Wathematics. -- "Properties of Congruences of Rays". By H. J. van Vren. (Communicated by Prof. J. Cardtnaari).
(Communicated at the meeting of February 26, 1921).
\$1. The rays of the space Σ_{3} can be represented by a quadratic hypersurface O_{4}^{2} in a five dimensional point-space Σ_{6}. By the aid of this representation I have derived the properties of a few complexes of rays (Nieuw Archief voor Wiskunde R 2, dl. XI, p. 232; id. dl. XII, p. 19; Handel. $17{ }^{\text {e }}$ Nederl. Natuur- en Geneesk. Congres 1919, p. 171). By the method followed there also the characteristic numbers for an arbitrary complex of rays can be determined. In what follows I shall make use of the representation mentioned to derive some of the principal properties of congruences of rays.
§2. In the first place I consider an arbitrary congruence of the field-degree p and the sheaf-degree q. This congruence is represented in Σ_{5} by a surface V_{2} of O_{4}^{2}, which has p points in common with any α-plane (representation of a field of rays) and q points with any β-plane (representation of a sheaf of rays).
§3. Let P be an arbitrary point of V_{2}. A hyperplane through P cuts V_{2} in a curve that has one tangent in P; the tangents in P to V_{3} form, therefore, a plane pencil. 2 of the straight lines through P on O^{2} (images of plane pencils of Σ_{8}) lie in a linear space R_{3} through P; for a ray of Σ_{8} lies in 2 plane pencils of a bilinear congruence to which it belongs. The straight lines of $\mathrm{O}^{2}{ }_{4}$ through P form accordingly a threedimensional quadratic cone. The plane pencil and the cone lie in the hyperplane touching O^{2} at P and have therefore two straight lines in common. Consequently:

Any ray of a congruence is intersected by 2 consecutive rays, or
On any ray of the congruence there lie 2 focal points and through any ray of the congruence there pass 2 focal planes.

The identity of the surface of the focal points with that of the focal planes (the focal surface) can easily be demonstrated now in $\Sigma_{\text {: }}$ (See e.g. Sturm, Liniengeometrie II).
\$4. The hyperplane R_{4} touching O^{2} at a point P, cuts V_{9} in a curve V_{1}. This I project out of P on a linear space R_{3} in R_{4}.

Of the α - (β-) planes through P two cut a straight line of R_{3}; they intersect R_{3} therefore in the α - and b-lines of a quadratic surface O^{2}. On O^{2} lies the projection k of the curve $V_{1} ; k$ has the a - and b-lines as p - and q-fold secants. The projections of k out of a point O of U^{2} on a plane τ of R^{3} gives a curve k^{\prime}, which has a p-fold and a q-fold point in the passages A_{1} and B_{1} of the α - and b-lines through O. The straight line $A_{1} B_{1}$ has only the points A_{1} and B_{1} in common with k^{\prime}, hence k^{\prime} is of the order $p+q$. If r is the number of double points of k, hence also of k^{\prime}, the class of k^{\prime} is:

$$
(p+q)(p+q-1)-p(p-1)-q(q-1)-2 r=2(p q-r)
$$ so that out of A there can be drawn

$$
2(p q-r)-2 q=2 q(p-1)-2 r
$$

and out of B

$$
2(p q-r)-2 p=2 p(q-1)-2 r
$$

tangents to k^{\prime}, touching this curve elsewhere.
These numbers are at the same time the numbers of b - and a-lines touching k and also the numbers of the β - and the α-planes througb P that have two coinciding points in common with V_{3}

Now r is the number of bisecants of V_{4} through P^{3} or the axisdegree (rank) of the congruence in consideration, hence:

The focal surface of a congruence of the field-degree p, the sheafdegree q and the axis-degree r is of the order $2 p(q-1)-2 r$ and of the class $2 q(p-1)-2 r$.
§5. I shall now consider the complete congruence of intersection of two complexes.
If these are of the order m and n, they have as images the multiplicities which O_{4}^{*} has in common with two hypersurfaces V_{4}^{m} and V_{4}^{n}. These two hypersurfaces cut each other in a multiplicity $V_{\mathrm{a}}^{m n}$. The bisecants of $V_{\mathrm{a}}^{m n}$ passing through a point P and cutting a plane x lie in the linear space $R_{s} \equiv(P, x)$; they are also the bisecants through P of a curve in R_{8} which is the complete intersection of a surface of the $m^{\text {th }}$ order and a surface of the $n^{\text {th }}$ order. The number of these bisecants is $\frac{1}{2} m n(m-1)(n-1)$, hence the bisecants of $V_{\mathrm{a}}{ }^{m n}$ through P form a cone of 3 dimensions and of the order $\frac{1}{2} m n(m-1)(n-1)$. By choosing P on $O^{2}{ }_{4}$ it appears that through this point there pass $m n(m-1)(n-1)$ bisecants of $V_{\mathrm{s}}{ }^{m n}$ that lie on O_{4}^{2}, accordingly:
The congruence of intersection of a complex of the $m^{\text {th }}$ order and a complex of the $n^{\text {th }}$ order has the axis-degree $m n(m-n)(n-1)$.
6. In order to find the order and the class of the focal surface of the congruence of intersection of two complexes, I pass two α-planes α_{1} and α_{2} through a point P of O_{4}^{2}. The β-plane through a ray a_{1} of the plane pencil P, α_{1} cuts α_{2} in a straight line a_{2}. A plane γ through a_{1} which cuts t_{2} in a straight line α^{1}, and has two coinciding points in common with $V_{\mathrm{a}}{ }^{m n}$, touches the curve which the space $R_{3} \equiv\left(a_{1} \alpha_{2}\right)$ cuts out of $V_{\mathrm{s}^{m n}}^{m}$; as this curve is the curve of intersection of a surface of the $m^{\text {th }}$ order and a surface of the $n^{\text {th }}$ order, it has the rank $m n(m+n--2)$; accordingly this is the number of the planes through a_{1} intersecting α_{2} in a straight line $a_{3}{ }^{1}$ and at the same time tonching $V_{3}{ }^{m n}$. Between the rays a_{2} and $a_{3}{ }^{1}$ belonging to the same ray a_{1}, there exists a $\lceil m n(m+n-2)$, $m n(m+n-2)$ 」 correspondence, hence there pass through $P 2 m n(m+$ $n-2) \beta$-planes (and as many (coplanes) touching $V_{3}{ }^{m n}$. or:
The focal surface of the congruence of intersection of a complex of the $m^{\text {th }}$ and a complex of the $n^{\text {th }}$ order, has the order and the class $2 m n(m+n-2)$.

Of course this result can also be derived from $\S 4$ and $\$ 5$.

Anatomy. - "Ombredanne's Theory of the "lames vasculaires" and the anatomy of the canalis cruralis". By G. C. Heringa. (Communicated by Prof. J. Borke).
(Communicated at the meeting of December 18, 1920.)
When adopting the reasonable and general view that the muscular fasciae are to be considered as compressions of loose connective tissue, originated under mechanic influences exerted by the surrounding individual muscles, a conception has been propounded, which brings before our mind the "muscle-compartments" in a clear and comprehensible way, and which is also of great practical value. Still, it would seem that the scientific value of this view may justly be contested. It would seem also that in order to obtain a clear notion of the matter these formations of connective tissue themselves should receive more of our attention than the spaces invested by the fasciae and filled up with muscles.

I would call upon the reader to consider a fascia as a thin layer of undifferentiated connective tissue, bounded on either side by a lamina of fibrillary connective tissue. Further we conceive a bloodvessel running in the middle layer and we imagine, in accordance with the publica opinio, that the two plane faces have, as it were, been aftached through a polishing process to this interstitium of connective tissue by the mechanic action of the surrounding muscles, or by other tissues. This hypothesis approaches real facts, for a similar position we observe of the vasa plantaria med. und lat. in the septa intermuscularia pedis; a similar location we observe of the vena jugularis ext. in the fascia superficialis colli, of the aa. meningeae and the sinus durae matris in the hard cerebral membrane, of the vena saphena magna in the fascia lata, of the vasa epigastrica in the fascia transversalis ${ }^{2}$), and finally in a similar way numerous nerves - suffice it to mention only the n. cutaneus femoris lateralis, the branches of the n. femoralis, of the nervi superficialis colli are running in the fasciae, prior to their ultimate intrusion into the skin.

The instances here enumerated, could easily be increased. They lend support to the roughly phrased conception that, generally

[^0]Proceedings Royal Acad. Amsterdam. Vol. XXIII.

[^0]: ${ }^{1}$) Tessur et Jacob, Traité d'Anat. topogr., p. 45.

