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type. In the end, it is of the same nature as specific differentiation
in general. ‘
N Sg(fn?r[)a Hepialus humuli the white mascgline.form has ev1d?ntt:y
lost the primitive specific livery, which is still preserved by the
d by the Shetland-male. .

fe%?}:ug;: iny general my opinions on these subiects disagree W.lth
those of Haase, I feel much satisfaction in making t'he ”followglg:
quotation from the concluding passage Qf his “Resumption (p.11. )
«The mimetic transformation was preceded in most cases by at;'wi‘.tlc.
phenomena from the side of the females, which in the beginning
renched back to the patterns of the nearest rglatwes, but as the
process proceeded, passed over to those ofmoredxs't&n(‘:ed forerur}ne:*,s
and in this way procured the material for the mimetic adaptatl.on .

So Haase attributes the uniforms of mimetic females to hereditary
influences, instead of considering them as the consequence of secondary
deviations from the primitive specific type.

(Froningen, Nov. 1920. .

Physics. “On the Equation of State for Avbitrary Temperatures
and Volumes. Analogy with Planck’s Formula.” 1I. By Dr.
J. J. vay Laar. (Communicated by Prof. H. A. Lorentz).

(Communicated at the meeting of November 27, 1920).
§ 7. Some Notes to § 1—8.

It will be soon two years ago that I wrote the first part of this
Article?); studies of various kinds prevented me from continuing
the subject, and not until now could I take it up again.

Before I proceed to the derivation of the equation of state, based
on the found general expression (6) on p. 1194 loc. cit. for the
time-average of the square of velocity u*, expressed inw,* (in which
u, represents the velocity with which the considered molecule passes

" the neutral point in its motion to and fro between two neighbour-

ing molecules), I will add a few remarks to elucidate and complete
what was treated before.

1. In the first place a few words about the transition of some
“linear” quantities to the corresponding ‘“‘spatial” quantities.

“If we have linear quantities, we can consider all our velocities
as the components of the relative velocities directed normally;as we
always imagine a molecule moving rectilinearly to and fro between
two molecules at rest. We know that u,°=2«*, and that the mean
value of the component of w,*, directed normally, in its turn is the
third part of this, so that we have (cf. also p. 1195 loc. cit.):

(u M) == 7 u®.

Hence we may write :

or also, denoting the time-average by the index ¢:
2 N = - X N ()
2 ittt g g )

In this '/, Nm (u*)(=="*/,pv in ideal gases) ==/, RT, so that we
may henceforth write: ,

1) These Proc., Vol. XXI, p. 1184,
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1
) Nm { ()} == RT,

by which the transition in question has been accomplished. In what
follows u* will, however, always simply be written instead of (u,),

with omission of the indices r and n and of the usnal mean-value

dash (the time-average is then denoted by wu.*); the real mean
velocity square w®, if it should occur, being expressed by (u”). Hence
we have: ‘

1

e Nmut=RIT . . . . . . . . (9

1

Starting from the relation (cf. equation (a) on p. 1189 loc.. cit.)
1 1 , ‘
5 Nm us® = £ Nmu,* 4+ N f(l—o0)",
in which ¢ represents that distance from the centre of the moving
molecule to that of the molecule supposed stationary, towards which
it moves, at which the work of the attractive forces reaches its
mazimum value (hence at which the attraction changes into repul-
sion) — we shall find, after muliiplication by */,, for the real mean
squares of veloeity : ‘ ' '

1 1 8
5 Nm (@) =5 Nm () 4 5 Nf (=)

In this § N m (u,?) == E represents the total Energy of the system

(ﬂie'ato‘m-er‘lergies within the molecule being left out of considera- -

tion). Further '/, N m (u,*) = L, is the mean kinetic Energy at the
neutral point halfway between the two molecules at rest (where
the aftractive forces neutralise each other), */, N f(I—0)' = 4 “re-
presenting the maximum work of “the altractive forces. We have
represented this last quantity by %, in our first paper, but as this
way of representation can easily give rise to misunderstanding, we
shall substitute A for [, in what follows. We have therefore :

E=L+A, . . . . . .0

in which accordingly B ==, Y, Nmu* L, ="/, X, Nmu,*.
Hence in the joint neutral points K = L, the total potential
energy of the attractive forces; and in the joint points 6 in the
immediate neighbourhood of the molecules, with-which the moving
molecule will impinge, Z will be = L, + the total increment of
fhie kinetic energy in comsequence of the attractive forces. V
The quantity A, therefore, represents the fixed, inva}j‘i@blg;”(p(’)""’g_gn‘«
tial or kinetic) energy of the attractive forcees, which rise or fall
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of temperature - cannot increase or decrease. Change of tempe-
rature can only modify L, and consequently also £. Henceforth
L—AL may always be written for L,.

The work of the repulsive forces, which become active after the
attractive forces in the above-indicated point ¢ have ceased to act,
has been left out of consideration in what precedes, because A is
entirely unaffected by it. For the diminished kinetic energy is simply
converted into a corresponding increase of the potential energy —
now of the repulsive forces — which reaches its culminating point
when # has become == 0 (culminating point of the collision). We
i}ave, therefore, only to do with the maximum work of the attractive
orces.

3. ' In the first paper it has been shown that the calculation of
the tme-average u,* leads to the relation (equation (6) on p.1194)

R s - m 1
o }¢V3+w +AWWH~Vl%w)ﬂ//é?+§ﬂﬂ+wﬁb//£
— ;

o 1
» o+ ViEi | Tt x|
2 &

This becomes after division of numerator and denominator by

w@+vﬁmﬁp/§

(1+ng1+¢U_FVﬂMl+mUL//Z
1 ot , log. lo‘q. &

U™ /2
_ log. &
8 . , . [0 2
in which (oc. cit) ¢ = I/«Jf The distance 6 — ', during
Uy m ‘
which the repulsive forces will act, follows from '
of . 2 2
ut o) — (0 s) =0, or wf (14 g?) = (6 )"

at the culminating point of the collision. Hence we have for [ —o
and ¢ —s':

m | S ! E— .
lf(f:uo(/) Vé}'y O0—8 ;1¢0V]_ _+_(p2 ‘/QL;;; o _ V14 _.__: ‘/ /| (d)

whereas for the times ¢, and ¢, is found:

t. =log(p -+ l/ﬁ—_—:——a T_. 1 ﬁ ty o 1/2 T f
1 Og(ﬁ{ 1+ ’/>)|/2f, == 9 .7r|/25, L N Ve (e)

Proceedings Royal Acad. Amsterdam. Vol. XXIIL
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a. At high temperatures where, in consequence of the equation
6 92 .
7 :LM?-V-Z, ¢ becomes small when u, becomes large (supposing
U, m o
I—o always remains comparatively small, which is fulfilled bere,

because we always consider solid (at most liquid) systems), «©), (d
and (¢) with log (¢ + V1 bg*) == log (¢ -+ 1) == ¢ pass into:

Y S
1 ot TIT ‘/; o—s 1 [ t, L J high
w = U, 3 =V e p ) (¢))
iy S s G A
gy
@ &

so that in the case of weak collisions (in which &, the constant of
the repulsive force, is not very much greater than f, the constant
of the attractive forces), in consequence of ¢ in the denominators
of the second terms in numerator and denominator of the above
fraction for w2, these latter terms will prevail; hence u,* will approach
to '/, u,* (¢, == 6). Whereas in case of strong collisions, when & is
supposed very large with respect to f, or when ¢ gradually increases
somewhat on decrease of temperature, the first terms prevail, so that
then u* will more and more approach to wu,* (¢, = 3).

The ralios (6—s’): ([—0) and t,: ¢, will be great for ¢ small and
/e mnot very much smaller than 1; smaller on the other hand for
somewhat larger ¢, and & much greater than /

With regard to (— o and 6—s' themselves, it may be observed
that according to the supposition [— o always remains inite, so that

finite & But this increase is restricted first of all by this,
“that w, can never become foo great, because then our suppositions
(solid state with small values of [— 06) would not be fulfilled ; an.d
secondly by this that with comparatively large values of u,, in
consequence of which 6-—s’ would become too large, ¢ will gradual-
ly greatly increase, so that the molecules can never approach each
other more closely than to a certain minimum distance. Only in case
of very strong collisions (¢ very large with respect to f) o—s" can
approach to O at not too large values of w,.

m .
It holds for ¢, and ¢, themselves, that ¢ ==¢ l/j‘i] will always

m .
approach O at bigh temperature, while ZQZ%NI/"Z_ remains

&
finite — unless ¢ is very large, in which case #, can even become
much smaller than /.
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All these relations are graphically represented by Fig. 1a and
Fig. 16, in which the values of u arve given in function of the fime.

High temperatures (u, large, @ small),

S
distances
b &
[

Repulsion finite  comp. large

BORIBINY

times

¢ vbw__\/_,__w/ s s

£ small by finite

Weak collisions.
(/7 not very great; wi =1/, uy?; ¢, = 6).
Fig. 14

]
distances
2 2.
u’ et
times’
A
o

¢, ¢z
small very small
Strong collisions.

(¢/r very great, or T somewhat lower;
ud = uy?; e, = 3).

Fig. 15,

In the so-called “weak” collisions the velocity of the colliding
molecule will not diminish suddenly, but gradually. This is among
others fulfilled when the attractive force is supposed to change into
a repulsive one already before the molecules collide. It may then be
further assumed that the repulsive force does not become infinite
before the impact itself, so that in general — unless the velocity is
infinitely great — the two molecules will never be in absolute contact.
Hence there is always between ¢ and a value s’ somewhat greater
than s (the distance of the centres at contact) a certain space, in
which the decrease of velocity in consequence of the repulsive forces
can take place; and there always remains — even at 7'= 0 — some
distance, however slight, between the molecules, because of course
[ cannot become smaller than o.

It is self-evident that this somewhat modified way of considering
the matter is only of a formal nature. Theoretically there is nothing
changed when s is displaced to 6, and s’ from a point within s to
a point outside it; now, however, we need not think the molecules
greatly compressed in the weak collisions, as we had to do with
the former way of considering the matter.

The two above figures also show clearly why in the case of
Fig.1a w,* approaches to '/, u,?, and in the case of Fig. 16 to w?,.
For as e.g. in the first case the time, during which the repulsive
forces act, is so much greater than that under the influence of the
attractive forces, the time-average will lie in the neighbourbood of

v 5g#d
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Y/,u,. In Fig. 16 on the other hand the “action” (energy X time)
of the repulsive forces will be very much smaller than that of the
attractive forces, with this result that now the time-average descends
but little below w,*

With decreasing values of u, (lower temperatures) the relations
of Fig. 1a will more and wmore shift in the direction of Fig. 15 in
consequence of the continual increase of ¢, so that ¢, will descend
already to a smaller value from the limiting value 6, before the

temperature has fallen to such a low value, that «* is in inverse
logarithmic dependence to u,* (see below) — in other words before

the region of quanta proper has been entered.

b. At low temperatures ¢ will appear to be great; i.e. on the
l—¢

27
Vv kd the quantity /—o does not approach

supposition that in ¢ =
m

(] .
0 to the same degree as u,, but much more slowly, so that (I—o): u,

will “approach . 1t is even probable that [~ does not become

=0 even at 7'=0, but approaches to a certain small limiting

value. This is in agreement with the permanent decrease of the

expansibility at very low temperatures, and with the remaining of

a certain jinite zero-point energy 4L ==*/ Nf(l—o0)* at T = 0.
Our eqguation (¢) now becomes:

IAEVRIZ/ TR U,
womty QO 2 (e
e o T leg(de?+2) Y J temp)

QUL L VACA (LA

log2¢ & log2q™ &

which at wery low temperatures, at which ¢ approaches to 0, will
become nearer and nearer to

!l)

;"':_uoﬂ S

log (2 9*+1)

because the finite term log 2 can then also be omitted by the side of

log (2¢* 1) in log (49* -+ 2) = log (2¢9* 4+ 1) — log 2. But the

factor 1 - 3§ :»':1//i can be omitted only when & is very large‘ with
&

ut’

e (1 + -;—n Vv {) (very low temp.), . (¢,)

respect to f (strong collisions), which is, however, not very probable

in view of what was found at high temperatures -— unless at high-

temperatures ¢ is so. small, that notwithstanding & is very much

T2 |

greater than f, the quantity —— -~ would yet remain compara-
@ &

tively great.
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But at all events in the case (¢a) or (¢,)) w* (proportional to the
temperature) will be very much greater than u," (proportional to
Lo‘z E — ). Both — temperature and kinetic energy in the neutral
point — approach to 0, but the energy wvery much more rapidly to
A (the constant zero-point energy of the attractive forces that tir;ally
remains) than the temperature to 0.

The relations (d) and (¢) now become:

vy 1
A A V b ha ,/zi
l—o & ‘ 2f t log 20 e’

so that for a value of l—¢ remaining finite, the distance 6—s’ will
not be very much smaller than /—o, unless again & is very much
lay'ger than /. The time ¢, approaches (logarithmically) to oo, while

o 1 m .
at finite ¢, (:::5.7! l/z—;) the ratio ¢,:¢, will approach logarith-

mically to 0. These relations are represented by the subjoined figure.

Low Temperatures (u, small, o large).
distances

F

finite small

T —— N
S L

g —
y ¢,
great flnite

Fig. 2.

times

As has been said hoth %, and u,* approach to 0, and the reason
that u? (i.e. the temperature) does mnot remain finite at u.* = 0
- since there isa finite increase of the square-of velocity (ori’ginall; = 0)
in consequence of the attraction forces — but likewise apprvoaches
zero, lies in this that the time during which this increase takes place,
approaches o (though it be logarithmically). In the neutral point
the attraction is == 0; when the moving point has got somewhat
outside the neutral point, there will therefore be only very slowly
question of any action of a force (which then increases further

linearly with the deviation #, see p- 1188 loc. cit.), bence of acce-
leration. ' ‘

8. When we now proceed from wu’ to T, and from U, to

L,=E—A, we have therefore in the case of high temperatures

2 | 2
from w® ="/, u,": @



i.e. (cf. Note 1)
1 1 1
R = — — o= :MEMA-

Hence also ;
E=A+8RT,. . . . . . . . ()

GU::(dE)xfinﬁ, A 4
ar/,

- If w® were = u,* instead of =='/, u,” (strong collisions, cf. Fig. 18),
then £ would have become = A -4-*/ RT, ¢, ="/, R ==3.

All this applies to monatomic substances. In the case of multi-
atomic (n-atomic) substances it is necessary to take besides the energy
of the attractive forces A also the atomic energy A' within the
molecule into consideration, so that £ becomes = Ly O 4 4
Now L, ==3RT, while A’ ==3(n—1)RT may be put, when 3(n—1)
represents the number of supplementary degrees of freedom. We
then find K=~ -+ 3nRT, i.e. ¢c,= 3nR = 6n (NeumanxN’s law) ).

At low temperatures we have:

7 2 3
iwa’: Yy, Nmup @*. 6 '
2 log (44" + 2)
according to (¢,), when we denote the factor

(43l D) il D)

or

2 ' ' 2 | J—
by 6; hence because u,*¢* = (l—0) ;?Jf, and thus '/, Nmu,® ¢* ==

femnr Nf(lwo)’ prnt ’/‘A;

1y It should be remembered that for gases E == p -1/, R (8 -+ «) T may be put,
in which w also represents the number of supplementary degrees of freedom (see
among others Bovurzmawn, Gastheorie I, p. 124126 and 128): But here x
is simply ==# for multi-atomic molecules, so that for mon-atomic molecules n
is still == 0, for di-atomic molecules however % = 2, for tri-atomic ones n == 8, e.tc.
Hence when the term A, which approaches 0, is neglected, and als(? the quantity
¢ introduced by Bovrrzmasn, referring to the potential energy of the intramolecular
movements, B becomes =1/, RT (3-}-n) for gases, leading to cv = 1/,R (8- n),

hence (with ¢p—cu == B) to P = 1+ g»z-w (Borrzmany adds the above mentioned
Cy - 73

correction quantity ¢ to 3-+n).
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oA

A .
log (4]?%—[3 + 2)
(t—a)? 2f

 Nf(—o) Y b A

because T ...A,,M«_;‘ﬁz *I«(M.«.NQW:_{& e
uog 1/2 Nm uos 2/8 LO LO

When we reverse the relation found for R7’ omitting log 2 by

. 24
thq side of the so much larger term log (FZ& ~|——1),Whel‘e b — A =

RT =

]

= L, is small compared with A, and putting also & =1 (which is
fulfilled for large values of & :f), we get:

2 A
B=btgrm— .. (g

eBT 1
As we already remarked in our first paper, it is indeed exceed-
ingly remarkable that (with the exception of a few numerical factors)
exactly the same velation between /2 and T appears here as was
derived by Pranck on the ground of the hypothesis of “quanta”
drawn up by him. For this it was only required to take into account
the fime averages in the- ordinary dynamic relations, which gives
rise especially at low temperatures to a considerable difference between
w,’ (the time average of the value of u,”, which has greatly increased
under the influence of the attractive forces) and wu,?, both being very
slight and approaching to 0.
From (9) follows with s K== a
aoyr el T
E :;— Rea - »ivl-ziw 7 Cy== (dE) o 3RS /[)Jj—*- (¢
1

v (e“/T —1)

which exponentially approachesto 0 (viz. to 3R i;; e /T), when 7T’

approaches to 0.

There is, however, one great difference with Pranck’s formula,
Apart from this that in Praxck’s work the well-known quantity
Nhv appears instead of "yl = Nf (I—o0)*, so that hv would have
to be hv=f(l—0)*"), our formula (9) 1s only valid for very low
temperatures, and (f) only for very high temperatures. This is of
course only owing to this that (¢;) only ensues from the general
formula (¢), when ¢ is supposed to he small, whereas with large
values of ¢ the relation (c,) results from it. Accordingly our (g) may,

') Cf. what has been said concerning / —c under ) of Note 2. &
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therefore, not be applied in case of high temperatures, whereas this
may be done with Pranck’s formula: the latter holds (at small
volumes) both for low and for high temperatures.

It is, however, remarkable that ¢/ (g) were valid for high tempera-
tures (which is not the case according to us), KF==A 4 3R7 is duly
obtained as limiting value for £, identical to (/). Our formula, from
which (f) ensues for high temperatures and (¢) for low tempera-
tures, seems to be more general, and the approach to (f) takes
place in a somewhat different way than with Pranck’s formula.

At any rate it will have to be assumed — if ¢ is to be small
at high temperature, and large at low temperature, and if Ais not
to become =0 at 7 =—=0 — that with condensed (solid) systems

(I—o0)* changes only comparatively slightly; and that it does so in
the same degree as the frequency ». Then Pranck’s quantity 4 would
be related in a definite way with the constant of the attractive forces
f (being in its turn again in relation to ¢*, when e represents the
electric elementary quantum), and in consequence of this also with
"“/:;0 at the absolute zero. There are very strong indications for this:
particularly the undeniable connection between the so-called chemicat
constant and also the constant of the vapour-pressure on one side,
and the quantity @/, on the other side, as I demonstrated shortly
ago in a Paper in the Recueil des Tr. Ch. of March and May 1920
— while it is known that this chemical constant in its turn is again
in relation with A.
I hope to return to this special subject later on.

4. We will now discuss somewhat more fully the nature and
the way of acting of the forces assumed by us between the molecules.
In connection with what was already observed above, we might
assume that the attractive action of M, e.g. rapidly decreases at a

certain small distance from M,, and disappears at a certain very '

small distance o, being replaced by a rapidly increasing repulsive
force, which for # == s, when the moving molecule P would touch
the molecule M,, would become infinitely great. (Cf. further what
was already said on this head under a) of Note 2).

- Thus no two separate forces are required, nor two separate Virial-
parts — an Atiractive-Virial part and a Repulsive-Virial part —
but only one; which point of view was already set forth by me
some twenty years ago.') The difference with the assumption in the
first part of this paper lies, therefore, chiefly in this, that then the

) See Arch. Teyler (2) T. VII, 3itme Parlie, p. 134 (1901): ,Sur linfluence
des corrections etc.” (particularly p. 28 et seq.).
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attractive force continued to increase up to o, after which it sud-
Total force F.

Fig. 3.
denly (hence discontinuously) changed into a repulsive force, with
another constant of intensity & than that of the attractive force I
whereas now we suppose a continuous change of force at ¢ with a
single constant f.
Analytically this may be expressed - as far as e.g. the action of a

force, exerted on P by M, is concerned —- by a formula of the form
l,—~0,—a

,Fl "“‘-——:f(Qz“"“ll '+" ‘”) Z’L_'—“Lmv L (la)
Pt et U}

in which 2 = OP, and the indices 1 all refer to distances from M,
measured towards the left; and this instead of simply #, = flo,—
—(li—=2,)) as we put formerly (loc. eit. p. 1188 et seq.), i.e. the
attractive force proportional to the distance from the moving point’
P to the boundary of the sphere of attraction 0, (of M), so that
F, =0, when P lies on the boundary of this sphere or outside it.
In consequence of this the attraction, after having reached a maximum,
again becomes =0 at o, (hence (v = l,——a0,), reverses its sign, and
again changes into a repulsion, which would become infinite at 8,

(# ==[,—s,). From the other molecule M, P is subjected to an

attraction
l,—o,+a
F,.=7(o.—1 —py. 22"
s =/ (0,1, m)l2_82+m, A 1)
in which z is again = OP, and the indices now refer to distances

from M,, measured to the right.

Hence after some reductions the tota/ action exerted on P to the
right (see Fig.3), (with omission of the indices, because /, = s =,
etc.) is now found to be:

A — (9—3) (6—s)
F = e F . al O A
Fi,—F,=f.2 [1 = W] CLe (@)

-instead of simply F'=F — F,= /.2, as before (p. 1188).
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It is self-evident that the total attractive force will become == 0
somewhat earlier, when P wmoves towards M,, than at o, (when
F, acts alone) — it does so at o', or simply 6’ — because the
attractive force of M, acts in opposite sense. In fact the above
quaniity becomes = 0, when /
o ==V {I=5)" = (0—s) (3 =) == V/{I—0)" — (o 6—2l) (5=s) — I—a".

As in the case under consideration the molecule £ will always
be within the spheres of attraction of the two molecules M, and M,,
20 is always < ¢ - s, hence a fortiori 2/ < ¢ -} ¢ (cf. p. 1187 l.c.).
The value of a, is therefore <! -— o, i.e. I becomes == 0 in ¢,
on the left side of ¢, ). o

‘However, all such functions have the drawback, that the further
integrations become impossible to carry out by means of closed
forms; for both at high and at low temperatures (u, large or small)

- A
: . 2 N
the term of work 2/mf in ‘/u’o - fﬁdm can never be con-
. m ‘
0

sidered as permanently small with respect to u,* between the limits
2z==0 and @ ==s". For in the end (at the culmination point of the
collision) the gqnantity under the sign of the root becomes == 0 in
both cases (high and low temperafure), hence the term of work
under .consideration of the same order of magnitude as «,*. And at
low temperatures, which is justly the most important case in our
considerations, that term is almost everywhere of the order of
magnitude u,* — except in the neighbourhood of the points O and
somewhere between ¢’ dnd s’, where this term becomes = 0 (Cf.
Fig. 3). ' ‘

For this reason we were obliged in our first paper to consider
the attraction and the repulsion separately, and to assume, instead
of the course of F drawn in Fig. 3, a.force which continues to
increase in direct ratio to x as far as o,, after which it suddenly
changes into a repulsive force, which likewise increases linearly as
the distance - from P to o6, (P now thought on the righthand side
of ¢,). This renders the integrations easy to carry out, and does not
touch the nature of the matter. ,

If it is thought desirable to avoid the introduction of a so-called
“gphere of attraction” — which at the same time offers. the advan-

f) When the distance I-of the molecules becomes foo small, F will not firs
become positive on the righthand side of O, become ==0 in ¢’, and then negative
— but at once negative, i.e. there is already immediately repulsion on the right.
hand side of O. The same thing applies of course to the left side. We shall

return to all these different cases in our next paperon the calculation of the Virial: -
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tage that the agsumption of a transition case (see p. 1186) becomes
unnecessary (viz. the case in which the moving molecule is always
within the sphere of attraction of M,, but not always within that
of M,) — a plausible law of attraction must be substituted for ¢,—/, 4 @
and ¢,—{,—a in the expressions for F, and F), so that we have e.g.:
i A I i i

YT s ba

through which we obtain with small values of «:

i L l—0 o
z Mig(l T l) l—s (1 ((—o) (lms)x) B
f N l—o6 o—s
== )= i)
i.e.

jo— 1 .l::f PLW - __”_Mgti } Qg e _J:_ l::f [n — L(f:fl :’ 2,
Pi—s| 1 (—o)(i—s) PRI ((—0) (I—s)

i.e. again proportional to x. This first proportionality and the corre-

sponding quadratic form of the term of work dew continues to

exist whatever form is given to the expressions of the action of the force.
According to Desyr') the exponent n would have the value 9
(for anomalous “Dipol” gases n would be =7 on the other hand;
cf. the note on p. 183 loc. cit.).
But also the above forms of F, and F, are in a still greater
degree subject to the drawback, that they lead to integrations which
it is impossible to carry out in the further caleulations.

5. However -— without having recourse to the dualistic law of
force (one for the attraction and another for the repulsion) which
we have chosen for practical reasons — also (2) might be used for
the calculation of

l—a [enis’

da 1 S
b= mwimm, 5wt = " fl/uo’ fowzde, . . . (8)
0

0
x .
. . 2 N . . - . .
in which w, == — | Fdz; provided one is satistied with a certain
: m ,
: 0

approximation in the logarithmic expression which is then obtained
for w,. We find namely: :

2 l__ s _ a
h N n_;_f [mﬂ + (p—3) (G—f-s) log( (;?_35;:3]’ N ()]

1;220DEBYE, Die v. p. WaaLs'schen Kohisionskrifie, Physik. Zeitschr. 21, p. 178-&—187
( 2
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in which « changes in the above integrations from l—»sf to 0. And as
s is always >>s (only for an infinitely large value of u, could s
be reached at the culmination of a collision), {—s’is always <'Z~as.
Especially at lower temperatures, at which s’ remains comparatively
far from s, ([—s’): (I—s) can remain considerably smaller than .1
even at the extreme value of z. (If e.g. [=1,2s, & ::1,1.3, f‘hlS
ratio becomes already. '/,). We may therefore write in approximation
for the logarithmic term :

2! a® ot
o1 ) =i

g0 that with

R I .ff.‘#]. LY
o = (=) [(1 )(l—ms)’ 2 (I—s)".

For the form under the sign of the root may therefore be written :

2f (I—s)* i ) Y

Wi+ ZET a0y —par | |2 weneaia-r—
- L e

l—s 2f ) )
when again, as in the first paper, o l/;’;z(p is put, and further
‘ 9

&
y is substituted for . Then:

L8’ —s'

s
l—s
t = t-—fj‘ il —— —  u? = (l—s) %fVﬁﬁ dy.
e J Vidgt {(I—a) y'—/s ey} :
0 , ‘ \
For the form ander the sign of the root (1-—w,y% (1 = w,y") may

be written in this, when
. J— 2
w, — W, =t (l—a) 5w, w, == Yy @t ety

. . W, 2
so that this form with yV w, ==z passes into (1-—2% +‘1;1 z ))

which becomes with z == cos¥:
) w, . Mwl—{»w, - | W )
sin® P (1 + ?—U—: (1 — sin w)) o= »—-;T sin lp( o T, P

dz . ‘
For dy we have further ——=-— ——sin ¥ dw, so that the

‘/w 1 Vw 1

above integrals pass into

b—s l/ . wl; ““:;‘i—.]f‘““*:“t;
b= e Ve, SV
D] T

. [~ .
when (pl/g}is substituted for — (see above). We have for the

0

zw_s[/ S J o
L o sin WV 1k sin®p d 3,
“ v w, w, 4w, t cY Ce
) Ygm
w . .
when ——*—— =} is put (hence k* is always <{1). With regard
: w, + w,

to the limits of the integrals evidently zisalso == 0 fory == 0, hence
w="1/,7. Aud as at the upper limit u,* + o, becomes == 0 (culmni-

0
nation point of the collision), also (1 — 27) (1—{— %}z'): 0, hence
1

é:l,tp::O. Thus we have, after reversal of the limits, in conse-
quence of which the minus signs drop out:

Yy 7
Uon j;in’prlp.dlp
I Jdy w,-w, 0
(2= |7::““~* _ = u i ,
uo wl +w2 Alp w, ‘ p dw
Ly
0

when for ¢ its value is substituted in the expression for u,*. Follow-
ing Lweenpre and denoting the complete elliptical integral of the

Yore

-d !
1st kind, viz.jig}, by I, or singly I, we have also:
¢

Y
® m w, + w, u, [,
== e . e DL N S 2 Dap.d ,
[4 l/(wl—f-'wa)l/zf.[, 3 Uy w, 7 jsm P L.
. ]

modulus %: 1

P hele(—a + V g(l—a + 20
W, 4w, 7 l/;(p’(lm-a)’ + 2 ’
when we calculate the quantities w, and w, -4 w, from the above
expressions for w,~—w, and w,w,. Hence we may write:

kPom—11 + : O (1))

so that at low temperatures (large values of ¢) £* is always near
1 (provided e¢ <1, in which case the - sign is valid).
We must now still reduce the last elliptical integral (the one with
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sintyp) to that of the 1°F and the 2nd kind. According to known
formulae of reduction?) we have'

¢
|1kt
ﬁin’ W A dp == —3—[ —————— wa A Ic‘ fAtp dlp——S’LTLIPOOSlPAlP}
0
hence y ;
) 11—k 2k*—1
fsin’ P L p.dip = 3 [—72~ F 4 T E}
0 :

when the complete elliptical integral of the second kind, viz.
o=

Aw.dw, is represented by E: Hence we find finally:

0 _ o ~
sl S [y 2R
t:l/'T:oT[/é}”F’ ”3/&[“ o 0 ®
because
"""" q") — ”“f‘*/:fﬁ*?:;*— == %—]E'j:—l s and - "ﬁ}»—: 1-— k°
Vi 4, P wr(—a)'+ 1 w -+,

We shall now compare the found formulae (7) with those found
before, and again in the two limiting cases: high and low tempe-
ratures.

At high temperatures (o sm&ll) k* approaches '/, (if @ < 1), so that
then (7) reduces to ,
: =0 5 ul=27, u,’ (high temp.), . . . - (79)
instead of wu2="/,u," (weak collisions), as we found before. The

1) See among others Durker, Th. der ellipt. Fuanct., p. bo formule (29), i, e. (with
== 0, m =0)

' ¢
o [50 1p dtp sin W d
3in P cos P JARI '“‘"j — 21—k )j et - B k f?&_w ,
0

from which the mtegral with sin#y can be expressed in both the others, that
with sin%y being expressed in Iy and Hy by the formula (see p. 69)

l# 1
kxj izfgffilfzpw,_ Ey,

" as can be easily verified by differentiation, after A\P:':«'VTWIC’ sin®y has been

put everywhere in the denominator. (The integral to be reduced by us then becomes

¢
int p — Koty 1,,)
f b )

0.
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fall of the velocity during the action of the repulsive force —
expressed as function of the time — is now less great than in fig.
1¢, so -that the descending branch will be much more horizontal.
The natural consequence of this is, that the time average gets much
nearer to u,'. (¢, would now become =72/, X */, & ==4'/, instead of
6). However -— the above calculation is cerlainly questionable at

23

high temperatures, because then log (1 m—(j-{b ) may certainly not

be expanded into a series, as at the culmination point of the impact
x would become ==/[—s (s’ == ). The expansion into a series up to
x* used by us, gives a too great value for w, hence also a too
great value for wu,. Instead of rather abruptly, the damping of this
exceedingly great velocity would take place during a much too long
interval — so great even that s* would lie far inside s, which is
of course impossible.

At low temperatures (¢ gxeat) on the other hand there can be
no objection to applying the expansion into a series up to «*, because
then the veloeity is so small that it will be reduced to O already
within a very short interval. Now the modulus % approaches to 1,

Yy
- . . Yo - R
hence £ L(ifcos W = (sin ‘V)o/' , l.e. also to1; but # will approach to
0

Yym

gg:’{y; = log tg (45 4 ), e == [og w—Iog 1,1.e.t0log . As, however,
K

0 ,
at the same time 1—4* approaches 0, we must examine what value
(1—£%*) ¥ assumes in (7), when 4£* is wear 1.

4
According to a well-known theorem ) I approaches to /o w‘~/~«——/L
in this case. ; ,
Hence we get for ¢ and w,®, when £ approaches 1, from (7):

1) Ct.. among others LawB, Treatise on Hydrodynamics, p. 170; Cavrry, Ellipt.
funct., Art. 72; Maxwsrir, Elect. and Magn. II, p. 311-—816; Durker, p. 190
et seq., particulariy p. 213; Krrcunorr, Vorl. p. 270; ete. Better than Durkar’s
derivation, which is based on LanpeN's transformalion, is KrrcuaOoFF's beautiful
derivation. The latter is founded on the splitting up of the integral into two parts, viz.
Yym g8 Ty

j = f - f , in which ¢ is a small quantity, which is, however, supposed
0 0 Y mmd - o

to. be great with respect to V'1-7%% But in both derivations only the limiting
value of F is reached.

It is in my opinion  a better method to start from Jacosr’s relation
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z

1 4 mo . Uy
NV R [/é"f PR g e

because [ approaches 1, and 1 may be omitted by the side of

?_{“f_’:} E == ~-"~1w—~_~. Now from (6) follows for large values of
11—k 7 (1—iNF
1):
@ (e<1) o ) )]ml_mle
v =g+ (-5 7 (1—ay
i 4 1, 16
so that we obtain with log ‘71:,__——1::5— log —
1 32 (1—a)* |, m-
i (T
2|/(1—--ua) a
i ,(ljfw)j @ . (low temp.) . . (7%)
. 3 a o
Uy :l 32(1”—0!)’ 2) [}
e
0g ( p P
F—ﬂw@g—if” in which F' refers to the integral with the complementary
modnlus ylrc’:\/fj%—”,,and g is one of the auxiliary quantities ¢ and ¢/,

21 g (14¢"+¢" + ete)

introduced by Jacost. From the relation A == T T e,

Lo, 144" 44" ’Il'_'_l ' from which
follows first ofyarll I—ék ==q (]"129.+2914+._. '

! Loy 21 ) And f this follows:
Ve . LI _L e kY e, ). And from s
q‘”16k(1”’2k*64 N «
1 4 T, 13 W)
—~-~w2-logq'zlog—];;-—d(;i»k2 mw«lzsk + -

i T Ly L is easil
Through expansion into series # ::.;jyr(l - Zk’qLBZk T I y

1fgre ﬁ” 1 . I
v | — o
derived for F'== |————— ==, so that from F = i ( 2 gq)

| e 2 e (e 2 )
sl enses F“(”* O 64“)[‘09?& N (4’0 Figg® ™t

» == ! 2 4 1 k'® limiti lue of which
or approximated £ (1 +;l k )(log Y k ), the limiting valu

: 4
is evidently log W |
i i ili tity ¢ always remains very small,
We may still point out that the auxiliary quantty ¢
qis=0 zor K =0, but ¢ is only 0,043 for k' =1/,)"2 (the same for kfa.nd qQ).
It is to this fact that the exceedingly strong convergence of the Jacos: series for
elliptical functions is owing.
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, I 4 ¢*
Again ¢ approaches logarithmically to o and uS t0 ———e— u,*,
log B ¢*

just as in (c,), derived in § 3 with two separate forces.

In order to render a comparison possible, we must now again
introduce the maximum work A performed by the attractive forces.
From (49), i.e. '

_2f , @ a &t

& | —«

tollows that this will be maximum, when (l-m?:m, s0 that
—8
2f 2(1——«0:)’
(©2),, = () =i
Multiplied by '/, Nm, we get accordingly (Cf. Note 1)
(l1—a)* 2
NF (l—8) ~ome - A\,
' (L—s) 5 3
{—3s)*2
As further q>’zL§L~I, we geot:
uo m
32 (1—a)? 32 (1—a)? -2
Yy Nm . »m-«g-» “) Pt Uy == 1\7_}"(1-—8)2 . n««-&wmﬁlx 64 < §A.
23 [24

Thus we find for '/, Nm u == RT, because '/, Nmu,' =2/, L, =
- 2/: (E“'*A) : ‘ l

RT:1/24><64><Q/3A___ lg/hA

= O (1
oo 84 A 64 A ®
0 0
L YEZA
. 2 '
as against R7 — wézsz on the former assumption of two separate
“EE

forces (see Note 3). The coeflicients are different, but the logarithmie
relation has remained entirely the same.

As however our former assumption leads to better coefficients
than the assumption (2) of Note 4, elaborated by us in this paper,
and as it does so both for high and for low temperatures, we can
in future, by the side of the latter procedure, also base ourselves
on the supposition — which is simpler for the calculations — of
two separate forces, in which the repulsive force begins to act at
2 ==1[-—0, after the attractive force has reached its highest point.’

I hope that the foregoing Notes go to clear up some of the diffi-
culties that might have presented themselves in the reading of my
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first paper.!) Now we will procegd with‘ thehtafsk whic.h we h‘ad

sef oiitsélves, and examine the Virial of attraction and of repulsion

with a view to. the drawing up of the equation of state in case of

small volumes, éépe'cially at very low temperatures. _ B

o , ' (To be concluded).
La Tour p?'yés Vevry, Antumn 1920.

I gratefully express. my _thanks again _to the vax ‘7 Horp-fund,
which has gr‘ea’tly""faéilitated’"(he execution of this work.

D) ThOugh,nﬁLaZLLhﬁ ‘,db.jectio,ns, which some time ago Prof. LORENTZ._.WaS s(‘)
kind as to communicate ‘to-me in a letter, may have been removed by thls‘ papel,f
yet | hope that some have been solved. Nobody can be more fully copscl()llfls 0
the great difficullies thal are-to~be surmounted here, t}'lan the.auth(_)r }11rr}se .

In the autumn of 1919 1 had the privilege of having a discussion thh' me..
EHRENFEST — -to whoin we owe ~the” so. importapt  thedry of the Admba‘tzc‘
Inwariants (1916), which theory was later so felicitously continued by BURGE}I{IS
(1917) and KRrutKOW (1919-21920) -— on the: contents of my first paper. He

advanced, among others, the: objectionr that not dll‘the molecules on gpproach
to other molecules would come in collision, after .which thfey would algam'move
away from them, it that some of”“,them wogldu .remam for a time 1n tllle
neighbourhood of them. This is perfectly true, but n case of gases we shqud
then have to do with association, a case that was purp,o,sel’y left out of ’conswle-
ration’ by me as-an-unneeessary -complication. .But as-we have to deal here not
with gases, but chiefly with solid bodies, Where‘the' mo_lect.lles only move to and
fro “between” the neighbouring ones, this.complication 1, mfieed, quite excluded.
Besides already for a long time all the more recent _theorles of strueture h:_(a_-ye
rejected the idea of ‘association in the solid, crys;tallxzed fstgte, so that we dre‘
-justified in leaving it ;qgihtgvn out of consideration. ,Bu,t, inmy opinion there are greater
difficulties, of an entirely different nature, “t?v“vyvl}lch I hope to return later.

——— Al -

Physiology. — “The function of the Otolithes”. By Prof. R. Maanus
and A. pe Kuipyw.

. (Communicated at the meeting of Sept. 25, 1920).

In the course of the last half century an infinite amount of literature
has appeared upon the functions of the vestibular organ. From the
first, anatomical research rendered it probable that a sharp distinction
had to be made between .the sensory epithelium in the cristae
of the semi-circular canals covered 'by the so-called cupula and
which -can move freely in the endolymph, and between the sensory
epithelium of the maculae of sacculus and utriculus which, covered
by ‘the otolithes with their greater specific weight, appears specially
suited to react upon the greater or lesser pressure of the said
otolithes. , '

‘But, whereas our knowledge of the function of the semi-circular
canals is fairly extensive -and, moreover, the anatomical data agree
fairly well with the -clinical and experimental data, this is by no
means the case with respect to the knowledge and theories regarding
the function of the otolithes. E : S

This is due to various causes. If, as-has been supposed in particular
by Maca and Brrver, the function- of the otolithes is determined by
the greater or lesser pressure upon the sensory epithelinm beneath,
we may expect that the otolithes. will have some influence upon
those reflexes which come into play by changes in the position of
the head, and that their influence will continue as long as this
position remains unchanged and the pressure of the otolithes is constant.
Or, in other words, that the otolithic reflexes are more particularly
tonic reflexes. Up till a few years ago, tonie reflexes of the labyrinth
were known only in the form of compensatory positions of the

eyeball, and therefore the function of the otolithes had to be studied

exclusively from these reflexes. As, however, our knowledge of these
positions .was still far from complete, and sufficient investigations
had not been made, it is obvious that the literature on this -subject
will contain opinions of a more or less speculative nature. Moreover,
the influence. of - the clinique was inhibitory. While; clinically, the
different vestibular reactions upon (rotatory) movements were in-
vestigated - more and more carefully and began to assume an ever-
increasing importance in the diagnostics of the diseases of the labyrinth,
S9%





