Physies. — “On the determination of quanta-conditions by means
of adiabatic invariants.”’ By G. Krurkow. (Communicated by

Prof. P. Eurexrest.)
(Communicated at the meeting of September 25, 1920).

In a series of papers Enrenrrst hasshown that only such functions
of the general co-ordinates of -a- mechanical system may be quanti-
cized as are adiabatic invariants'). These functions can always be
found *). Moveover, as we shall see, theory may answer the question
as to the number of essential adiabatic invariants, which in accord-
ance with the. quanta-hypothesis have to assume discontinuous values.
It we suppose that the “density of probability” of the motion of
the system, when not adiabatically acted upon, does not depend
explicitly on the time, and if then by means of some hypothesis or
some theorem which is derived from the properties of the system,
we teplace the tzme-mean of a phase-function by a numerical mean,
it follows immediately that the number of essential invariants is
equal to the number of determining quantities of the system which
is left after the numerical mean has been determined (comp.
equations (12) sqq. helow). By the determination of the adiabatic
invariants and the separation of the essential ones the uuncertainty
as to the choice of the forms of motion which are admissible on
the quanta-hypothesis, becomes materially lessened. Still we must
not expect that the adiabatic invariants which we have found are
necessarily those which have to be quanticized: any arbitrary func-
tion of those quantities is again an adiabatic invariant and has thus
equal claims to being selected. However, this liberty of choice can
be - somewhat restricted; there is' a further condition to which we
may subject the guanta-functions. This condition is of the nature of
a hypothesis, but we may give it a simple statistical interpretation.
In every case, where the theory of quanta has been applied with
success *), the condition is fulfilled. It was introduced by PraNck as
a fundamental theorem for a complete determination of the quantities

1) P. ExrenresT. Thése Proc. XIX NO. 3, p. 576. Ann. der Phys. 51 (1916)

p. 327. .
% G. Krurkow. Proc. Amst XXI p. 1112, 1919, N
) My knowledge of the literature of the subject does not, however, extend

beyond the beginning of 1917,
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which have to be quanticized . A mew proof will be given by
establishing a connection between the adiabatic invariants and thi
phase-space (below 18",

This connection, which will be found to arise in a natural way
with a concept derived from statistical mechanics, strengthens the bond
between it and the theory of quanta, a bond w’hich, as it seems to
me, has gone into the background in the latest development of the
thgory or at least has not been sufficiently emphasized, although in my
opinion it is of great importance. In view of this connection I think
that the only justification of the expression “action-quantum” is the

fact that it recalls to our mind the dimensions of the phase-extension.

- Another conception of great Importance to the theory of quanta
which will find a place in our elassification is Pranck’s *) coherence
of degrees of freedom. To me it seems of fundamental importance.
lis meaning will be found to appear very clearly by a juxtaposition
of the properties of a conditionally periodic system and a Bortzany -
“ergode”.

"I’his coherence of degrees of fresdom must be very cleér‘ly distin-
guished from what is called “degeneration”*). For instance from our
point of view an ergodic system is to the highest degree coherent
but could in no case be called degenerated. For a degenerated systerr;
the number of essential adiabatic invariants ig greater than that of
the degrees of freedom, for a coherent system it is smaller,

‘The question arises: must the supernumerary adiabatic invariants
of a degenerated system be quanticised or, as suspected by Scawarz-
SCHILD %), 'is the number of quanta-conditions smaller for such a
system for the normal case without degeneration ?

For the solution of these questions the three steps which have
been taken viz. (1) establishment of the adiabatic invariants (2)
selection of t’he essential ones and (3) “normalisation” of (he latte;'
are insufficient. In order to get nearer to the solution we must, T
think,' take into account, that the quanta-functions must /tave, a
meanang which is independent of the system of co-ordinates. We may
undoubtedly postulate this: if the quanta-laws are really physical
laws, they munst necessarily satisfy this condition. The question is
how to formulate this new invariance of the quantu—functions?f
shall not try to discuss it here in general; but only remark that

') M. PLaNck. Ann. d. Phys. 50 (1916) p. 392.
% M. PLaNCk, lc. '

F: 3 .
) K. SCHWARZSCHILD. Sitzungsber. Berlin 1916. P. E
51016, o e n . P, EPSTEIN Ann. d. Phys.

% K. SCHWARZSCHILD, l.c,
54x 4
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we may return from the canonical equations which are so convenient
in the theory of quanta to the equations on cartesian co-ordinafes.
Here the invariance in question means: invariance with respect to
the groups of rotations and translations; vector-analysis thus provides
the means of testing hypothetical quanta-quantities for the new
postulata ).

The above mentioned means enable us in special cases to separate
the quanta-quantities without ambiguity, for instance for the mecha-
nical systems considered by Pranck in the paper quoted. In some
cases, however, an ambiguity remains, which we may get rid ofin

the following manner: by putting all but one of the quanta-quantities

equal to nought, a “singular motion” must be obtained. In this manuer
we are able to make a connection between the methods sketched
out above and Praxck’s theory on the physical structure of the
phase-space, PLaNcK’s singular motions forming the last step in the
‘series. We may recapitulate as follows:

The quanta-quantities are (a) functions of the integrals of the
equations of motion (3) adiabatic invariants which (y) must be
«normalized” and (6) have a meaning which is independent of the
system of co-ordinates and finally (¢ yield singular motions in
PrLanck’s sense of the expression.

§ 1. The fundamental equation.
" Let a mechanical system of n degrees of freedom be given by

its canonical equations of motion

‘ oH . OH :

- (=12) . . . . . (D

O,
We shall consider a number of systems and introduce a function

o(pigirt) which may be called the density of probability: ¢ must

satisfy the fundamental equation of statistical mechanics*):

d n 70, .. ay.. k .
0 (LY

pgx'_a_(;: » g =

or, using (1): .

dp dg,
o is therefore a function of the integrals of the equation (1).

Y In the theoxy of the ZrEman-effect as given by SOMMERFELD and DEBUE
(Phys. Zschr. 17. (1916) a difficulty is met with here. This may, [ think, be
evaded -in different ways, but [ am not able to give a uniquely determined
solution.

W, GIBBS Scientific papers. II' p. 16; Statistical Mechanics. ChapterI

d n 09 Do d ,
__,9+z(_9p + 20 ) =2=0 . . .. @)
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If we suppose that the condition is stationary :

do ' : :
52*0....../....(3)
it follows that: ¢-1is a function of those integrals which do not
contain ¢ explicifly,~ i.e. of (2n—1) ‘integrals, if only, as we shall
suppose all the time, H '‘does not dé‘p“end” on ¢ explieitly.

We are at liberty to understand by ¢ the density of probability
a posteriori or a priori. When applied to the theory of quanta our
result expresses the fact, that the quanta-quantities are functions of the
@n—1) integrals of equations (1) which are independent of 1.

Replacing the 2n-dimensional phase-space (p, ¢;) by the corrre-
sponding integral space (c¢;, 4;)") the “path” of the system is a straight
line “parallel to the tf-axis. We can describe these lines either by
making ¢ increase, i.e. by following a definite system in its motion,
or by keeping ¢ constant and varying r, i.e. considering together
all the systems with given ¢,...c./,....% and all possible values
of ¢,. ' '

§ 2. H contains a variable parameter. ,
If H contains a parameter which may either have a counstant
value as in the case just considered or vary slowly?), the quantities

¢, and 4, are no longer constant, but variable; they have to. samsfy
the following ““equations of motion” *):

SRR SN S
6. == &1—, __.,._«a»;: N )
’Where: |
ov.
.K."zcljl-(w»—a), B L T )
Oa

 As in a previous commumcatlon we write the integrals of equations (1)
in the form ;

’ H=c, HZ:G,_;...., H, = c,.
and ‘
' vV ,Q . ' t v , oV
- i el s Y e Tl e,y T
de, - O, - d¢,
where ¢),...,cn 1, by, ..., & represent the 2u integration- constanté and V

JACQBIs characteristic functlon Comp. Proc. XXI, p. 1112, 1919,

% The slowness is expressed in the fact, that H contains only @, not the
correspondiug momentum. - . v

% Proc. L. o S . @
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or putling a == const. approximately and representing the derivatives
with respect to a by dashes:

. oevy 0oV
Cl_w.&:(_&;) ‘, txwé_g;v(g; 1=1,2,...sn
1V (w-—"zz,&---,n)'
= rra(s) |
Since the equations have the canonical form, we have as the
fundamental equation :

" 3
%, 3 (gqo'i+6§t")$0. )

a (=) ao,’

(3)

t?

0
Here we may not as before take 51030.- A further difficulty
a

presents itself: starting from a special line parallel to the f#,-axis in
the (¢, #;) space -— a special “stream-line” — if we now vary a,
as equation (3) or (3’) show, the stream-line becomes broken up.
If we then keep a constant again and take together the points, that
lie on a straight line, ¢ will vary along this stream-line, since it
contains points of different origin. Thus on the new line ¢ is not
stationary, but explicitly dependent on ¢,.

We now form ') the time-mean of ¢, which we shall call ¢ and

the difference o—¢. Since [dt1 (—0) = 0, the quantity ¢—g in its

dependence on ¢, shows elevations and depressions round about o,
the sum of the surfaces of the former being equal to that of the
latter. Each point carries its ¢-—¢ value along with it and hence
the curve shifts regularly with the time ¢,. A stationary curve
represents the tendency towards condensation (in an elevation) or
rarefaction (in a depression) for the points of the stream-line, on the
supposition of the change of a being sufficiently small. If we make
our moving curve slide along the ‘stationary one, in the course of
time elevations will cover depressions 'and vice versa. A further
small change of a may therefore produce a diminution of the diffe-

rence @—e¢. By this reasoning it becomes clear that starting from
a stationary density a swufficiently slow change of a will to a corre-
sponding degree of approximation produce a stationary density *).

1) For the method now following comp. J. W. Gisss. Statistical Mechanics.

Chapter XIIL ’
% Comp. J. M. Burcers. Proc. Amst. XX (1916) 149, Ann. d. Phys. 1917
(2) and my paper in the Proc. Amst. L. c. ’
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We will therefore suppose that a changes slowly in the sense of
the theory of adiabatic invariants. Let Da be the total change of g, i.e.

Da = aj dt

and let Dc; and Dt, represent the corresponding changes of ¢; and #,;
considering further that

a == ¢onst.,
and hence
- Da
¢ = 5 with (Dt = { di):
we find
De, 00V Dt § o .
jj“;m “*a‘i;(*é;) ; b*;zéz;(éz), S (1))

“where the‘ horizontal line indicates the time-mean. If in squation
(5) we take c'; and #; to mean these time-means, we obtain
do n (0p De. 8¢ Dt

Ly s(RTGR i) =0 (7
Ja iy Bci Da ati Da
Since ¢ is independent of ¢, the corresponding term under the
summation-sign in (7) mnst be omitted.

§ 3. Phase-space and adiabatic invariants.
The stationary density ¢ need not depend on all the variables
Oy« o v vy On 5 gy o ey by
For example in a conditionally-periodic system without commen-
surable relations between the periodicity-moduli ¢ depends on the
quantities ¢; only. This follows from the theovem which allows us
to replace the time-average by an averaging over a L-cell Y. For
an ergodic (or quasi ergodic) system in consequence of the ergode-
kypothesis @ depends on the energy ¢, only. We shall here suppose,
that ¢ depends on % quantities (k< n), which we shall indicate by
C12Cyy v vnuy O
These integrals may be called essential integrals. Our supposition
with regard to ¢ comes to the same as assuming that for our sys-
tem the time-mean may be replaced by a definite numerical mean.
To compute this we proceed as follows. :
Suppose the system of equations
H z=¢,H =c¢,.....Hi==ex . . . . . (8)
to be soluble with respect to Pi» Pss -+ - - Pr, thus

) J. M. Burcers. l.c. and my paper l.c. &
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P, x/c @1»"“"7 pkqlp ’G”"'ck) (Z'xl,z,.. k) (8

Introducmg the differentials de, . . .. dey, instead of the differentials
dp, ....dpy into the phase-integral

'I::ff“.ffdp]....dpndql'.,..dgn P ()]

we find

Imf fdcl. dc w(cl,... ) N ¢ 1)

a(pt?""pk)
w (¢, « ...,c)u_—f fdpk-i-l A..dqns(&»u«fum-»»)f oAy
. tU v T

In (11) the mteglahon has to be camed out, the hmlts being
“determined by (8). From the (p, qi)-space or- the (c;, t)-space we

where

may pass to the k-dimensional (c;, ... cr)-space. A sireamline of the

former space corresponds to a fixed point in the latter. The density
¢ is replaced by ow in the c-space. Its elements therefore have the
werght w. For the iso-parametric motion (a == const.) the c-space is
static i.e. each point is fixed. The integral (11) gives us the numerical
mean looked for, namely, if S is a'phase-fuhction, we have:

f f 2O g e -

| o 1 [T LURR A

- Returning to equation (7) we now have:

' 09 k 00 De. o
g L =0 L . ... .o (12
da El;ac Da (12)

since ¢ is a function of ¢,,...,ck only. Similarly the quantities
DC:/ Da only depend on ¢, ,..., ¢, as is easily seen from (6), if on
the right hand side we xeplace the time-mean by the numerical
mean (11) Therefore o retains its property ¢ =g (¢, .. ck) when
a cha,nges Fquation (12) expresses, that ¢ is a function. of those &
integrals of the differential equations (6) . which only contain the
quantities ¢,,- .., cz. These integrals are obtained by integrating -the
set of X differential equations which on the left side contain the
quantities Deif,, 1=1,12, ., k). They are the essentml adrabatic
movariants, and we have thus proved that ¢ is @ functwn of the
essential adiabatic invariants. , :
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 Let us farther consider the c-space. If a vavies qlow]3, the fixed
points 1in it begin to move. Since in this motion the points do not
disappear nor new points are formed, the density oo must satisfy
the equation of continuity, i. e. our fundamental equation. As
¢ == const. is certainly a possible soldtion, o itself must salisfy the
equation '

dw k awc

e i—0 . . .. . . .q
a aa -+J 2_11 aO o 1».1 — (3)

where

Or with the notation- _
Do do ke Dol,‘

in the e(juiﬁ'alent forms

Do, L% _y 13"
pa, U)iwﬂi 5(; —u-, . . s - e » B ( )
or
’ ‘,Ek Bo’i . V 1 Dw ) o ‘(1311
R Ba )
For the quantlty on the left side — the “d1vergeme -— We
shall deduce another expression. : ’
The essential adiabatic invariants -— /(‘ in number - satisfy the
equations

Dv Oy A V. '
—t Ei’, =1 I PN ) 4
aa P acz ¢ (7 b} 3 ) o (1 )
We shall suppose that the. quantltlecs vi can be expressed in the
quantities ¢y (A ==1,2... k) or
b(v,,...,v)
T TFEO L L L L (15
6(01,1..,0) 7 (15)
The properties of our system can be equally well described by
the quantities v as by the quantities ¢;. The (v, ... vg)-space has the
advantagé over the c-space of being static, also with respect to the
action of adiabatic- influences. Let us now ‘examine. the mutual
relation of the two spaces.
To this end we shall consider the Ddem ative of the. determl-
nant T

EZ___§ Vv D””‘

Da iy D (16)
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where v,-,,«:&? and Vi, represents the corresponding sub-deter-
: (2
minant. We have identically
Do, __0Ov. 0v
E 1 ¢h =0,
: = a F 00y o
hence
] Dy, a’vl. 0%, Gv‘. ¢’y

iR R O Z L= Coe
dc, Da aaacﬂ+ 2 chacﬂ“ T » 0cy Oey 0 (@

and on the other hand
D avi a’vl_ a’vi -
T T e ?ac;am“ N ()
From (a) and (b) it follows that

D dv, Do, 0v, ; 0o
e M N ¢ Y4
Dade,  Da 2 0¢) Oc,
or
Dy, g P
B S 3‘_’_‘, (17)
. Da ‘ PES] iA ac#
Substituting in (16) we obtain
2{:»4—— v V. ?2 e e . (16Y
Da 0o ip acﬂ

Since Zw; Vi, =0 for 27 pu and equal to T for 2==p, (16')
bhecomes :

Dr aa‘) -
— = -T2 — . . . . . . . (6"
Hence o , \
L0dy 1 DY
o 1
T 06 T Da B
Comparing this resnlt with (13") it follows that
107 - 1 Do-
e ¢ )|
T Da o Da
or ,
D T
e log— =0 . . . . . . . . {18
Da Ong ‘ ( )

In other words: Y/w is an adiabatic mvariant or
T::wf(un--',vk)» U)::-TF(’I)I,.. ’vlc)
Substituting this value of w in the integral (10") we ﬁnd

a(v
]_._f [do1 do ’I"F(v,, ,v)__f fdc‘, N — )v F. (19
Oyeney,

(18"
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Iz‘f.;[dv,...dka(v,,..‘.,vk) c e oL (19)

Now we can always arrange, that # becomes equal to 1. We
have only to introduce, instead of one of the v;, the adiabatic
invariant '

or

T, = funet. (0, .., vk)

and submit it to the condition

¢ S 20
5:”..... (”u“-”’k) R 1]
We then find
61’ or, Bvx or
ory 3
3, =5 R T P
a v WWey s o0y * '
Y E VL,LL-“M_W..,ZIE? o B % 174 = > gii V Yy o ;a;-l.-} T"
0(6,:Cqy oo -y C ) Oe U avx o2k gy,
or substituting for 7" its value w/F:
¢ — o .afw_ o . . ... L@
o, 1 /

Jalling the thus normalized set of essential adiabatic tnwariants

Uy ev. ., V5 we find
Imf..fdv,....dvk. e e (22

The wv-space which is static with respect to adiabatic action is
“weightless” : its density o is simply equal to ¢ (v,,...,vs). The
quantities v,,...,vx may be quanticized. Its property which is
expressed by eq. (22) is nothing but the fundamental law which
according to Pranck’s hypothesis the quanta-quantities have to obey *).
By our theorem (18") this hypothesis is connected with the adiabatic
invariants and thus finds a new confirmation. The property of the
v-space being “weightless” displays the character of this fundamental
law as a natural generalisation of the old quanta-hypothesis.

§ 4. On the coherence of degwes of freedom.

From the point of view now attained this very impor tant con-
ception appears as a natural consequence of our suppositions. If the
number £ — that of the essential integrals and adiabatic invariants
— is smaller than the number of degrees of freedom 2, as appears
from (22), some of the quantities »; must necessarily be of the dimen-

Y M. Pranck. lec. %
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sion A (p>1), since the dimension of / is 4* In order to illu-
strate this and the previous results we shall contrast the properties
of -a BorrzMANN erqode -and a-conditionally periodic system without
commensurable relations:. “

ergode. conditional periodic system
~ essential integrals '
H=¢, N H=, Hy=c,..., Hy= o,
numerical mean ' S

0 1oy Pu
Adp,.. dpn dg, ... dg, -~ Py - 23) | peogdg, ... dg, -(}3i— \MMQ (28"
J Oe, 0 (crye- c,.)

density

0=9 (. a) b e=0ln.-rami0)
essential adiabatic invariants

sz.fd v oo dgn v.:fpdgh(iw‘::l», 2,00, 0).
, o ‘ 1 N R
' 0

density
e==¢(V) | ] Q=20 (Vv vy V)
The conditionally periodic system is what Borrzmany calls a sub-
ergoce. On the other bhand the ergode appears as a coherent system

with a smallest value of %, viz. £ ==1. These short indications may
suffice for the present. '

§ 5. Degeneration. :

A conditionally -periodic system is called degenerated, if there
are commensurable relations between the periodicity moduli. It is
evident, that our system covers a lower set of points with its
orbital ecurve everywhere densely, than when there are no such
relations. Accordingly the numerical mean will be of a lower
dimension -and more quantities will remain free after the averaging
process. Thus besides the quantities ¢ the quantities ¢ will play a
part: the number of essential adiabatic invariants becomes larger
than the number of degrees of freedom. The question, whether these
supernumerary guantities have to be quanticized, we shall not discuss
- here. A good instance for the discussion of the questions which may
arise here is afforded by the quanta quantities in EpsTEIN’s theory ')
of the Srark- eﬂ“ect for an infinitely weak external electric field; the
“parabolic” ‘ quanta quantmes Whth are found in thlS case cannot

) P. EpsTEIN. Ann. d. Phys. 50. p. 490.
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be represented as function of Sommurrerp’s “spherical” quanta- quan-
tities alone; other adiabatic invariants Lomaunng the quantities ¢,
and 7, are essential in this case.

[ am ftully conscious of the fact, that by the above considerations
the difficulties which still beset the theory of quanta are in no way
removed, buat only shifted. Still it seems to me that even the- possi-
bility of such displacement deserves attention. Moreover I expect

that in special cases the general theory tentatively sketched out here
may be found useful.

Physical Laboratory of the University. Petrograd, April 1, 1920.





