutual angles of the translated vectors,
it follows that the axes of space and time remain perpendicular.
In the same way it may be shown that every spatial radius, that
is a line 2, ==7, 200 ==12,5, 2@ == 4,8, 2 == 1,5, with 2,7 4-4,"-|- 1, 1,
is a geodesic, s being the interval along the arc from the origin.

The potentinls g'y tn geodesical falling coordinates.

We shall caleulate the new values ¢’y by means of the trans-

formation formula
g,fj = Pai Pbj Fab s

where
Pai == Oa /02!,

[n calculating the pg the symmetry of ()% in the suffixes b
and m is of great use. It enables us to arrange terms in a practical

way. We get
Ab aAml P - ') 5 an,m" A'bo Am; A"j 21 2]

¢ o
— 4 2 Qab,mn Ab; (Amj An, A”j Am ) 2t 2,
and for any pu 0, we get '

bm . ' .
Pap == Aty —- Ez a Ab, Amigt — & = Qab,mn Ablu Ami A%y 2t 20—

Pao»—-»Aa I

e} Qupun Abu (A7 Ay — AV AT) 27 2, —
1 3 Qg Aby (A7 A7)y — ANz AMp) 2% 27

In the second lines of both formulae we shall replace Q% ., by
y R ... This is permitted because the bracket forms are skew-
symmetrical in the suffices 1 and n.

In the first lines we find exactly the components of the vectors
Av; shifted geodesically from the origin to the point-instant denoted
by 27. Thus, as far as these parls of pu are concerned, the trang-
formahon formula 2'pui po; Gav Bives 1, —1 or 0 for ¢7==j=0,
i=j==p, or 17 j respectively. We get .
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90 =1 +0—-4ix Rapun Ao, Ab; (dm; Ar,

— Anjg Am ) 2z,
Obviously in the last term the value 0 for J contribu
to the sum.

Because of the skew-symmetry of R
the value 0 can be disregarded also for 4,
. im m and 7 allows us to write :
Hi

. ' » d
ill be considered moving slowly relative to' t.he falling axss‘:ir;h
V;”t the square of their velocities will be negl.lglble compg.xe e
ttlm square of the velocity of light, which, in our coordinates,
e ar ) ;

tes nothing
abynn 1N @ and b,

and the skew-symmetry nearly unity.

! tions of motion are o
The equa d? 2o Z]' dzi dzd
TR, “I A s )
ds* al ds ds - -
*Jds = we ne
With the above assumption we may put' de’[ds = 1% a}n o oo
ly consider combinations where 2 or j or bqth 0 rle' o noé
In }l Cnms'l“owm symbols the differential coefficients of gz-,i.ale o
L“ “el beyond the first powers of the coordinates; therefore
now :

—1, and 0. This
reciprocals ¢y may be taken to be 1, —1, —1, —1, an

.qloo ==1 4 2 [gub,mn A“o Ab, A"lo Any 27 o7,
Proceeding to ¢',, we get

Jou =0+ 0 — 1 3 Ry n A2, Ao, (Amy An, — An; gm Y gi

= 2 B Aty Aby (Ame Any — An_ fn ) o g0

=7y = Ry A% AL, (Ane A, — An. Ay go o)
Taking 7==0 in the st sum, this part ¢
second sum (skew-symmetry of R
18 taken together

) —-

ancels out against the
abmn @, b). The remaining part

makes
with the third sum, and we get

i) _,[iq
. - o
g’()//v o % > ~Rab,mn Aa,u, Abo‘ Amo Aﬂ‘r 29 2", . d a H .
Finally for ¢',, we find: Caleulating we fin '"0 0 ' v
-ql/“ == Epy "}* 0 — ‘I‘lg‘ 2 -Rab,mn [Aav Ab, (Am,‘_ A"/L — Ay Avmlu,) + [ y :l ) Ro“-OT\ LA
+ Aa,u Ab, (Ajn,r An, An, Amv)] 25 2T . -

. i. ¥ VRG.W"" (Aav -Ab# + A“/LAI’,) (AmT A’,lo . ANT Amo)
where gmw=1 for p=—12 and &==0 for u
the skew-symmetries of A

o, and
# v. Having regard to
abun We reduce this expression to
I == 0 4 4 = Rupypuy A, A, Am, An po 4r,
If we remember the transformation formnla for R :

R

[O BJ = § X (Rlapor + Blasop — Ripnor — Bigepa) 27,

[24

2 Rlgyo0 &7 L 2N (Rgay0 + Ry g0 + Rgao) 27
The bracket vanishes by symmetry of the K's., thus

[0 ‘?] = 3 Rl e

Iij, rs == }:paz Pbj Pur Ps ]ﬂab,mn 3

[24
. : . » t7 become :
. Y . , . . " motion for free particles
we at once see that without lowering the degree of approximation, Finally the equations of motio Jor f ‘ p def
. g . % ! —

Wwe may abridge the forms for 9y into: 42z = e 3 Ilon e 27— 2 Ry or z«dzo.

900 = 1 4 3 Roppe e e, dz,’

9uo = ) R y50v 20 27, Here we can put

,(]’//,v == - E//_v +‘ %E Rllud—’urzv 29 27,

= Rigg e 27 == 20,
3 Rz o0 27 == 20y,
= R!12,()-: 2 = 2(»,,

This brings the last term ixit(; [the f;)rm

"of motion he first term

‘Interpreting the equation of motlion we no.te th?tu;lil::.hgs; o
in the right hand member accounts tor.lhe f01~ces causing. o e
”tl"ftts 'I%he second member has the form of a.C()R.IOLlS.lall't 'ss;
zuic Ll.'le peculiarity is that the rotation vector/ w hguir::gSi:;;Sl(,)f]me
linear function of the coordinates and th.us on oppos e o e
planet has the opposite direction. lt'ls coylvenlinrl.s.‘ve ao
compound tidal force. 1t might come into play w 1§ |
- the motions of a satellite.

It must be noticed that

these gravitation potentials depend no more
on the time 2°.

The field in our geodesic falling coordinates is station-
ary as far as our approximation  goes.

The Ry, are closely associated with Risman’s measure of curvature.
It only particles are considered moving so near the centre that the
squares of the distances multiplied by the measure of curvature

may  be neglected altogether, then the gy may be considered to be
constant and to have the homoloidal values 1, —1, —1, 1.

Bquations of motion Jor free particles in geodesical falling
coordinates.

We put forward the Simplifying‘assumption that only particles
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Resuming, we can say that as a first approximation the equations
of motion for free particles in the geodesic falling system are just
the same as those in classical dynamics under no forces. When we
have mutual forces between ihe particles, their effects on the motions
will be quite the same as predicied by classical dynamics. In parti-
cular, a spinning top will keep the direction of its axis of rotation
unaltered relative to the axes of reference, i.e. our geodesic falling
coordinates. Hence when referred to the original coordinates, the
spinning top will for its axis of rotation show whatever precession
the geodesical falling axes might exhibit,

The same must be said for the plane of the orbit of a particle,
moving under a central force.

If the tidal forces are considered, their effect in changing the
direction of the axis of rofation relative to the falling coordinates
would be zero if the earth were of spherical shape. If not, the
precession caused by them is to be taken in reference (o the falling
axes, and the precession of the latter will he superposed on the
precession due to the tidal forces.

The common tidal forces are but part of the second approximation.
The remaining part is a compound tidal force at right angles and
proportional to the velocity, proportional to the distance from the
centre and, like the Coriorisian forces, may be determined as a (three-
dimensional) vectorial ‘product of the velocity into a vector which,
by wmeans of certain components of the Rimmanian bivector-tensor
of curvature, is a linear function of the radius vector from the
centre. For the present we shall leave these forces aside, and turn
to the -question of how much the amount of the precesssion of the
falling axes may be. '

The precession of the geodesic Jalling azes in the case of a
planet moving in a circular orbil.

As we pointed out already, a complication in finding the precession
of the falling axes arises from the fact that the space of the falling
axes makes some angle with space as defined by an observer who
has his coordinates fixed to the sun. These spaces intersect in a
plane perpendicular to the velocity. By confining ourselves to circular
orbits, matters present themselves much less complicated.

In each point-instant of the helicoidal track of the planet we draw
Sour local awes: one coinciding with the direction of the track; a
second in the direction away from the sun along a radius vector;
a third perpendicular to the ecliptic; and the last one with a time
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component and a component tangent to the circular o%'bit; in such
a manner that these four directions will be all perpendicular to each
other. Now, if the planet with the geodesical fa]l.ing aXes COMeS aCross
some particular set of local axes, the axes of time, both. the f.alh'ng
and the local, will coincide, and therefore the spaces of the' fallmgi
and of the local axes too will be the same. Thus the position of
the falling axes relative to the local ones can be stated and the
positions before and after a revolution compared».f

The gravitational field of the sun is given by the form of the

infinitesimal interval:
%

d , ,
ds* = (1 — /o) dt* — TT}&? O sin® O dy*,

In this field a circular motion is possible in the plane 6 = §x,
with “radius” B and with angular velocity

‘Now, everywhere along the track define four vectors 4¢, A4, 4+, A,
’ B

as follows .
© ® ©
e 1 ot
~ 2R : l/ e
dag: 9 R—8d 0, o, R 2 R—3a
da i o V1i—ea/R, 0, 0,

@ : .
%: o
akk 0 o, [/ 2(fi—a)
A% I/(Rma) (2 R—3a)’ ’ R 2 R—3a
It will be seen that these vectors are all of unit length and
pérpendicula,r to one another. They define thg lopal axes. |
A set of these vectors in one particular point-instant can be taken
as the starting vectors of the geodesic falling coordinates. To find
the directions of the falling axes after a lapse of interval ds (com-
ponents A%ds) we need the values of CHRISTOFFEL’S symbols. These are,
in" coordinates ¢, 7, 8, ¢:

01 . o

0y 2R(R—a) -

00§ __ f‘__([f:’)‘? H = :--(—me, ?22 szzw (R~ e, 3 33§ = (R-a)sin 0,

1T 2R 1) gR(R—ay | 1

12 1 ‘513 1 ‘
2%‘ TR |8y R

83 = — sin 0 cos 8, 23"; :f-?«s»«(?f. The remaining symbols vanish.
29 3 sin 6 .
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Now, if we calculate the geodesic: increment along ds of the
vector components:

bm
dA% == e & § . %Ab{Amods,

we find

dAo, =0,

dde, = 0,
but ,

dAe == — ‘/(T/Q'RG . A%y dsy or = - w A%, ds,

and

dAn, = -V ¢f2R* . Ao, ds, or = + o Aq, ds.

From this we infer that the falling axes of Z(), Z®), after the
lapse of interval ds, as compared with the local axes reached after
the interval, show a retrograde rotation of amount wds in the plane
of these axes. Meantime the planet’s anomaly has increased by wdt.
Thus, the two angular velocities are the same if the one is measured
in ds and the other in dt. The ratio is

In the circular planetary wotion this will continue uniformly, and
it follows that when the planet has completed a revolution, the
falling axes will not yet have completed theirs if compared with
the local axes passed by during their motion. At the instant the falling
axes will have completed a revolution, the radius vector will make

an angle of
5
2|

with the radius from which they started. Relative to this new radius
everything will be in exactly the same position as it was in the
beginning of the revolution, ‘

Neglecting higher powers of «/FE we conclude that there is a
precession which, per annum, amounts to the excess of the angle
between the two radii over 2z, i.e.

g )
2 [/ 1| =232
" l SR 3a ] 'R

per annum. ’

For the eacth, it is 0.019 of a second of arc per annum.

Zoology. — “Die Verwandtschaft der Merostomata mit den Arach-
mida und den anderen Abteilungen der Arthropoda”. Von J.
Verstoys und R. Demorr. (Communicated by Prof. Wesgr).

(Communicated at the meetings of Sept. 25, and October 30, 1920).

I

Noch immer gehen die Ansichten iiber den phylogenetischen
Zusammenhang der grossen Abteilungen der Arthropoden, der Ony-
chophora, Myriapoda, Hexapoda, Arachnida und Crustacea erheblich
auseinander. Und es ist vor Allem die verschiedene Beurteilung der
Verwandtschaft der Merostomen mit den Arachniden, welche zu so
sehr verschiedenen Auffassungen in diesen Fragen fiihrt.

Im Mittelpunkte der Erdrterung steht der einzige lebende Vertreter
der Merostomen, die Gattung Limulus. Diese Form lebt im Meere
und atmet durch Kiemen, welche anscheinend von Gliedmassen
getragen werden. Dementsprechend wurde das Tier zuerst den
Crustaceen zugerechnet. Weitere Untersuchung schien diese Auf-
fassung zu bestdtigen; namentlich machte die Entdeckung grossen
Bindruck, dass die junge Larve von Limulus im Kérperaufbau den
Trilobiten, diesen alten, ausgestorbenen Vertretern der Crustaceen,
ahnlich ist. Man sprach geradezu von einem Trilobiten-stadium in
der Entwicklung von Limulus. :

Andrerseits hatte schon 1829 Stravs DUrkHEIM mit grossem Nach-
drock auf eine Blutsverwandtschaft von Limulus mit den Arachniden
hingewiesen. lhn folgten einige andere Forscher, bis 1881 und den
darauffolgenden Jahren Ray Lankusrer das Limulus-problem einer
eingehenden Prifung unterzog. Er wies dabei eine tatsichlich iiber-
rasschende Uebereinstimmung im Baue von Limulus mit den Arach-
niden nach, ganz besonders mit den Scorpioniden. LankpsTir zweifelte
aber andrerseits nicht an der Verwandtschaft von Limulus mit den
Trilobiten und anderen Crustaceen. Da Limulus im Vergleich zu
den Crustaceen eine viel mehr spezialisierte Form ist, musste er
annehmen, dass Limulus von den Trilobiten oder damit verwandten
rustaceen abstammt. Die Arachniden mussten dann wieder von
Limulus oder dessen weniger spezialisierten vorfahren, den Gigan-
tostraken, abstammen, wobei die Stammformen der Arachniden vom
Meeresleben zum Landleben iibergegangen wiiren.
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