Physiology. — “On the Influence of the Season on Laboratory
Animals”. By Prof. H. ZwAARDEMAKER.

(Coramuuicated at the meeting of January 29, 1921).

This technical subject appears to be of general application. In
previous publications’ the present writer and his co-workers have
superadded to J. Lors’s balancing of ions of the circulating fluids,

: . Ne | K . .
expressed in the equation - == constant, the balancing for-
Mg + Ca
K4 (U0, + Th _
mula — == constant. In the latter formula the radio-
Ca + Sr 4 Ba

physiological antagonism between K and (U ), - Th. need not be
taken into account!).

Moreover, in earlier discourses the replacement of potassium by
the other radio-active elements Rb, (U O),, U, Th, lo, Ra, Fim, has
been repeatedly discussed *). ‘

Now the present writer wishes to point out thai the dosages in
which these elements are to be administered must be much smaller
in summer than in winter. Of course, this difference is not brought
about by the radio-active elements as such, but by the fact that in
summer the organs are more sensitized by certain substances ?).

These substances can be washed out, so that in the transition
periods the functionating of a summer-organ duaring some hours’
perfusion with an artificial but nonetheless efficient circulating fluid,
suffices to transform a summer-organ into a winter-organ.

As regards sensitizing power, that of the washed-out substances
is analogous to that of adrenalin.

The organs operated upon were the hearts of frogs and of eels.

A detailed publication will appear elsewhere.

1 (. R. des Séances de la Soc. de Biologie 7 Juin 1919,

2) Journal of Physiology Vol. b3 p. 273 1920.

3) Proceedings of this Acad. 26 Sept. 1920.

Physics. — “On the principles of the theory of quanta. By PavL
S. Eestmn. (Communicated by Prof. P. EBRENFEST).

(Communicated at the meeting of January, 29, 1921.)

1. Introduction. The quantum-theory in the form, which in 1911
Praxck *) has given it, depends on the application of statistical mechaunics
in the so-called “phase-space” of the canonical position- and i.mpulsg-
coordinates ¢, ¢, .---Qrs Py Pa----PS and consists in dividing lbls
space into elementary regions of probability. The method obtains
a considerable simplification for the soluble mechanical systems,
since for them each impulse-coordinate p; == p;(¢i)- Instead of the
9f-dimensional phase-space (f being the number of degrees of freedong
of the system) it is then sufficient to consider the f “phasg-planes
(pi» qi), which, as the author showed a few years ago®), gives great
advantages in the treatment of these systems. In each of these planes
the successive conditions of the system are represented by a curve.
Tor the class of the “conditioned-periodic motions”, the only ones
for which so far quantum-conditions have been established, the
curves in question are as a rule closed. The only exception J:.S formed
by the ‘cyelic coordinates” which bear the character of a pla‘me
angle; a cyclic coordinate varies from O to 2o and the corresponding
impulse is constant; hence the representive curve becomes a segment
of a straight line parallel to the axis of abscissae. ) |

Pranck’s hypothesis, as extended by SomMurreLD and the author,
consists in the assumption of the existence among the states of the
system of certain preferential or “gtationary” motions, which are
represented by discrete curves in the diagram, the ares of the phase-
plane between two successive stationary curves being equal te the

universal constant /%
ffdpdg:::h. P § §

If the area of the narrowest of thése curves (or for cyclic eoor-
1) M. Pranck. Verhandelingen van het Solvay-congres. .

% P. §. EpsTEIN. Ann. d. Phys. 50, p. 489; 51, p. 168, 1916.

8 This case was discussed for the first time by P. Burenrest. Verh. d.
D. phys. Ges. 18, p. 451. 1913.

Proceedings Royal Acad. Amsterdam Vol. XXIII
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dinates the one nearest the axis of abscissae) is equal to A, that of
the (n -+ 1) st stationary orbit will be

fpdq:izo—i»nh T 3]

h, has therefore to be determined, in order that all the stationary
curves be fixed.

For this purpose Pranck?') lays down the principle, that the
narrowest orbit must coincide with the natural boundary of the
phase-plane ; i.e. if on any grounds, connected with the nature of
the system, the integral (1), which is essentially positive, cannot
fall below a definite value, the latter has to be taken as /,. In
most cases a lower limit of that kind does not exist and the integral
may be taken equal to zero, whence '

jpdq:::nh e e e e e, (2')

In his treatment of the relativistic Kepler-motion SOMMERFELD *)
found the case to be different; he there gave a lower limit p, = xze*/c *)
for the comstant azimuthal impulse ; this would give A, = 2z p,. It
would therefore, as pointed out by Pranck, be necessary to take (2)
as the fundamental relation, whereas experiment (the Balmer-series)
can only be reconciled with supposition (27). SommurrrrLD *) tried to
remove this contradietion by pointing out, that when the motion of
the nucleus is taken into account the numerical value of the limit-
ing impulse is smaller than xe’/c. In what follows we hope to prove
that the limitation of the phase-plane by the value p = p, is only
an apparent one, even if the motion of the nucleus us left out of
account, and that p can very well fall below this value: at the
same time the character of the motion is then essentially changed.

The admissibility of stationary orbits of azimuthal impulse p = 0
which on SomMerreLD’s theory seemed to be excluded is thereby
proved in principle. As long as we are dealing with attractive forces
(nucleus and electron) these orbits are hardly of practical importance,
as they must lead to a collision of electron and nucleus. But the
case changes, when the forces are repulsive (nucleus and a-particle);
the orbits are then hyperbolic. If the quantization of such orbits is
admitted, interesting physical. conclusions follow which appear to

) M. Pranck. Ann. d. Phys. 80, p. 385. 1916.

% A. SoMMERFELD. Ann. d. Phys. 81, p. 57. 1916.

%) Here e is the charge of an electron, ze that of the atomic nucleus and
¢ the velocity of light.

4 A. SOMMERFELD. Miinchener Ber., p. 137, 1916.
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give an explanation of certain recent experimental results of Rurngg-
rorD’s '). The question raised by the author?®) before as to the
‘quantization of non-periodic motions is therefore put once more
and discussed in a different manner (§ 4, 7).

§ 2. The apparent boundary of the phase-plane p = p,.
The relativistic Kepler-motion is given by the following equation
between the polar coordinates r, ¢ (cf. Le. p. 819).

1 B Vipt_p 8
i |:1<---£cos ~p—2—£°—~ ((pw»(po)’l R €]
r PP P .

with the abbreviations

VB A(p*p,)

B:":I:i:])o()(m+~g-) e 5 I
N €
|

o
A::oe(—a+2m) ;
c j

o represents the energy of the system, ¢ the velocity of light,
m the mass of the moving particle. The positive sign of B refers
to the case of attraction, the negative sign to repulsion; ¢, is the
azimuth of the radius vector with respect to the aphelion.

For p > p, with negative energies (4 < 0) and attracting forces
(B > 0) the orbit is an ellips with perihelion-motion. The procession
of the perihelion increases in speed, the smaller the difference p*~—p,*,
and in the limiting case p == p, the orbit converges on the nucleus
in a manner similar to an Archimedian spiral?):

1 B , 4
’;M:T_f‘};;((p—-—([)o) aat TR (5)

But nothing prevents us from now taking p < p,; the expression
(3) then assumes the form: '

LB 1 .

e |t e e o

The right-hand side of this expression for a very large positive
or negative value of ¢ becomes exponentially infinite independently
of the value of the excentricity & The two extremities of the orbit

thus approach logarithmic spirals. It further follows from (4) that

Y E. Ruraerrorp. Phil. Mag. 37, p. 537, 1919,

% P. 8. EpstEmN. Ann. d. Phys. 50, p. 815, 1916. This paper will be
quoted here as l.c.
%) Comp. A. SomMERFELD Ann. d. Physik. 51, p. 50 1916. @
‘ 77%
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. < > . . . .
for 4=0, é=1. Thus with negative energy » always remains finite,
> < ) )

the particle moves out from the centre and again returns to it

When the energy disappears or becomes positive the orbit divides
into two branches which run from the centre to infinity or vice
versa. In the limiting case p =0 r is only finite for = ¢, le.
the motion is rectilinear.

Thus it is seen, that in reality there is not a limit p = p, atall:
with small positive values of p—p, the orbit encircles the centre
many times, while » diminishes, but remains at a finite distance
from it which passes through a wminimum and then increases again.
For p == p, the curve runs into the centre as an Archimedian spiral.
The approach to the centre is éven more rapid when p <p,, the
spiral becoming logarithmic. It must not be supposed that the particle
in its motion on the spiral will permanently remain near the centre:
for although the spiral encircles the point an infinite number of
times, its total length is finite and the time to describe it from a
finite distance, as a simple calculation shows, is also finite and
practically very small. Therefore the collision will occur very soon.

§ 3. Quantization of the spiral orbits. In the last section we have
shown, that in the relativistic Kepler-motion, even with negative
energy, besides the ellips-like orbits other forms are possfble which
are of finite length and are only once described.

The question now arises, whether these motions can be submitted
to quantum-conditions and in what manner this would have to be
done. Our answer to the first question is implicitly contained in the
above discussion: the disappearance of the limiting value A, in
assumption (2) we have explained by the fact that orbits have to
be taken into account for which pis less:than the azimuthal quantum
p,. It follows that these orbits join on continuously to the others
and must be equivalent to them from the point of view of the
quantum theory. Since for p >> p, the stationary motions are given
by the relation p=nh/2r (n=1,2,....), it follows that for p < p,
the only possible stationary condition is p == 0. This conelusgion is
strengthened by the circumstance that when the movement of the
nucleus is taken into account (as proposed by SoMMERFKLD) similar
spiral-shaped orbits have to be considered in order to explain the
possibility of p=0: this can be easily shown to be the case.

We have therefore only to discuss the quantisation of the radial
impulse: its dependence on the radius vector » and on the constants
of the problem is given by the equation (l.c. p. 823).
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p,.::I/A+23;+ =)y - o ()

which s represented graphically in Fig. 1 for p<p, The curves
nearest the axis of ordinates correspond to large negative values of
the energy constant a. With increasing energy the curves bend out
more and more and for «==0 they divide into two branches which
approach asympfotically to the axis of abscissae. For e positive the
asymptotes are straight lines parallel to this axis.

For small values of » (7) reduces to

I ,
mzl/pﬁwp’;,. e (M)

i.e. at a distance from the axis of abscissae the curves are hyperbolie.
The area of such a curve islogarithmically infinite and the difference
between the area of two curves is also always infinite, unless we
apply artificial means such as the formation of the principal values
of the integral. Since according to the quantum theory the areas
of two successive stationary curves must differ by the finite quantity %,
it follows that in this case the stationary energy stages must be
infinitely dense, i.e. all values of the energy are “selected” in the
sense of the theory. Whereas the selected values of p form a series
of discrete numbers, those of « form a continuum. There are thus
an infinite number of motions which starting from the zero reach
as far as we like. All these orbits lead to a collision with the
nucleus and for this reason they are not very important physically.

\\\\~M

r’




1198

But for our purpose it is important that these orbits are possible
in principle irrespectively of how long an electron can move along it.

B,
L

Fig. 2.

§ 4. Quantization of the hyperbolic curves. The problem becomes
of greater importance physically, if repulsive forces are considered,
so that the orbits are hyperbolic. The question, how these orbits

have to be quantizized was discussed by me several years ago (Lc.).

The method adopted then, which was explicitly stated to be provi-
gional, 1 do mnot wish to adhere to in all its particulars. But the
fundamental idea of submitting such orbits to quantum-conditions
still appears to me a sound one. Quite a long time ago I have in
the Munich colloguinm developed certain views on this subject
which appear to me still to deserve attention. For simplicity we
shall here disregard the relativity correction (¢ ==o0): the radial
impulse according to (7) and (4) then assumes the form:

1 1
p,.::!/?ma--1«2xme’;‘~-p“;;. R ()

For @ <0 the motion is elliptical, for e ==0 parabolic, for « >0
hyperbolic. The aspect of the curves in the phase-plane (p,r) is
seen in Fig. 2. The part of the plane, where a <0 is bounded by
the heavily drawn curve « = 0, both ends of which approach the
axis of abscissae asymptotically. Inside this region the curves are
elliptic and it is easy (o fulfil the condition that the area between
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two successive curves be equal to 4. In the region outside the curve
a==0 each one of the curves possesses two asymptotes parallel to
the axis of abscissae. The strip between two curves whose energy-
counstants differ by a finite amount has an infinite area. Just as in
the case of the spiral orbits we may conclude that the energy stages
of the stationary motions must be infinitely dense. [Lvery positive
value of the energy-constant is therefore a “selected” value in the
sense of the quantum theory. That hyperbolic orbits with all values
of the energy are present, was already enunciated by Bomr on the
ground of experimental results (by WaceNer and others). From ouf
point of view this does not prove that the hyperbolic motion is
beyond the controll of the quantum theory; on the contrary this
fact is a natural inference of a consistent application of this theory.

This view naturally implies that the azimuthal impulse must also
be subjected to quantic conditions. What these are cannot immedi-
ately be deduced from {he case of the elliptic motion. Two possibi-

lities seem to present themselves: we must extend the integralj pdep

either over the range of change of the coordinate ¢, i.e. over the
angle enclosed between the asymptotes, or, as in the case of the
elliptic motion, from O to 2x. The former assumption would according
to 27 give

p I e 3 . N N . - . . . @
2
the latter
nh
e (1

In § 7 we shall meet with an argument in favour of the second
assumption, but a decision between the two can ultimately only be
brought by experiment. ‘

§ 5. Collision between an a-particle and an atomic nucleus. We
shall now investigate the case of repulsive forces in detail and
thereby take into account the motion of the nucleus, neglecting the
relativistic correction which is of no importance for our purpose.
In the usual manner by means of the principle of the centre of
mass we eliminate the co-ordinates of the one body and so reduce
the problem to that of a system of two degrees of freedom. We
shall choose as the variables the relative polar co-ordinates of the
two particles, i.e. their distance and the angle ¢ under which the
w-particle appears for an observer moving with the atomie nungleus,



1200

and shall call p the impulse corresponding canonically to @, m
and M the masses, ¢, £ the charges of the a-particle and nucleus
respectively, and finally v the initial velocity of the ea-particle, the
atom being originally supposed at rest. The equation to the orbit
then agsumes the simple form
E

1 .
— Mi? [ecos (p——¢o)— 11y .« . - . (10)
r p
where .
11 1 l/ T pey \
e Jro— ; frasnn 1 —f — . . . .[ 1
wm -+ M & | (e E) (11)

Hence the angle ¢ between the axis and the asymptote of the
relative hyperbolic orbit of the a-particle is given by

1
€08 ¢ = —
&
or
s T ( )
(A V]

We can now change to the absolute motion by considering, that
the centre of gravity of the two bodies must move uniformly ;
originally this point moves in the direction of the « particle with
the velocity ™/ a4m and this motion has therefore fo be superposed
on the relative motion. A simple calculation gives the following
result): after a sufficient time both bodies have assumed a uniform
rectilinear motion. The direction of the final motion of the a-particle
encloses an angle @ with the initial direction (through this angle
the a-particle is deflected by the collision)

I
tg O == - kA — ... (1)
(m—M) + (M 4 m) tg* @

the velocity V" obtaining the value

Vo= 712_::7” Vm® 4 M? — 2 m M cos 2*(;. oL (14

The angle between the direction in which the atom is propelled

and the original direction of the e-particle is exactly equal to the
angle ¢ of equation (12). The velocity of the atom is

“ ——r
= Qs cosy . . . e e .. (18
u UM s (

According to the view set forth in § 4 certain special motions of

Y Comp. C. DarwiN. Phil. Mag. 27, p. 499, 1914,
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the system are to be allowed, namely those for which the azimuthal
impulse p has a value satisfying the conditions (9, 6). In these the
letter n represents a positive whole number, but n=0 which would
be excluded according to SomMERFELD must also be admitted on the
point of view explained in § 2. In the latter case the assumptions
(9a) and (9b) both give p ==0; hence

— u

po=—0 ; w,==%—wv; . . . . . . (16

2 =24 (16)
in other words: the nuclel or “recoilrays” as RurHurrorp has called
them, have for n==0 the direction of the primary e-rays.

§ 6. Recoil-rays of hydrogen. Whereas the values (16) which
obtain. for n == 0, hold generally for all kinds of atoms, the results
are less general for n==1, 2 etc.; we shall only discuss the special
case of the collision with a hydrogen atom. On the assumption (9a)-
we have according to (12)

e hy

py=gomni - (1D
on assumption (90) .
— hv

P e m " (18)

In these expressions we may substitute s = 6.55 X 10—%7 erg. sec.
B =4.7710-19 e.s. units e==2F; for v we shall take the veloecity
of the arays of Ra C, for which Rurmerrorp gives the value
1.92.109 em/,. we then obtain .

ptgp=—188% or tgp=440n . . . . (19)

The first of these equations gives

n=1, ¢, =84 u, = 0,10 ,, R, = 0,001 R,,
n=9, ¢, == 86°50", u,==0,055u, R,=0,0002R,.

The velocities w, u, are computed from (15), the corresponding
ranges R, R, from the empirical equation R: R, = u’: u’.

Similarly the second hypothesis gives

n=1, ¢, ="T7° w, = 0,22, R, ==0,011R,,
n=2,  ¢,=83%30, wu,=0,11, R, =10001R,

On the view that the parfticles can only move on the special
orbits allowed by the quantum theory, we obtain the following
result: a portion of the recoil rays are emitted in the direction of
the primary rays (n=0); besides there are only particles which
start at considerable angles to that direction, the smallest angle in

@
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the one case (96) being 77° in the second (9a)even 84°. The corres-
ponding ranges are exceedingly muech smaller than for the H-atoms
emitted in the direction of the primary ea-particles.

These results agree with the result of RurHERFORD’S experiments ),
who found all the //-atoms to be propelled in the direction of the
primary rays. The range of this secondary radiation was 28 cms.,
which gives I, = 0.028 cm. or R, = 0.3} em. according as we use
(9a) or (90). These values are too small for experimental verification,
and were bound to escape detection.

§ 7. Transition to the stationary orbits. Up to the present time
the quantum theory has only been applied to systems whose members
permanently move round each other at a finite distance, i.e.systems
which in the Lapraci-sense are stable. My attempt of 1916 (l.c.) to
apply the theory to the single passage of a particle through the
sphere of action of a nucleus has not met with mueh sympathy
among physicists. 1t therefore seems necessary to submit the difference
between the two cases to a careful conceptual analysis.

The hypothesis of the theory as established by Borr consists of
two parts: 1. There are certain preferential or stationary orbits in
which the system moves without radiation. 2. If the initial state is
not a stationary one, the system passes inlo a stationary state with
the emission of energy in the form of radiation. It is quite possible,
that the real process is only formally represented by this division,
but it has been confirmed in several cases and it forms for the
present the only basis on which we can erect our further structures.

As regards the existence of stationary orbits, there does not seem
to be any reason, why the quantum conditions should be solely
applicable to finite orbits. Our views on this point have been ex-
pounded in §§ 3 and 4; but we shall try to strengthen them from
a fresh point of view. The difference between motions which are
finite and those which reach to infinity is expressed analytically by
the fact, that for the former each cartesian co-ordinate may be
represented as a Fourier-series according to angular variables,
whereas this is impossible for the latter. Bonr has established a
relation between the terms of this Fourier-series and the transitions
which on the quantum-theory are possible from one stationary orbit
to another.

In the case of the relativistic Kepler-motion the Cartesian co-
ordinates are @ = cos ¢, y = r s ¢. For shortness putting

) E. RUTHERFORD, l.c.
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Vp'—p,'
() = . L L L (20)
it follows from (3) that
P e LU y:-;::pg“f'p”’ ne (21)
B 1-—gcos ' B 1-—scosp

For a motion of elliptic type (s<(1) 2 and y are periodic in
¢ and ¥ with a period 2x; » and @ are therefore angular coordi-
nates of the problem and a Fourirr-expansion is possible?!). Passing
to the case ¢ >>1 the angle 9 becomes limited and varies between

1 —
the limits == arc cos (-> == s ap. Only between these limits xand y
&

have the meaning of the functions given in (21); hence they may
now be represented by a Fourier-integral

2p f i f coe 2
& e - €08 8 8
B ¥ 1-—& cos 2

The case is different for ¢: this angle also varies between two

o= pap
Vp'—p,’
a physical periodicity: on changing ¢ by the amount 2m the same
point of space is reached, so that 2 and y remain periodic with
respect to . We may continue the dependence on ¢ in the ranges

=== ; but in contrast with W it possesses

exireme values

o< p<m and — < p< — @, where no motion takes place, just
as we like. It would be simplest to assume the continuance of the
law expressed by cos ¢ and s @ over the whole range from 0 to
27, in which case we should get

+¢
€08 8 A

o ® :P ]00 [[cos (s + @) + cos (s p—q) ] de T — 7%

—8 608 A
—~9
It seems to me that in this result lies a confirmation of the
reasoning of § 4. The coefficient of ¥ is the number s which may
assume any value, whereas the coefficient of ¢ isthe whole number
1. Extending Bomr’s principles to this case we might conclude that
the radial quantum which is subordinated to w underlies no limi-
tations, whereas the azimuthal quantic number can only change by

1) These coordinates are not linear functions of the time. If we wish them to
satify the latter condition, they have to be defined differently. But the conclusions

to be drawn remain valid with this change in the definition.
%
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1 each, time. In this way it is made probable, that the azimuthal
impulse possesses discrete special values and the analogy with the
case of the elliptic motion imparts special probability to the hypo--
thesis (90).

Although the existence of stationary orbits is thus rendered pro
bable, it does not follow that a particle which to begin with is not
moving in a stationary orbit will have time and opportunity to pass
into- one. The giving off of energy requires time which is always
available in the case of stable motion (in Larracw’s sense). But for
hyperbolic motion the case is different: the energy is not limited
by any conditions, but the rotational impulse tends towards definite
values which can only be reached by the process of radiation of
electromagnetic moment of momentum. For this radiation the time
available is only the one motion past the nucleus, and it is thus
quite possible that the impulse lost by radiation is not sufficient and
that the particle returns to infinity without having reached a stationary
condition. On the basis of MaxwerLL’s theory this would even be the
usual case. Calculation gives for the radiated impulse (for p >> p,)

s

2
(fijrl_?ii) bytg P01,
¢ pu PV 3 ne® %e’
that is an amount of the order 10-3' erg sec., whereas the steps
of the constant p are about 10-27 erg sec., or about 1000 times
larger. Under these circumstances no fraction of the particles worth
mentioning could attain stationary orbits.

On the other hand we have the experimental fact, mentioned in
the previous section, that the H-atoms are preferably emitted in the
direction of the incident a-particles and it seems difficult to interpret
this otherwise than on the quantum-theory. One of the possible ex-
planations of Rurnerrorp’s results seems therefore to be that the
radiation is really stronger than would follow from MaxweLL’s theory,
sufficiently so to carry a considerable portion of the systems into
the stationary condition. When we consider that even in the radiation
of the hydrogen spectrum, where the distances from the nucleus
are greater than 2 > 10—% cms, a considerable deviation exists from
Maxwrnl’s theory, the supposition in Ruruerrorp’s case of a very
much larger deviation does not appear to us too hazardous. For
the distance from the nucleus is here of the order 3.5 X 10—13 and
thus the acceleration about 1.5 X} 10° times larger than in the
emission of the hydrogen lines. Moreover Einstrin') has postulated
a complete breach with MaxwrLl’s theory for elementary processes

Y A. EinsteN. Kleiner-Festschrift, Ziirich 1918.
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of this kind and we further know from the existence of a limit
of the Rontgen-radiation on the side of the small wavelengths, that
they cannot take place in accordance with the theory. According
to RournERPORD’S experiments the relative number of the emitted
recoil-rays is strongly dependent on the rapidity or range £ of the
primary a-particles, as shown by the following table :

R=1,0 5,3 4,5 3,7 3,0 ete.

N =100 71 51 25 0.

This might be interpreted as indicating that the radiation of
rotational impulse decreases rapidly with the speed v, so that with
falling v there are less and less particles which are able to reach
the stationary orbit. If this view is correct, we would have in
Rurnsrrorp’s table a new way along which to penetrate into the
riddle of the quantum theory.

Side by side with particles which have completed the transition
into the stationary orbit, others are to be expected, even with the
highest velocities, which owing to a higher initial impulse have uot
succeeded in doing so. The directed radiation must therefore be
surrounded with a scattered radiation. According to a kind personal
communication of sir Ernwst Rurmerrorp’s something of that kind
is found experimentally: a new experimental method has shown
that the recoil-rays are in reality less homogeneous than appeared
originally and that side by side with the rapid H-particles observed
at first, there are others of smaller speed®).

As suggested above it is probable that the large deviations from
MaxwrLL's theory, as required for a sufficiently strong radiation,
are limited to the range of very high accelerations. This makes it
doubtfal, whether a similar approach to the stationary orbit n ==1
is to be expected as to the orbit n == 0; for the range near it
correspondends to a much greater distance from the nuclens.

On a different occasion we hope to discuss the question, how
the stationary orbits are distributed for nuclei other than of hydrogen.
We shall only mention here, that for heavy atoms the equations
(17) and (18) owing to the high value of the nucleus charge &
make the steps of the discrete angular distribution so small, that
the result cannot differ appreciably from a distribution in accordance
with classical statistics.

% Cf. E. RuTHERFORD, Phil. Mag. 41 (6), p. 307, 1921.





