
Physics. - "On the deterrnination of quanta-conditions by means 

of adiabatic inval'iants." By G. KRUTKOW. (Communicated by 

Prof. P. EHRIJ:NFJ<:ST.) 

(Communicated at the meeting of September 25, j 920). 

In a series of papers EHRENl<'EST bas sbown tbat only such fllIlctions 
of the general cO-'öl'dinates ot'amechanical system lIIay be quanti­
cized as are acb:abatic invariants 1). These t'uHctions can always be 
fonnd '). MOl'eover, as we shall see, theol'y mayanswer tbe question 
as to tbe number of essential adiabatir inval'Ïants, wbieh in acrord­
ance with the qnanta-hypothesis have to assume discontinuous values. 
If we suppose that the "density of probability" of the motion ot 
the system, when not adiabatically acted upon, does not depend 
explicitly on the time, and if tben by means of some hypothesis Ol' 

some theorem which is derived from the pL'operties of the system, 
we l'eplace tbe time-mean of a phase-fllnction by a mtme7"ical mean, 
it foJlows immediately that the nU1Ilbe1' of essential invayiants is 
equal to the numbeJ' of deter-mining quantities of the system which 
is left aftel' the numer-ical mean Iws been determined (comp. 
equations (12) sqq. helow). By the detel'mination of the adiabatic 
illvariants and the separation of the essential ones tbe uneertainty 
as to the choice of the forms of motion which àre admissible on 
the quanta-hypothesis, becornes materially lessened. Still we must 
not expect that the adiabatic inval'iants which we have found are 
necessarily those which have to be quanticized: any arbitmry func­
tion of those qllantities is again an adiabatie invariant alld has thus 
equal claims to being selected. Howevel', Ihis liberLy of ehoice ean 
be . somewhat I'estricted; there is a flll'ther condition to which we 
may subject the qnanta-fllnetions. This condition is of the nature of 
a hypotbesis, but we may give it a simple statistical intel'pretation. 
In every càse, whel'e the theory of quanta has been applied wilh 
suecess 3), the condition is fllltilled. It was introduced by PUNCI{ as 
a fundamental theol'em for a complete determination of the quantities 
. -- ---.. _.,~._ .. --

1) P. EHRENFEST. These Proc. XIX N°. 3, p. 576. Ann. der Phys. 51 (1916) 
p. 327. 

2) G. KRUTKOW. Proc. Amst XXI p. 1112. 1919. 
S) My knowledge of the literature of the subject does not, however, extend 

beyond the beg.inning. of 1917. 
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wbich have to be qllanticized 1). A new proof wiIl be given by 
establishing a connection between the adiabatic invariants and the 
phase-space (below 18''), 

.This eorlllection,. w,hich will be found to arise in a natural way, 
wJth a c(!ncept deL'lVed from statistical mechanics, strengt hens tbe bond 
between '.t ana the theory of quanta, a bond which, as it seems to 
me, has gone into tbe background in tbe latest development of the 
th~o~'y o~· ~t least has .not been sufficiently emphasized, although in my 
OplrllOn It IS of great IlIIportanee. In view of this conneetion I think 
that the ~nly justification of the expt'ession "action-quantum" is the 
fact tbat lt l'ecalls to Olll' mind the dimensions of the phase-extension. 

~noth~I' eonception of great importance to tbe theory of quanta 
WhlCh wlll find a plaee in our classification is PI,ANCK'S ') coher-ence 
of degree.s of .(r'eedorn. To me it seems of fundamental importance. 
lts meanmg wlll be found to appeal' very eleady by a juxtaposition 
of the properties of a conditionally pel'iodic system and a BomzMANN . 
"ergod e". 

!'his coherenee of. degTees of freedom must be very dearly distin­
gmshed ft'om what IS called "de!Jener-ation" 3). For instanee from Our 
point of v.iew an ergodie system is to the highest degree coherent, 
but could lil no case ?e called degenerated. For a degenerated system 
the number of es.sentud adiabatic invariants is gl'eater tban that of 
the degl'ees of freedom, for a coherent system it is smaTlel'. 

, The question al'ises: mllst the super-numemr-;tI adiabatic invariants 
of a d~ge~el'ated system be quanticised Ol', as suspected by SCHWARZ­
SCHII,D ), IS the munber of quanta-conditionssmaller for such a 
system fol' the nOrm al case witbout degeneration ? 

For the sol.ution of these questions the three steps whieh have 
been. taken VIZ. (1) establishment of the adiabatic invariants (2) 

selectlOll of the essential ones alld (3) "normalisation" of the latte;' 
are insufficient. In order to get neurer 10 the soIution we must I 
tbink, take into account, that t!te quanta-functions must /tav; a 
meanin!J which is independent of the systf'.m of co-ol'dinates. We rnay 
undoubtedly postulate this: . if the quanta-lawsare I'eally physical 
laws, they mnst nec?ssarily satisfy this eondition.'I'he question is, 
how 10 formlllate HllS new invariance of the q uanta-functions? I 
shall not try to disCllSS it here in general ; but only remark that 

1) M. PLANCI(, Ann. d. Phys. 50 (1916) p. 392. 
2) M. PLANCK, l.c. 

3) K. SCHWARZSCHILD. Sitzungsber. BerIin 1916. P. EpSTEIN Ann. d. Phys. 
51 (1916). p. 168. 

~) K. SCHW ARZSCHILD, l.c. 

54* 
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we ma}' l'etnl't1 fl'om tbe eallonieal equatiolls whieh are so convenient 
in tbe theory of quanta 10 the equations 011 cal'tesiall co-ordinates. 

Here the invariance in question means: invariance with respect to 
the groups of rotations and tl'anslations; vector:-analysis tbus provides 
the means of testÎng hypothetieal quallta-quantities fol' the new 

postulata 1). 
Tbe above mentioned means enable us in special cases to sepfirate 

the quanta-quantities without ambigllity, fol' instanee for tbe mecha­

nical systems considered by PLANCK in the paper quoted. In same 
cases, howevel', an ambiguity remains, which we may get rid of in 
the following marmel': by putting all but one of the quanta-quantities 

equal 10 nought, a "sin,qula1' rnotion" must be obtained. In tb is manlIer 
we are able to make a connection between the methods sketched 

out above alld PLAI'WK'S theory on the physical stl'ucture of the 
phase-space, PLANCK'S singular motions forming the last step in the 

series. We may recapitulate as follows: 
The quanta-quantities aL'e (a) fllnctions of the integrals of the 

eqllatiolls of motion (r:/) adiabatic invariants whieh (y) must be 

"nol'Jualized" and (ó) bave a meaning whieh is independent of the 
system of co-ordinates and finally (I') yield singular motions in 

PLANCK'S sense of the expression. 

~ 1. l'he fttndarnental equation. 
Let a mechanical system of n degl'ees of fl'eedom be given by 

its eanonical eqllations of motion 
. all. aH _ 
p.= --- ; q. ---:- -- (i = 1,2, .... n) . (I) 

1 ag. tap. 
t , 

We shall consider a number of systems and intl'oduce a function 

Q(pi,qi,t) whieh may be ealled the density of proóability: f! must 
satisfy the fundamental equation of statistical mechanics 2) : 

a!? _j- i (~~Ei -+ ~,éii) = 0 . at i=l op. oq. 
, I 

(2) 

01', using (1): 

~_~ + i (à?.p. + Of!. g.) =~q, = 0 ot i=l op! oq. t dt 
'I l ,,~ 

(2 ') 

Q is therefore a function of the integ'I'als of the equation (1). 

1) In the theol'Y of the ZEEMAN-effect as given by SOMMERFELD and DEBIJE 
tPhys. Zschr. 17. (1916) a difficulty is met with here. This may, 1 think, be 
evaded in different ways, but 1 am not able to give a uniquely determined 

solution. 
2) J. W. GrBBS. Scientific papers. Il' p. 16; Statistica! Mechanics. Chapter I. 
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If we suppose thaI. the condition is stationary: 

àf! 
~- = O. (3) 
, t 

it follows thai: (I is a fnnction of those integTals which do not 
contain t explicitly, i.e. of (2 n-1)integl'ftls, if only, as we shall 
suppose all the time, Hdoes not derend- on texplicitly. 

We are at liberty to ~l11derstand by Q the density of probability 
a posteriori or a priori. When applied. to the theol'y of quanta oU!' 
resnlt expresses tbe fact, that tlle quanta-quantities are functions of the 
(2n-1) l:ntegrals ofequ,ations (1) wMcll are independent of t. 

Replacing the 2n-dimensional phase-space (pi, qi) by the eorrre­
sponding integral space (ei, ti) 1) the "path" of the system is a str'aight 
line paJ'allel fo tbe ti-axis. We can describe these lines either by 
making tincrease, i.e. by following a definite system in its motion, 

Ol' by keeping t constant and val'ying T, i.e. considering togethel' 

all the systems with given Cl ... ell /2 .•.• til and all possible values 
of tI' 

~ 2. H eontains a variable parameter. 

If H contains a parameter which may eithel' have a constant 
value as in the ease just eonsidered Ot' vary slowly 2), the quantities 

e. and tI are no longer eQflstant, but variablej they have to satisfy 
the following "eqllations of motion" S) : 

dK 
C.=---

I àt 
i 

(3) 

where: 

(4) 

1) As. in a previous communication we write the integrals of equations (1) 
in the form: 

H, = c. j •••• , /-I" = Cn • 

and 

àv av 
:;-- = t., .... , ~ = t", 
uc, ven 

where Cl"'" Cn, T, t2, ••• ,tn represent the 2n integration-constants and V 
JACOBI~S characteristic function. Comp. Proc. XXI, p. 1112, 1919. 

2)The slowness is expressed in the fact, that H contains only at not the 
correspondiug momenturn. 

3) Proc. ··l.c. 
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Ol' putting à = cons!. approximately and repl'esenting the derivatives 
with respect to a by dashes : 

C'i = _ !_ (~~) t'x = ~ (a V) ot. oa OCx Ua 
I 

t' _..:. + ~ (a V) 
1 - a' ae! Va 

(
i = 1, 2, ... , n). 
x=2,3, ... ,n 

(3') 

Since the equations have the canonical form, we have as the 
fundamental equation: 

aQ + i (aQ 
C'i+ OQ t'.)=o (5) 

iJa i=l aej ati I 

H aQ - O. A f h d'ffi 1 ere we may· not as before take ua -. urt er 1 cu ty 

presents itself: starting from a special line parallel to the t1-axis in 
the (Ci, ti) space .~ a special "stream·line" - if we 1l0W vary a, 
as equation (3) Ol' (3') show, tbe stream-line becomes brok en up. 
Tf we tb en keep a constant again and take togetber the points, that 
!ie on a straight line, Cl will vary along this stream-line, since it 
contains points of different origin. Thus on the new line Q is not 
stationary, but explicitly dependent on tI' 

We now form 1) the time-mean of Q, w hich we shall cal! Q and 

the difference Q.--Q. Since [dt l (()---Q) = 0, the quantity Q~(! in its 

dependance on ti shows elevations and depressions round abont Q, 

the aum of tbe snrfaces of the former being equal to that of the 

latter. Each point carries its Q---(> value along with it and hence 
tbe curve shifts regularly witb the time tI' A stationary curve 
represents the tendency towards condensation (in an elevation) or 
rarefaction (in a depression) for the points of the stream-line, on the 
supposition of the change of a being sufficiently smal!. If we make 
our moving curve slide along' the stationary one, in the course of 
time elevations will cover depressions :and vice versa. A further 
emaIl change of a may tberefore prodnce a diminution of tbe diffe-

rence Q-f!. By this reasoning it becomes clear that starting from 
a stationary density a sufficiently slow change of Cl wiJl to a corre­
sponding degree of approximation pl'oduce a stationary density'). 

1) For the method now following comp. J. W. GIBBS. Statistical Mechanics. 
Chapter XIII. 

2) Comp. J. M. BUR'GERS. Proc. Amst. XX (1916) 149, Ann. d. Phys. 1917 
(2) and my paper in the Proc. Amst. 1. c. 
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We wiJl therefol'e suppose that a changes slowly in thc sense of 
the theory of adiabatic in variants. Let Da be the total change of a, i.e. 

Da=áJ~t 
and let Dei and Dtx repl'esent the corresponding changes of ei and Ix; 
considering further that 

a = conat., 

and hence 

Da f a = - with (Dt = dt): 
Dt 

we find 

__ ,- --- --De. a~(av) 
Da - dti Oa (6) 

where the horizontal line indicates the time-mean. If in equation 
(5) we take C'j and t'i to mean these tirne-means, we obtain 

dQ + i (~~ !!..~i + ~i Dti ) =0 . 
(ja i=l ik Da dt. Da 

t 1 

(7) 

Since Q is independent of t, the corresponding term under the 
summation-sign in (7) mnst be omitted. 

~ 3. Phase-space and adiabaticinvar·iants. 
The stationary density Q need not depend on all tbe variables 

Cl' •••• , Cn 

For example in a conrlitionally-periodic system without commen­
surable relatione bet ween tlle pel'iodicity-moduli Q depende on tbe 
quantities Ci only. Tbis follows from the theorem which alJows us 
to replace the time-average by an a\'eraging Ovel' a .!2-eell I). Fot' 
an er,qo~ic (or quasi ergodic) system in consequence of the ergode­
Itypotheszs Q depends on the enel'g',Y Cl on Iy. We shall here suppose, 
that Q depends on k quantities (k;? n), whicb we shall indicate by 

C1,c., •••• ,Ck 

These integrals may be called essentia! integrals. OUI' supposition 
with regal'd to Q comee to the same as aasuming that fol' our sys­
tem the time-mean rnay be l'eplaced by a definite numerical mean. 
To compute this we proceed as follow8. 

Suppose tbe syslom of equations 

Hl = Cl' H. = 1'., .... , Hk = Ck 
to be solllble with respect to PI> POl ... " pk, tbus 

(8) 

1) J. M. BURGERS. l.c. and ruy paper l.c. 
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P =lc (ql, .•. ,q'Pk-l .P.;Cl,· .. Ck) ().=1,2, .. . ,k) 
À À n . -1 n 

(8') 

Introducing the differ~ntials dC I •••• dCk instead ofthe differentials 

dpl .... dPk into the phase-integral 

or 

" .. (10~) 

where 

(ll) 

In (11) the integration has tobe carried out, the limits being 

determined by (8). Fl'om the (pi, qi)·spaee or the (Ci, ti)-space we 

may pass to the k-dimensional (Ci, ... ckFspace. A streamline of the 
former space corl'esponds fo a fixed point in the latter. Thedensity 

Q is replaced by (JW in the c-space. lts elements therefore have the 
we~qht w. For the iso-parametric motion (a- const.) the c-space is 

static i.e. each point is fixed. The integ-ral (11) gives us the nnmerieal 

mean looked for, namely, if f is a phase-function, we have: 

J J O(Pl" 'Pk ) 

F= .. , f--~-.-dPk+l"· dQn/w . a (c I ••• (k) .' 
(11') 

Returning to eqnation (7) we now have: 

oQ k à(J De. _+:2 ____ 1=0 (12) 
Va i=l ik]Ja 

I 

sin ce Q is a function of Cl"'" Ck only. Similarly the quantities 

Deil Da only depend on Cl"'" C7~, as is easily seen from (6), if on 

the right hand side we replace the time-mean by the numerical 

mean (11'). Therefore Q retains its property Q = Q (Cl' ... , Ck) when 
a chatnges.Equation (12) expresses, that Q is a function of those k 
integrals of the di ffel'en tial equations (6) which only contain the 
quantities Cl> ... , Ck. These integrals are obtained hy intel?;rating the 

s~t of l.; differential equations which on the left side contain thc 

quantities DCil Va (z' = 1, 2 , ... ,k). They are the essential adiabatic 
invariants, and we have thus proved that ft is a function of the 
essential adiabatic invariants. 

Let us fl1l'ther eonsider the c-space. If a val'ies sl~wly, tbe fixed 

points in itbegin to move. Sinee in this motion the points do not 

disappear nor new points are formed, the density (Jw must satisfy 

the equatiol! of eontinuity, i. e. our fundamentaJ equation. As 

Q = eonst. is eertainly a possibJe solUtion, witself must satisfy the 

equation 

where 

Or with the notation 
]Jw 

]Ja 

in the equi\'alent forms 

or 

, Dc. 
c =.::.~I 

iDa. 

1 ]Jw 

(J) ]Ja 

(13) 

(13') 

(13") 

For the quantity on the left side -- tbe "divergence" -- we 

shal! ded uee anothel' expression . 
The essential adiabatic im'ariants k in number - satisfy the 

equations 
D1! . i:)1! . k eh) . ., 
._1 = _I + :2 _I c. (i = 1,2, ... , k) . 
]Ja. i:)a i=l ik I 

I I 

(14) 

We .ehal) suppose thatthe_ qnantities Vi can be expressed in the 

quantities c). (À = 1,2 ... k) Ol' 

o (1! I' •.• , 1!k) 
r o (15) 

(VI,T .. ,e
k
)· 

The properties of our system can be equally weil described by 

the quantities Vi as by the qnantities ei. Tbc (Vl' .. V7c)-space has the 

advantagè o'\'e1' the c-space of being static, also with respect to the 

action of adiabatic influenees. Let IJS rww examine tbe mlltllal 

relation of the two spaces. 
To this end we shall considel' the D-derimtive of the determi­

nant T: 

(16) 
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aVj 
where ViIJ. =:1" and Vi!, represents t.he cOl'l'esponding sub-deter­

vCp. 

minan t. We have iden tically 

hence 

aDv. 
t 

Oep' Da 

Itnd on the othel' 

Fl'om (a) and 

or 

Dv. av. aV.-r -'=---' +::E _I c), = 0, 
Da oa À aC). 

a'v. epv. . av. ad; 
=~+2 ___ t c'),+2 --~-=o 

oaacp. ), oc),è)cp. ), oc), ocp 

hand 

D ov. i)7 v o'v 
I i i-- + 2----:---0'), 

Daocp. oaiJcp. J. oCp.oc). 
(b) it follows that 

D av: Dv. av. è)~~ 
--~= -~ = -::E _.'_. -
Da acp' Da ), ae), Oe!, 

Dv, k (re', 
-_.:!.':..=-2: v ' 
Da ),=1 ij -aep. . 

Substituting in (16) we obtain 

(a) 

(b) 

(17 ) 

(17') 

Dr y ad). 
_ •• - -- 1) V _.- (16') 
Da - - i), ip. oc!'. 

Since ::EVi). Vil' = 0 for À ~ (.t and equa! to r for À = (.t, (16') 
becomes 

or 

Hene6 

Comparing this result 

_,oe'À 1 DY 
~--=--_ ... 

À ac), Y Da 

with (13") it follows 

1 Dr 1 Dw·· 
r Da w Da 

.. (16") 

(J 6"') 

that 

(18) 

D Y 
-log- = 0 . (18') 
Da . w 

In othel' wOl'ds: T/w is an adiabatic inva1,iant Ol' 

T= wf(vl"'" v
k

), w = Y F {Vl'" ,v
k

) (18") 

Substituting this vaJue of w in the integral (10') we find 

1 J .. [de l • ' dCk T F (VLl~··' vk) J ... JdC I , •• ,dek ~:l(VI~~~~ Tl. (19) 
.. v(cl···c,) 
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or 

I = J. J dV t ••• dvlc F (VI' •• , . '''''k) • (19') 

Now we can always arrange, that F becomes equal to 1. We 
have only to introduce, instead of one of the Vi, the adiabatic 
invariant 

'r I = funet. (vI' ..• vk) 

and submit it to the condition 

ar 1 

î"" = F (V p ••• , vk) 
VVI 

We th en find 
ar, ..,Ol\ dvx "al'l 
--=~·_--=~-v ae av Oe av xi ), x x À x x 

a(t\,v, •... , Vk) ar at' ar 
r* =ä(el~-e~-, ~':-:'-,ek)= T ae~ v1), = ::E~iJ1-~~ Vi), VxJ. = av: r~ 

or substituting for r its value w/F: 

(~O) 

ar} F 
T* = w ---- -- = w (21) 

oV1 1 

Calling the thus normalized set of essential adiabatic invariants 
VI' •... ,Vk, we find 

(22) 

The v-space which is statie with respect to adiabatic action is 
"weightZess": its density Q is simply equal to (! (VI" , . , Vk). The 
quantities Vil"" Vk may be quanticized, lts propel'ty which is 
expressed by eq. (22) is nothing but tbe fundamental !aw which 
according to PLANCK'S hypothesis the quanta-quantities have to obey 1). 

By our theorem (j 8") this hypothesis is connected with the adiabatic 
invariants and th us finds a new confil'matioH. The propel'ty of the 
v-space being "weightless" displays the character of this fundamental 
law as a natura! genemlisation of the o'ld quanta-hypothesis. 

; 4. On the coherence (l f degrees of f1'eedom. 
From ihe point of view now attained this very important con­

ception appears as a natural consequence of oUt' suppositions. If the 
number k - th at of the essential integrals and adiabatic invariants 
- is smaller than the number of degrees of freedom n, as appeltrs 
from (22), some of the quantities Vi must. necessarily be of the dimen-

1) M. PLANCK. l.c. 
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sion ftp (p > 1), sin ce the dimension of J is hno In order to illu­
strate this and the previous resn lts we shall con tmst the properties 
of a BOLTZMANN ergode and aconditionaLly pe1;zodic system without 
commensumble relations: 

ergode conditiona l periorlic system 
essential integrals 

t H, .' Cp H.=c ••... , H,,=cn • 

numerical mean 

f f ap! 
. ~.. dp .... dp" dq! ... dg" -• . ac, 

<) I J .. f a (PI' ... I Pll) I ( ... 3) ' ..• . dg, ... dq" (23) 
(c" ... , en) 

density 

Q=Q(c"a) Q~:::-Q(c" ... ,Cnja) 

8ssential adiabatic invariants 

v, =. (P. dg, (i = 1,2 •... , n). 
t ,) 1 1 - ~ 

o 

density 

(I = (I (V)t Q _..:. Q (v" V""" 1),,) 

The conditionally periodic system is what BOL'!'ZMANN calls a sub­
ergode. On the ot hel' hand the ergode appears as a coherent system 
witl! a smallest valne of k, viz. Ic = 1. These short indications may 
suffice for the present. 

~ 5. Degenemtion. 
A conditionallyperiodic systêm is called degenerated, if there 

are commensurable l'elations between tbe periodicity moduli. It is 
evident, that out system covers a Zowel' set of points with its 
orbital curve evel'ywhel'e densely, than when there are no such 
relations. Accordingly the numerical mean will be of alowel' 
dimensionand more quantities will remain free aftel' the averaging 
process. Thus besides the quantitiesc the quantities t will play a 
part: the number of essentiaJ adiabatic invariants becomes larger 
than the numbel' of degt'ees of freedom. The question, whethet· these 
supernumeral'y quantities have to be qllanticized, we shall not discuss 
here. A good instance fol' Ihe discussion of the questions which may 
árise here is affordedby the qllanta-quantities in EpS1'EIN'S theory') 
of the S1'ARK-effect for an infinitely weak external electric. field; the 
"paraboJic" qllanta-quantities which are found in this case Call110t 

1) P. EpSTEIN. Ann. d. Phys. 50. p. 490. 
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be l'epresented as funetion of SOMMlmE'gLD'S "spher'ical" quanta-quan­
tities alone; otber adiabatic invariante contàiuing the qllantities t. 
and ta are essen tial in this case. 

I am fuUy conscious of the fact, that by tbe above considerations 
the difficllities which still bese! tbe tbeory of quanta are in no way 
removed, but only 8hifted. Still it 8eems 1.0 me that even the' possi­
bility of such displacement deservee attention. lVIoreover I expect 
that in special cases the general theory tentatively sketched out here 
may be found useful. 

PltysicaL Laboratory of the University. Petrograd, April 1, 1920. 




