Physics. — “On the application of BansteN’s theory of gravitation
to a stationary field of grawitation.” By H. A. Kraugrs. (Com-
municated by Prof. H. A. Lorenrz).

(Communicated at the meeling of September 26, 1920).

§ 1. Definition and invariant properties of a stationary
field of gravitation.

We will call a field of gravitation stationary when the expression
for the line element can be put into such a form ds* = g.dx.dx,")
(x, time-coordinate, x,, 2,, 2, space-coordinates) that the gravitation
potentials g,, do vot depend on the time x,. A special case of the
stationary field of gravitation, defined in this way, forms the so-
called “static” field of gravitation, which appears when it is possible
by a suitable transformation to make the quantities go1, goz and go3
equal to zero. It is simply seen, that when the line element of a
stationary field of gravitation is brought in the above mentioned
form, the most general transformation of coordinates, for which the
¢*”’s remain independent of the time, and for which a point at rest
remains at rest, is given by the formulae

zp == o (@, &'y, &) k=1,2,3)
Ty = a‘”'o + ‘p ('Q'Jv ‘”.':7 x!s)-

Here ¢; and v are arbitrary functions of 2',, «,, ',, while a is
a positive constant. The quantities ¢,, and their derivatives show,
with -regard to the transformation group expressed by (1), certain
invariant and covariant properties, which we will now investigate.
The line element may be written in the following form,

(1)

- 1 .
ds*==gu,da,de,—-2 G];ld.wkdwz+§~ (Gos@®y 94140, 4 Gou B2, + g4, d2) ",
00
v . (2)

gok 9ol
Grl = — g + ——,

0o

Y Just as EINsTEIN we have omitted the signs of summation for summations
which have to be extended over indices, which occur twice in a product.
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where the summation has to be extended over kl=1, 2, 3. When
in the following an index can assume one of the values 1, 2, 3,
we will denote this index by a Latin letter. If on the contrary an
index can assume one of the values 0, 1, 2, 3, it will always be
denoted by a Greek letter. In case of summation over an index,
oceurring twice in a product, the sign of summation will be omitied
in both cases. If now we perform the transformation (1), the
expression (', day dr, becomes again a quadratic form of the diffe-

. . 1
rentials of the space coordinates, and — (ga. du.)* becomes again the
20
square of a linear differential form. Since the separation in two

parts of the expression of the line-element given by (2) is only
possible in one way, we may conclude, that the expressions

(gou o)’

) gou

are invariants with regard to the transformation (1). Consequently

the quantities g,/ goo possess the character of a vector, and from
this we conclude again, that the bilinear differentialform

9 {7_9_“) 20 2%)
Owu \ g° 0w, \g°
00 09

is also invariant with regard to the transformation (1). The constant
s may be chosen arbitrarily, because the quantity g,, appears only
multiplied by a constant factor after the transformation. Choosing
the special value s==1, we see that all terms for which u==0
or »==0 become equal to zero, so that in this case we may omit
the index O under the summation, and we obtain the result, that

the expression
2 (9_0_1) _9 (93_@)
dar \g 00 O/ 00

is invariant. As the coefficients of this differential form are anti-
symmetrical with regard to the indices % and /, we may consider the
expression (4) as a linear form of the differentials duy; == dapdw/—dxrda;.
Now for a threedimensional extension, the expression VG Dapday,
remains invariant for an arbitrary transformation of coordinates,
where (' represents the determinant of the coefficients G7; in the
expression do* = G, dxydz; for the invariant line-slement, and where
under the summation the indices £,/,m assume the sets of values
1,2,3 and 2,3,1 and 3,1,2. Consequently the quantities V' Gdxy
are transformed as the components of a covariant vector (if we, in
the usual way, call the transformation of the components dry of a

Gy day, dz; and

8%

day de, . . . . (3)

00

V 900

degpdzy . . . . (4)
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small displacement contravariant). From the invariance of the
expression (4) we may thus conclude, that the quantities ')

R e L l/‘;;“ ,,Qw {]Of M._.‘(}_ 'ZO_IE
o G |0z oo sy Joo

where £,/,m again may assume the sets of values 1,2,3 and2,3,1
and 3, 1, 2, with regard to the transformation (1) are the contra-
variant components of a vector in the three-dimensional extension
with the invariant line-element do* = Gy dapde;. The invariant ab-

(%)

If the components R are everywhere equal to zero, we have to
do with a static field of gravitation. In fact, from (5) follows that
in' this case the quantities gox/¢,, may be deduced from a potential

Oq
@ in such a way that gop== gy, 5/)’ but from this follows again,
Zp :
that the line element may be written in the form ds* = — G'; dwrde; -+
+ goda,?, where a)' =, - .

If the components R™ are not equal to zero, these quantities deter-

mine in every point what might be called the “rotatory’ properties
of the. stationary field of gravitation. This may be illustrated by
considering the motion of a masspoint, the velocity of which is small
compared with the velocity of light. In general the ‘“worldline” of
a magspoint is determined by the equations

d*ay S[,w da, da, 0 (©
il aae =" O

If now we assume, that by a suitable transformation of the kind
(1), the line-element has been given the form ds* = da,*—dua,*—da,*—
dz,* at a given point /> of the worldline, it may be easily verified
that the equations (6), looking apart from small terms of the same
order of magnitude as the square of the velocity, in the point P

assume the simple form

2 } . .
d Tk __of dan R dary %29_“1, )
da,? w, da, Oay,

where k,m just as before may assume the sets of values 1, 2, 3
and 2, 3, 1 and 3, 4, 2. From these equations we learn that the
““force” which the field of gravitation in the point P exerts on a
mass point of nnit mass may be described as the sum of a Corio-
lis-force perpendicular to the velocity and proportional to it and of
a force, which may be derived from the potential § g,,.

3 If we admit only such transformations, for which the functional determinant
is positive, we may by the root-sign in this expression always understand the
positive reot.
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If next we consider the motion of a wmass-point in a conservative
field of force, esuch as would take place according to Newtonian
mechanics, we obtain equations of motion of the same form as (7),
if the Cartesian eoordinates describing the position of the mass-point
refer to a system of coordinates which rotates uniformly in the
space. In fact, if the equations of motion in the non-rotating system
of coordinates possess the form

they obtain in a system of coordinates a’,, @’,, @’,, which rotates
round an axis through the origin with an angular velocity I which,
considered as a vector, possesses the components — R', — R* and
~ R %) the form:

d*a' da' da' 0 (et
EEk o @ g, ) o (p—w)
ar dt de

Y= (B (@ b e ) — (R, - R, R )
which coincides exactly with the form of the equations (7), if we
put t==a, and ¢ — P =1} g,. The essential difference with the
equations of motion in the non-rotating system of coordinates lies

a‘m , }c

‘consequently in the appearance of the Coriolis-forces, and we are

justified in denoting in the following the vector [2% as the “rotation-
vector”. , v .
“The character of the rotation-vector may also be examined in the
following way. We will try by a transformation of coordinates of
the form (1) to give the line-element of a stalionary field of gravi-
tation such a form, that in a given point 2 not only the relations
g == &,, ave valid, where the quantities &,, are defined by
Bup T = &, TF —— E,, T — 8y, = 1 e = 0(u#v), . (8)
but that at the same time the quantities gi/;v:: G 88 many of
) K
them as possible become equal to zero. If it was possible to make all
the latter quantities equal to zero, we should obtain in this way a
system of coordinates, which is “geodetic” in /. Now it is always
possible in many ways by means of a transformation (1) to make
the quantities ¢,, assume the values &,, in the point /°, but in general
it. will not be possible to make all quantities ¢.,; equal to zero. In

Y Here and in the following we will assume the wusual rule, that to a
rotation .in a plane corresponds a direction of the normal of this plane in
such a way, that, for a rotation in the x|, ¥;-plane from the positive x-axis
to the positive xg-axis through an angle smaller than =, the corresponding
normal points to the same half-space as the positive xg-axis. : @ -
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the first place this is easily seen to hold for the quantities goo,ks
because oo by the transformation (1) isonly multiplied by aconst.ant
factor; but neither the quantities ¢oz can all of them at the same time
be reduced to zero, because this would mean, that the components of
the rotation-vector would be equal to zero, and this is in general
not the case. On the other hand it is obviously always posmblg to
perform such a special transformation, that the system of coordina-
tes in the three-dimensional extension with the line-element do* =
= G day dz; becomes geodetic in the point P. In this way we get
Y 0 and consequently also g, == 0, since gz = — le+—'~&8:-
xn 3 . '

and since the quantities gz, are equal to zero in the point P.

Let us now imagine, that by means of (1) the line-element has
been given such a form, that in a given point P the following
relations are valid :

a)  Gu == Epy 2
b) gkl,,,zo (9)
&) gok,i + goi,x==0

As regards the third of these conditions it-will be observed, that

it is always possible by a suitable transformation of the time to

effect, that the symmetrical quantities A= gor, -+ Jolk beco.nf‘le equal
to zero in P. In fact, it is easily shown thaf, if the conditions (@)

and (b)) are already fulfilled, but mnot yet (c), the tr&nsforma?ion“
oy =, + § (Aw)p @k — (ar)p) (21— (@)P) leads us to the desired

purpose. Thereby we have denofed the value of a qllax}tit‘y' in the
point P by adding the index P on the right below. Let us now
perform a transformation of coordinates, which corresponds to a
uniform rotation, around an axis through P, of the x,, 2,, #,-space
(considered as a Euclidean space with the line-element do® == da,* 4
dx, + dr,”), the angular velocity of which considered as a vectqr
has the components R', R? and R'. After the performance of this
“rotation transformation’, which does not belong fo tt%e grogp
of transformations (1), the relations (a) and (b) are still vallq,
but also all the quantities gor: have become .equal to zero. This
njay be proved by a direct calculation, and the ;.)r.oof becom»ez
especially simple, if we assume, that in P the quantl.tl.es R and.R
are equal to zero, so that we have to do with a uniform rotatl.on
pound the axis of the coordinate @, with an angular velocity
’R"‘:w. Since in the point P the quantities Ry reduce to
3 (Gomi— goim)s We have in consequence of relation (¢}, that‘of all

1057

quantities gog, only the two quantities go1s and gos; are different
from zero in such a way that ® == goa1 == — go1,2. T'he rotation-
transformation can now be written in the form

@, — (@) p=2a', cos w ¥, — &', stn © @,

&, — (2g)p= o', sinw &, + &', cos w @,

If now by means of this formula the line-element (2) is trans-
formed, and if we make use of the above mentioned relations (a),
(6) and (c) it is easy to verify:

That for the transformed quantities ¢',, in the point P the rela-
tions (@) and (b) are still valid.

That, although the ¢,,’s will contain the time «,, their first derivatives
with respect to the time will be equal to zero in P, and that equally
all derivatives of go; ¢gos and gos have become equal to zero.

We thus see in the first place that, after the rotation-transforma-
tion, the equations for the world-line of a mass point, the velocity
of which is small compared with that of light, assume in the point
P the simple form

Ay 09,
de~ “oxp

so that the term corresponding to a Coriolis-force appears no more,
which was naturally to be expected from the above considerations.
Let us further consider the special case, that in the point P the .
mass point can remain in equilibrium; that is, that in this point the
quantities goor in the original system of coordinates are equal to
zero. In this case we find, that in the new system of coordinates,
to which the rotation-transformation has given rise, all quantities
guw,e without exeception disappear in the point P, so that this system
of coordinates is geodetic in that point.

§ 2. On the field of gravitation, which s produced by
stationarily moving masses.

Let us consider a space-time-extension, for which the line-element
at large distances from the zero-point of the coordinates approaches
to ds* = du,*—dz,*—dr,*—dz,* ') and in which there exist masses,
which perform stationary motions; that is, the components 77, of
the energy-tensor of matter do not depend on the time. The field
of gravitation, to which these masses give rise will then be stationary

" Y Here and in the following we shall always assume that the centimeter
has been chosen as unit of length. The unit of time is then determined by

the condition that the velocity of light is equal to 1. @»@
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in the sense deseribed in § 1, and is delermined by the equations
of EiNsTEIN
_R,,,y—~-‘2—g,,,yl€:—8jrxT,,,,, A 89))
in which R, is a tensor of the second order, which depends only
on the ¢’s and their derivatives: )
w’t

0 e
—= 1] .

B =35,
whlle R =g R,. x is the gravitation constant of Einstrin, which,
if we choose the gram as unit of mass, is equal to 7,4. 10—29, If
we assume that the ¢, ’s of the line-element which corresponds to
the field of gravitation, only differ little from e, there exists a
simple method indicated by Hinstuiy to obtain in first approximation
a solution of the equations (10). This solution is obtained by writing

Gy 7= €y + Yo N ¢ 5 )
where the functions y., everywhere possess a very small value, and
introducing the quantities v',, defined by

»a 00

o

1o

3

¢

Yy = Yy — § Epv (808 Yap)y
which give

Vo == Y,,u,v —— % Epy (suﬁ Y'ot/S) e e e e e (12)
x, may be calculated as retardated potenmals by means of the
formulae

P

T [#, = &,—r
y'ﬂ_y:.msz wloy =70 6 s

Here. dS represents the space-element du, du, dz, and r represents
the distance from that space-element to the point

@y, @y (17 = (0, — @) A (@ )" A (2 = 2)°),
The addition [w, :Z"IL — ] means that everywhere the value of
7., at the moment 2, —r has to be used. If we apply the formulae
(18) to our case where the 7’s do not depend on the time, we
may clearly omit the latter condition, and we obtain the usnal

~ formulae for static potentials

Ty
y',,_,,:-—«fixf—»'ids. R ¢ €3

P

We will now calculate the components of the rotation-vector in

the point &, @,, ¢, Neglecting small terms which relative to the
main terms are of the same order of magnitude as ‘the y',’s, we
obtain for the z,-component of the rotation-vector

R = 4 [/#Zfo 3 (‘7}%) 9 (:‘7,30) t
.? goo 6 900
1 0 /1
= aflr(Don (1)
"ow. 7 9

~2J(x 9)103 (w.__ )T“dS,

and analogous expressions for the components R* and R*. With
neglect of small terms of the same order of magnitude as the square
of the velocities of the masses we have further the formulae

Tyo = my r
where m is the density of mass of matter, and »,,v,, v, denote the
components of the velocity of matter. If we substitute these values
in the expression found above, we get

R1_~:2x[m(‘”2“”wz)vsi(“’n w°)vﬂd8, oL (15)
. r

and correspondingly R? and £Z°. This formula teaches, that the con-
tribution of every mass particle to the rotation-vector in point P is
equal to the moment of momentaum of the mass particle with respect
to the point /°, divided by the cube of the distance from /£, and
multiplied by twice the gravitation constant of HiNsTRIN.

Formula (15) can be applied to a problem which has been treated
by H. TrirriNng ') in order to illustrate the influence of rotating
masses on the field of gravitation. A homogeneous spherical shell
with mass M and radius @ rotates with constant angular velocity
w in a space, in which no other matteris present, and for which the
quantities g¢,, approach to e, at infinite distance from the centre.
It is asked to determine the influence of the spherical shell on the
motion of a mass point, which is lying just at the centre (). The

“%(37’.0 ’a*x',})
— \ow, Oa, /

3

— Isal & . m —
ol == — My, T, ==—muv, Tyy == — muy,

field of gravitation produced by the shell is stationary. From symmetry

we may further conclude that in O a mass point can remain in
equilibrium; that means that in this point the quantities 61”33 dis-
T
appear. Approximately, that means omitting small terms proportional
to w*, ¢g,, will even be censtant in the space within the shell, and
2

0 _ . :
the quantities 9o which determine the force exerted on a mass

O 0y’ ‘
point at rest just outside (J, will in general be proportional to w?,
but cannot be determined if the constitution of the shell has not

)H THIRRING Phys. Zeitschr. XIX, p. 33 (1918).
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been defined in nearer details. The rotation-vector in O, however,
may directly be calculated approximately by means of (15). Its
direction is of course parallel to the axis of rotation. We intro-
duce a system of Cartesian coordinates =, vy, z, the origin of which
coincides with O, and the z-axis of which coincides with the axis
of rotation. Let the mass of unit surface of the shell be denoted by
m. The contribution to the value of R* which is due to a ring of
the shell, the angular distance of which to the z-axis is equal to 9,
will then be equal to

z.o0+y.y0 xMo

2 X 2m a® sin 9 dd X m ; - sin® 9 d9
a
and for K= itself we thus get
Mo [ in M
Rz:i‘_~-‘f’«fnnwdo~i,-.—w. N )]
a 3a

0

From this we learn that if in O we introduce a system of coor-
dinates, which rotates uniformly in the same sense as the shell with

M .
an angular velocity equal to ‘%ﬁ times that of the shell, the Coriolis-
. v a .

forces will disappear from the equations of motion for a mass point
in O. This result is in agreement with the results obtained by
TuirriNG in his above mentioned paper.

Another application of formula (15) may be obtained in connection

with the following problem. Let us imagine a uniformly rotating
sphere, such as e.g. the earth, and let us suppose that the
Foucavrr’s pendulum experiments are performed at the northpole.
Then it will be found, that. the plane in which the pendulum
moves, will not remain at rest with respect to the fixed stars, but
will rotate slowly in the same sense as the earth. The angular
velocity of this slow rotation is given by the absolute value of the
rotation vector at the pole, which by means of (15) may be found
by simple integration. We find '

ptelle

where M denotes the mass of the earth, which is supposed to be
homogeneous, while @ and o represent the radius and the angular

dx M .
velocity of the earth. The factor ~g~— is of course so small (circa
a

5.10-19), that it will be impossible to detect this rotation of the
plane of the pendulum. Also at lower latitudes a similar influence
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on the result of FovcAuin’s experiments must be expected, but we
will not enter here into this problem.

§ 3. Influence of a stationary field of gravitation on the motion
of a rigid body round its centre of gravitation.

In the former § we have given an example of the appearance of
the rotation-vector; the present § forms a direct continuation of § 1
and gives the necessary preparation for the treatment of the problem,
which will be discussed in § 4, and which deals with the influence
of the sun’s field of gravitation on the precession of the axis of
the earth.

If in the following we speak of a rigid body, we mean only a
body, which is practically rigid, and which can move in the way
well known from classical mechanics, characterised by 6 degrees of
freedom, without changes of form or the appearance of enormously
high stresses. Thus we will assume that the linear dimensions of
the body are so small, that the “geometry” inside the body, which
is determined by the quantities ¢,, and their derivatives deviates
very little from the Euclidean geometry, and also that the relative
velocities, which the different parts of the body possess relative to
each other, are very small compared with the velocity of light. For
such"a rigid body it is possible directly to determine the values of
the components of the energy-tensor of matter to an approximation,
which may -be exactly defined. In' fact, if we introduce such a
system of coordinates that in every point within the body the line
element only differs very little from ds* = du*—dx *—dx*—da,*
— as a consequence of the above mentioned assumptions this will
always be possible — and if we denote by v a small quantity of

dw
the same order of magnitude as the velocity d_k of the different
"L'O .

parts of the body, we have — neglecting small terms, which relative
to the main terms are of the order »* and of the same order as
the small deviations of the g¢,’s from the s,’s (see (8)) —:
To=m, = Togp=—m-— . . . . . (18)
da,
while the quantities 77 (£,0 =1, 2, 3) which are connected with the
stresses existing in the body, and which can only be determined, if
the constitution of the body is known more closely, will be small
compared with the quantities 7, and may be considered as being
of the order of magnitude »*. The quantity m in the formulae (18)
represents the mass per unit of volume. Further it may be regr;]arked,
69"

Proceedings Royal Acad. Amsterdam. Vol. XXIII.
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that apart from the sign, we need not distinguish between covari-
ant, contravariant and mixed components of the energy-tensor ). Theore-
tically there will be a difference, but this difference will be of the same
order of wmagnitude as the small deviations of the g,’s from the
¢'s, and small terms of this order have already been neglected in
the establishment of the formulae (18). '

In the former we have fixed the properties of a rigid body with
an approximation, sufficient for our purpose. Let us now imagine
such a body at a certain time to be placed in a stationary field of
gravitation in such a way, that its centre of gravitation is at rest
and coincides with a point P of the field, where all the derivatives
094,
the " stationary field of gravi’tmion will have on the motions, which
will be execated by the body. We will begin by proving, that the
centre of gravity will remain at rest in /7. For - this purpose we will
use the equations of energy and impulse of matter:

are equal to zero, and we propose to discuss the influence, which

az/ ) a ‘ . -
BN 5 O =0, Iw="Tm/—g,. . . . (19)
0wy, Oy

where ¢ represents the determinant of the quantities g.,. We will
assume, that by means of a suitable transformation of the form (1)
the coordinates in /> are made to fulfill the conditions (9). Then the
¢u’'s may in the neighbourhood of /> be represented by

‘ 0"
Goo == €po + & (gno,mn)/) B Eny Gpvnn == 35~

awmawn
!707: == (gok,m) P &m "1" i (.‘]Qk,mn)P By By ¢« o 0 e s (20)
Rl == &l % (glxl,nm)P L &pe ’

~ Here we have assumed for the sake of simplicity, that the coordinates
. @, and @, are equal to zero in the point / and have neglected
small terms of the order of magnitude 2°, =z* etc., that is, terms
which would contain products of three or more 2’;’s.

Let us now consider a closed surface in the a -#,-¢,-space, which
encloses the body under consideration, and in the inside of which
the relations (20) hold, and let us integrate both sides of (19) over
the space inside this surface. Then we get, denoting the space element
du, dw, de, by dS:

z

day, ,
BRALE= Tg e ’1';) w e Top == mo— , 700 = 70 == T4y == m,
C 0 0
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d ey 3 ) lfAl ‘1 I3
~( f ,[qdb) = } Googi)p J w100 dS - (gok )P f 1ok 48 -
da, ¢ ‘
} <gok,zf>pfmz TGS . (@)

Here we have omitted terms, which would be of the order v?

(terms with 7% and of the order 2. The left side of (21) represents,
apart from the sign, the variation with the time of the total
momentum of the body in the direction of the wi-axis. The integral
in the first term on the right side (order of magnitude x)represents
the total moment of the body with respect to a plane throtigh
perpendicular to the ai-axis and is equal to zero, because we have
assumed that /P coincides with the centre of gravity. The integral
in the second term on the right side {order of magnitude v)is equal
to the total momentum of the body in the direction of the xj-axis
and is also equal to zero, because we have assumed that the centre
of gravity was at rest at the moment under consideration; finally
the third term is a small term of the order of magnitude x» and
may be neglected, since we already have omitted terms of the order
of magnitude «* and »*. From this we see that in first approximation
the momentum of the body remains zero in the course of time, and
that consequently also the cenfre of gravity remains at rest. (Here
it may be of interest to mention, that it is impossible to fix the
centre of gravity of a body in an invariant way; if we try to keep
to the classical definition, there always exists a small uncertainty
in the position of the centre of gravity, the order of magnitude of
which may be easily indicated). If we assame that the equilibrium
of the body in /2 is stable, equation (21) allows us also to calculate
the small oscillations, which the centre of gravity can perform in the
neighbourhood of P, but we shall not enter further into this point.

We will now proceed to consider the possible motion, characterised
by three degrees of freedom, of the rigid body round itz centre of
gravity. This may be done most easily by calculating the rate of varia-
tion with the time of the moments of momentum of a body round
the axes of coordinates. For this purpose it will be of advantage to
introduce the system of coordinates, which was discussed at the
end of the first §, and which appears by the “rotation-transfor-
mation” mentioned there (see p. 1056). This new system of coordi-
nates rotates uniformly round the point /2 with respect to a system
of coordinates, which is at rest in the stationary field of gravitation,
with an angular velocity, the components of which coincide with
the components [ of the “rotation-vector”, and we shall in;%estigate

69*
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the moment of momentumi of the body with respect to these coor-
dinates. In the point £ this system is geodetical at any moment,
but the quantities guw will, in contrast to what was the case before,
depend on the time , and will be periodical with respect to the
time in £ with a period T-::Y%r, where [ represents the absolute
value of the rotation-vector. In the neighbourhood of P we have
now, instead of (20), the following formulae
Gpo == &y + 5 (Guomn)P ¥ @0y .« . . ., (22)
where the quantities (Gps,mn)p are periodical functions of the time,
In order now to determine the variation with the time of the moment
of momentum round the a,-axis we make again use of the impulse
equations (19), and get from these:
07> or,t .
"”a o Ch e + 3 (2, Gus — @y Guop) TP
Integrating again over a closed surface in the #,—a,—a,-space,
which encloses the body, we find with neglect of terms of the order
av?,av®,2v®, and higher orders:
e (Je iy as) == [ e —
— &y (Joopr) P)er To0 dS. . ... (29)
The left side represents the variation with the time of the moment
of momentum of the body round the =,-axis; the right side may
directly be interpreted as the wx,-component of the couple, which a
field of acceleration with potential -~ § ¢,, exerts on the body, and

.

is obviously closely connected with the integrals Jw/cw, 7,,dS,which

determine the ellipsoid of inertia of the body. In case of a homo-
geneous spherical body they are as is well known equal to zero. By
means of (23) and of the two analogous equations, which refer to
the moment round the «,-axis and the ax,-axis, the motion of the
body round its centre of gravity in the stationary field of gravita-
tion may thus be determined completely. It may be described as a
Poinsor-motion, which is more or less disturbed by the influence of
a fleld of acceleration with potential - 4 g,, (right side of (23)),
and on which is superposed a uniform rotation, the components of the
angular velocity of which are given by R R, and R,. The latier rotation
is quite independent of the properties of the body, in contrast to the
influence of the field of acceleration, which is intimately connected
with these properties, and which e.g. disappears, if we have to
do with a homogeneous spherical body.
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Until now we have neglected the influence on the field of gravi-
fation due to the body itself, but in the applications to special cases
such a negleet might not be justifiable. When e.g. in the next
§ we will discuss the praecession of the axis of the earth, we have
to do with a body, the “own” field of gravitation of which is much
stronger, e.g. at its surface, than the field of gravitation arising
from the sun (which appears as is well known in the forces, which
cause the tides). We might imagine that in such a case other forces
might influence the motion round the centre of gravity, which are
much stronger than the forces just considered, or which disturb
these forces essentially. A closer consideration shows, however, that
if the mass of the body is so small, that at large distances it can
only cause small changes in the original stationary field of gravifation,
the own fleld of gravitation will only cause a small change in the
motion of the body, which may be considered superposed on the
influences of the stationary field of gravitation considered above,
and which will be proportional to the mass of the body.

In order to show this let us first imagine the body placed in a
space, in which no other matter is present, and the line-element of
which approaches to ds* = dw,* — du,® — da,® — da,* at infinite
distance from the origin. Then it is easily seen, that in first
approximation the own field of gravitation will have no influence
al' all on the Poimnsor-motion of the body, because the “forces”
determined by the g,,’s, which the different parts of the rigid body
exert on each other in first approximation will fulfill the principle
of action and reaction, just as is the case in NuwroN’s theory of
gravitation. This may easily be proved by applying HiNsTriN's
approximative solution of the field equations, described on page 1058,
on the impulse energy equations (19), but for the sake of brevity
we will not enter into this proof.

Let us again imagine the body placed in a stationary field
of gravitation with its centre of gravity at the peint I°. Let us
suppose, that the original values of the g,,’s only undergo small
changes A, on account of the presence of the body, and let the
new values of the gu’s be denoted by 9w, 80 that

grp.v == Qe "}‘ A/w . [ e e . e e (24)

Then we obtain, by applying the field-equations (10), for the 4,,’s
a set of 10 partial linear inhomogeneous differential-equations of the
second order, of which we will assume that there exists a regular
solution. (If necessary boundary conditions must be given. If the
stationary field of gravitation is such that the line-elementzevery-
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where differs very little from ds* = dw,* — dx,* — du,® — da,* and

becomes equal to this expression at infinity, the A,,’s might simply
with a high degree of approximation be calculated by means of the
formulae (13) of Hinstmin). Inside the body and in its neighbourhood
this solution will be the same as in the absence of the stationary
field of gravitation, and just as before there will be no direct
influence of the own field of gravitation on the motion of the body.
Further it is easily seen, that the values of the L,,’s at large
distance from the body to a high degree of approximation will
depend only on the total mass of the body, because at such large
distances the influence of the body can be considered as that of a
singular point (or as a singular line in the space-time-extension)
characterised by the integrals of the quantities 7', over the volume
of the body. But, always neglecting small quantities of the order
v' and higher orders, the integrals involving the 7%’s may be
neglected, while those of the 717%,’s disappear, because the centre of
gravitation is at rest; so that we only have to do with the integral
of T, extended over the volume, that is with the total mass M of

00

the body. Thus we find that the body will exert small forces

propbrtional to M on the bodies, which give rise to the stationary
field of gravitation. The motion of these bodies will therefore undergo
a small perturbation, and as a consequence of this the g,,’s of the
stationary fleld of gravitation itself will again undergo a modification.
Instead of (24) we must therefore write ‘

!}’,w) == Guv '1- A/J,y -+— A'/j_y, e e e e, (25)

where the A',’s represent the modifications just mentioned. The
4',)s are terms, which will be small compared with the A,’s, and
which will be proportional fo M; in contrast fo the terms A, they
will, however, in general have an influence on the motion of a
body, which clearly will be proportional to M.

In order to discuss this influence we will confine ourselves, for
simplicity, to the case that the 4A',’s are independent of the time,

In this case the quantities %;iﬂ will in general not be equal to zero
in the point /% so that there must be found a point /’ in the
neighbourhood of P, where the centre of gravity of the body may
remain aft rest. Further in order to determine the components of
the rotation-vector we will have to introduce in the formulae (5)
instead of the quantities g the values of the quantities g,, 4 A',,
and of their derivatives in the point P’. In this way a small modi-
fication proporfional to M will be found in the values of the rotation-
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vector at the -point, where the body is situated, and in consequence
of this a corresponding modification in the perturbing influence,
which the field of gravitation exerts on the motion of the body. It
will also bLe clear that the influence which according to equation
(23) is exerted on the motion of the body, will undergo a modi-
fication proportional to M. '

The results of this § may be briefly stated as follows. If a rigid
body is situated in a stationary field of gravitation with its centre
of gravity at rest, the Poixsor-motion, which the body in the absence
of the field of gravitation would perform in the way well known
from classical mechanics, will be disturbed by a superposed uniform
rotation, which is independent of the properties of the body, and
at the same time by the influence of a conservative field of accel-
eration, an influence, which is closely connected with the properties
of the body (c.q. with the ellipsoid of inertia).” The “own” field of
gravitation of the body will — in first approximation — have the

“effect that all quantities, which characterise the position and the just

mentioned perturbations in the motion of the body, will undergo
small modifications proportional to the mass M of the body.
In practical applications all these influences may of course be of

" quite different orders of magnitude, and it may bappen that some

of them practically may be neglected, while others are so large,
that the approximation perhaps has to be carried on further than
indicated in this §.

§ 4. Influence of the field of gravitation of the sun on the
rotation of the earth.

" The line element of the field of gravitation, to which the sun,
which is supposed (o be at rest, gives rise, can be written in the
following form, which for the first time was given by SCHWARZSCHILD :

ds? = (1 — “) AT — 1 (49 4 sin® 9 dgp?), . (26)
, " 1 -2

”

where 1" represents the time, the unit of time being chosen such that

the wvelocity of light at large distance from the sun approaches (o

unity. », &, ¢ arve polar coordinates, which determine the position

of a point in space, and « is a constant, which is connected with

the mass My of the sun by the formulae #
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a=2 My . . . . . . . . (20

where » again denotes the constant of gravitation (see p. 1058).

Let us now introduce a new system of coordinates, which rotates
round the axis of the original system of coordinates with an angular
velocity w. The line element in the new coordinates may then be
calculated by means of the transformation

==+ ol
This gives
ds? = (1 LY w*) a1
;
— 207 sin® O w dp dT —

dr? .
OSSR 1" (d(9’ + 3%7),’ 1(} dlp’)
(21

] — =
P

(28)

The field of gravitation corresponding to this line element is
stationary. We will first try to find a point P, where a mass-point
can remain in equilibrinm. In such a point the first derivatives of

o . N .
grr=1-——1" sin® Jo* are equal to zero. This gives the following

r ‘ \ ~
conditions, which must be fultilled by the coordinates of P:

0 )
YT % opsin® 9 @ =0,
or »?

= — 29 sin & cos ¥ w? =0,

From this we see, that a mass-point can remain at rest at every
point P, which lies in the equatorial plane c.‘/':-é», and for which
the distance 4 from the sun fulfills the relation

2A @ =a, . . . ., . .. (29)

This relation gives us therefore the connection between the angular
velocity and the orbital radius of a planet, which moves in a circle
round the sun.

In order to discuss the rotation of such a planet round its
axis we shall begin by calculating the rotation-vector in P. In

order to find, by means of (5), its contravariant components we
want to know the value of the determinant G of the quantities

Gru=— g+ Jhodlo,
We find
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1 ; . s s (* sin* J w)?
Grp= ——y Gsg==r', Gy=1rsin® ¥ 4 — ez
. a 2 o .
1 — — 1 — - — P sn® 9 o?
r ' 7
¢
1
,
=ren |
[ .
I — = — rsin? ¢ o
r
Grs = Goy= Uiy, =0, @ X L ks L
rpy == (g == by T e T A A 1 7 (S e
’ ’ ’ ! . « 12/ —pisgin®J w*
; .
» sin® &

C9rr
Since the derivatives of gyp are equal to zero in the point P, the
expressions (5) reduces in that point to
L {0900 Ogok]

Riyp = § e {20 .
(R)p =14 VoG O.n bmzs

This gives

R)p= 1 e O (o st D) = 0

Npm= — § e e (72 80 Jw) == 0,
VgOOG al‘}'
() L 1 0 (0 sin® 9 o) (r sin’ 1‘*(9) ) (BY) 0
R)p e ) e o (P 9 9 ) == | e W p == 0.
: ’ Vg, & or Visintg/p A

Consequently the rotation-vector in /P is perpendicular to the

‘equatorial plane, and for its absolute value R we find

R==/ G RE Rl = R® ;/GE,;::;?.A:w, ... (30)

According to § 1 p. 1057 this result means, that for an observer
placed at the earth the sun rotates with an angular velocity o with
respect to a system of coordinates, in which no Coriolis-forces are
present, i.e. in which the Galileian law of inertia holds. On the
other hand, from the point of view of the same observer, the sun
rotates in the same sense with respect to the fixed stars with an
angular velocity equal to the producl of @ and the ratio of the
time-unit of an observer on the earth and an observer, which is at
rest at infinite distance from the sun, since, according to the formulae
in the beginning of this §, o represents the angular velocity of
the earth round the sun, if the last mentioned time unit is used’).

Y Originally the writer had simply put the angular velocity of the sun with
respect to the fixed stars equal to w, and as a consequence of this obtained
he result that EINSTEIN's theory of gravitation did notclaim a non-Newtonian
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From formulae (28) the ratio of the two time umts in question is

»

found to be ecual to'the value of'[/l — (f- P w®sin® 9 at the point

. . v bl » : n
where the earth is situated. Since at this point r = 4, #x—z-, the

Su
18,“0 Hl UeShOH lS 8 11& to 1 e e .
q q Y

It is therefore seen, that a system of coordinates in which the
law of inertia holds, at the point where the earth is situaied will
ity i/f » == g v* w (where v is the velo-
city of the earth in its circular orbit) with xespect to the fixed stars
in the same sense as that, in which the earth rotates round the sun.

From this result, and from the results in the former §, we may
therefore conclude that according to the gravitation theory of Kixsrein
there will be a contribution to the precession of the axis of the
earth in progressive sense, which is independent of the constitution
of the body of the earth, and which -amounts to an angle equal to
one and a half times the ratio of the velocity of the earth to the
velocity of light, i.e. to 0,019 are seconds anually. The existence of
a non-Newtonian precession of this kind has for the first time
been suggested in a paper by Professor Scmouren.!) In this paper
attention was drawn to the circumstance, that the field of gravita-
tion of the sun is such, that a small body, which was made fo

rotate with an angular veloci

move geodetically along a circle round the sun with radius 4, would -

no longer have the same position as before at its return to the same

point, but tlmt it would be turned by a small angle equal to f;

’

in the same sense -as that, in which the body had moved along the
circle, and it was pointed out, that this result suggested a possible
precession of the axis of the earth with respect to the fixed stars.

Now- it remains to investigate the influence, which what we have
called -the “own” field of gravitation of the earth, may exert on its
motlon According to what has been said in the former § (p.1067),
we may expect, that this influence will cause perturbations as well

the orbit of the earth as in its motion round the centre -of gra-

precessmn of the kind descrlbed I am indebted to Dr. FOKKER for the remark;:

that in - doing so I had overlooked the difference in the time unit, in which
the two -angular velocities;in question were expressed. Compare A. D. FOKKER,
These Proc. Vol. XXIIL N 5, p. 729 (1920). :

Y These Proc, Vol, XXI, p. 533 (1918).
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vity, and these perturbations will be small quantities: proportional
to the mass M, of the earth. From dlassical mechanics we know,
already in first approximation the influence on. the orbit: the sunis
not at rest, but describes round the centre of gravity O of sun and
earth  an orbit similar to that of the earth, in .sueh a way that its
distance to O is ‘always equal to the distance of the earth’ to )

M ‘
multiplied by Mf{— Assuming. that the orbit of the earth is again .a:

circle, we shall still - have, - that the product of the square of. the
angular velocity ® and the cube of the distance eaith-sun will have

a constant value, but this value will no lOHéel be .equal (o—z butt

Z
dinates rotating with angular velocity o, with respeect to which the
cenire of gravity of the -earth. is at rest, the field of gravitation will.
again be stationary in these rotating coordinates, (if 'we look apart.
from the motion:-of the sun and of the earth round their respective:
centres of gravity 1)) but the distance from the earth ‘to () corre~
sponding fo this angular velocity is nwo longer the same as when:

e [ ey e S e I we arain introduce “a srst:em’of ¢Ooor-
2(% M) : 2]114 : ‘5, S 3 N

the mass of the earth was negleued but smaller in -t 'he' ‘[)IO[)OHIOIL

oM ‘

(lw .:UIIA) rJlm% we have to do with a d1sp1&cement of 1110 pomt
z

where the centre of gravity of the emth may remain al rest, Whl(,h‘
is a consequence of the own field of gravitation of the earth; and‘:

which is proportional to the mass of the earth. According to the’
considerations on p. 1066 such a dlsl)lacement was to be expected

We must further consider the posmblhl) that the absoliite value
of the 1otat10n VbLtOl at the centre of ‘the earth is' no longer exactlyf
equa to o, but may, e. g “be written in the’ form ‘o (1 —Jr-/aﬁ)/)'
Wllexe k is a numerical favtox 0( the same order of magmtude as
ullnt.y.‘Her it must be remembered, that when speaking of thei
rotation-vector at the centre of the earth, we mean the quantlt),i'
VVhl(‘h au’mdmg to the scheme- indicated in the former § (p. 1066)"

)From someé 1ntele'st1ng conmdemnons by EINSFEIN, BerIlne1 Beuchte'
1916 p. 695, it follows, that the field of gravitation in question may only be-:
regarded as stationary to -a certain degree of approximation, because we must
expect that, analogous to what according. to the classical theory of electrons
would take place in a system of moving electrified partlcles, a system as that
considered here will radiate energy in space in the form of ‘socalled
gravitational waves. SRR : SRS P T
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may be calculated by means of formula (5), if we so to say neglect
the field of gravitation, which is directly due to the earth, or, more
exactly, if we replace the g¢,’s of the original stationary field of
gravitation by the quantities g,, -+ 4',,, where the A',,’s represent
the small terms proportional to M, which are discussed on p. 1066.
We shall now prove, that the just mentioned factor & is equal to

. o, . v a
zero, at any rate with neglect of small quantities of the order a

This may most easily be proved by using the results of classical

mechanics, which -— with neglect of small quantities of the relative
. (l . . » .
order of magnitude i will coincide with the results of EKinsTrIN'S

theory of gravitation. In fact, it is well known, that according fo
classical mechanics, the precession of the axis of rotation of the earth
will entirely be due to the inhomogeinity of the Newtonian field of
gravitation due to the sun at the place of the earth. In the mathematical
expression for this precession there will therefore, whether we take the
mass of the earth into account or not, not occur terms independent of
the constitution of the earth and of the kind discussed on p. 1070,
terms, which only appear, when the modifications in the phenomena
of gravitation required by Einstrin’s theory are taken into account.
Hence we have the result, mentioned above that, with neglect of
small quantities of the order %, that is of the same order as the

L

square of the velocity of the earth, the mentioned factor £ will
be zero.

Consequently we find, that the influence of the earth’s own field
of gravitation on the non-Newtonian contribution to the precession
of the rotation-axis of the earth, considered in the present §, will

at most be a small quantity of the order w >< >< ?g[«« It is fur-
My

thermore clear that, if the mass of the earth is not neglected, also

the contribution to the value of the precession, which is due to

the inhomogeinity of the sun’s field of gravitation at the place of

the earth will be altered by small quantities, which relative to the
. . M.

main term are of the order «—ﬁ, and that this alteration will be

My
the same as that calculated by/means of Newtonian mechanics.

In connection with  this result it might be of interest to draw
attention to the fact that we have made use of the circumstance,
that for the system wunder consideration, which consisted of bodies
moving under mutual gravitational influence, the results obtained
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on Newton’s theory will differ from those obtained on EINSTEIN'S
theory only by small quantities of the same order as the square of
the velocities of the bodies. This circumstance is remarkable on
account of the fact, that in Einstun’s theory all gravitational influ-
ence is propagated in space with the velocity of light, as it is
e.g. indicated by the formulae (13), which have the form of retarded
potentials. From this we might at first hand infer, that there might
be discrepancies between the resulis of Einsrrins and of Newron’s
theories of the same order of magnitude as the first power of the
velocity of the earth. A closer consideration, into which for the
sake of brevity we will not enter here, shows however, that for the
system under consideration small terms of this order will just com-
pensate each other, a circumstance which is completely analogous
to similar well-known phenomena with which we meet in the
theory of electrons, whose interaction may be calculated by means

of retarded potentials.

Conclusions of this paragraph. ,
It has been. found that, in confirmation of an idea fm the first

time put forward by Scmourew, the gravitation theory of WINSTEIN
leads to the result, that themehcall) there will exist a contribution
to the value of the precession of the rotation axis of the earth,
which did not appear on NewroN’s theory, and which is independ-
ent of the constitution of the body of the earth, and which amounts.
to a. progressive precession of 0,019 arc seconds annually. In the
ealculations, the influence of the mass of the earth was.neglected;
if it is taken into account, there may arise a modification in the
value of the'precession, which relative to the: main term in the
éxpressi()n for this precession is of the same order of magnitude
as the ratio of the mass of the earth to that of the sun. .In-the
considerations no regard has been paid to the confribution to the
precession arising from the influence of the moon. '






