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‘Mathematics. — “On analytic functions defined by certain LamBRRT
series.” By J. C. KLuyver.

(Communicated at the meeting of March 26, 1921).

The definition of the analytic function was based by WrinrsTrASS
on his theory of power-series. From a given analytic expression we
deduce an element of the analytic function, that is a power-series
converging within a determinate circle, and by the continuation of
this element an analytic function is defined existing within the
region that is covered by the set of the circles of convergence. One
and the same analytic expression in distinct regions may define
several functions. So, for instance, TANNERY's series
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defined in a separate region, can be continued over the whole plane,
but manifestly they remain everywhere essentially distinct.

In fact, from the general theory it follows that the concept of
an analytic function is not co-extensive with the concept of function-
ality as expressed by an analytic expression and it is precisely this
fundamental idea that, as BoreL repeatedly pointed out, sometimes
leads to conclusions which are not always in every respect satisfactory *).

Borern supposes that a given analytic expression I (z) defines a
function @, (2) inside a certain closed curve C and moreover a second
funetion ¢, (¢) in the vegion outside C, the singularities of these
functions being everywhere-dense on the curve, so that C for both
functions constitutes a socalled natural limit. He then shows that
the series of polynomials representing @, (¢2) under certain conditions
remains convergent, absolutely and uniformly, when the variable z

along certain radii crosses the boundary C. Otherwise said, it occurs

) Legons sur les Fonctions monogénes uniformes d'une variable complexe.
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thal the value of an analytic expression, coinciding at first with
that of the function ¢, (z), can be made to change continuously into
the value of the function ¢,(z) and this possibility more or less
seems to be incompatible with the theory, accovding to which the
functions ¢, (2) and ¢, (2) are wholly unconnected.

In the present paper I propose to treat two simple examples in
which the transformation of ,(2) into a series of polynomials is-
not necessary, and that, as I believe, yet give an insight into the
tendency of Borni’s remarks. '

Let the given analytic expression be the series of LAMBERT
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where the exponent s may supposed to be real.

Clearly, whatever be the value of §, we can expand F(z) into
an integral series, and as for |2 <1 we have v |
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I"(z) defines an analytic funetion ¢\(2) inside the circle C of radius
unity. However, if s > 1, we may write k
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and from F(z) we derive also an integral series in v—1-, that is a
z

second e'xnal_yftic function ¢,(2) existing in the region outside C.
The functions ¢ (2) and @,{z) represented in distinet regions by
the same analytic expression satisfy the relation o
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but tl‘1e main question is, whether either of them is, or is not an
analytic continuation of the other. The decision can be based on

& ftrangformation of F(z). Corresponding to the rational numbers

of the interval (0,1) we can arrange the so-called rational
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y q ‘the 'denomm,ator of the rational fraction that corresponds
t0 @, it will be seen that we have (
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This series of fractions represents ¢, (2), if |z| <1, s >0, on the
other hand it is equal to ¢.,(2) as soon as 2] >1 and at the same
time s > 1. We now can apply a theorem due to Goursat?®) and
conclude that the points @, without exception are singular points
of the functions ¢,(z) and ¢,(e). Hence, as these points form a set
dense on C, the continuation of either of the functions across the
cirele is excluded. *)

By application of HuLpr’s summalion-formula we can calculate
the values taken by the functions ¢,(2) and ¢,(z), when 2z along
the radius approaches one of the singular points. In this way I find
in the first place, when z has a positive value @ <1, the following
asymplotic expression for p.(2)
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holding for all non-integer values of s.
The result is less simple, when 2z tends along the radius to the
] oni 2. . ‘
point ¢ ¢ = ef. Putting z == geB, 1 get for ¢ <1 and supposing
again ¢ to be a non-integer ®)

3 Bulletin des Sciences Math., t. X1, p. 109. Sur les fonctions & espaces lacunaires.
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%) This results also from one of the propositions concerning the series X b, T
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enunciated in a previous communication (Verslagen en Mededeelingen. XXVIIL
p. 269) according to which the conlinuation of the function across the - circle is
impossible, as soon as b, >0 and Lim b, =0.
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5) Tor integer values of s the resull is obtained by making s tend to the
integer limit. So for instance, if s tends to zero, we will find
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The former of these formulae was obtained by SCHLOMILCH, the latter I deduced
~in a previous paper: On LamsEnrt's series.
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In this formula C(p,«) stands for the function that, if p > 1
and 0 < e <1, is represented by the series : Sw ~l

‘ ne=0 (a»}n)/“

It may be noticed that in both equations the absolute value of
.the error commitied by stopping at any particular stage in the series
is always less than a finite multiple of that of the last written ten'n;

In particular we may deduce, supposing s > 1, .
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Hence, as z appr : i i iy
‘e, 4s z approaches along the radius a rational pointe 7 it is

only the real part of the value of the function that increases inde-
finitely and at nts ¢ 1 whi
litely anc at all points ¢ 7 which correspond to the same deno-
nn;ator q the real parts are ultimately equal.
he fgn(:tmn ¢,(2) behaves in quite similar manner because of
the relation
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by means of which ¢, (2), as soon as z along the radius tends to

omi?

e ¢ from the outside of the circle, is expressed in ¢, (;)

The rational points on C thus having been recognizedg as singula-
rities of @, (2) and ¢, (2), we now must turn our attention ‘to othgr
points on the curve, and as such I will consider th.e points e2#,
where & is a root of an irreducible algebraic equatlon.of df.sgree
u>1 with integer coefficients. Evidently these points egf'-fé’ which I
will call the algebraic points of order p on C, determine a new

enumerable set, everywhere-dense on the circle.
Let 2z = ¢ ¢2#, then it is readily seen that for all values of ¢
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Now in the latter case n& is an irrational number increasing with

the index 7, hence there exists an integer &, such that |né— k< %1.
But, as cos 2u(n§—%k) = cos Qun& >0, we must have |ng—k| <+

and sin 2u |n—*%| being the sine of an acute angle is greater than

2
the angle itself multiplied by -

Therefore, if cos 2anf >0, we may write

|sin 27 n & | = sin 20 [ n & —F|
and ‘ '
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Now according to LiouviLLe's known theorem about algebraic

numbers, we have
] k

where M is a finite number independent of n and only depending
on the coefficients of the equation of which § is 2 root.

In this way we conclude that
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Therefore the series of LamBrrT I' (2) converges absolutely on the
radius of the point ¢, as soon as s > pu, the convergence being
then independent of ¢ and uniform on any segment of the radius.
Supposing z to move continuously along that radius, the value of
the analytic expression If(z) which for s<{1 is equal to that of
the function ¢, (¢) changes also continuously into the value of the
function ¢, (2) as soon as ¢ becomes greater than unity. Besides, if
s is taken sufficiently above the number u, for instance, if we take
$ > 2u-—1, the series obtained by differentiating term-by-term the
series K (z) with regard to ¢ in exactly the same way will give the
value of EZ(Z;(Z) or that of d%;—) according to the value of g. In this
order of thought we may ascribe to the functions ¢, (2) and ¢, (2)
a common definite value at ‘the point e2*%  though of course that |
point is not an ordinary point. Making ¢, (¢2%¥) and ¢, (e2%) both

equal to the finite limit Lim K (pe?™¥), we obtain
pr=¥ 1

9 . . 1= cot .7m§
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and the series s cot an§
o a=1 W »
Hence, we have established a certain connexion between the
functions - ¢, (2) and @, (2) which according to WErIERsTRASS’S theory
we must regard as essential distinet and in no wise connected. In
fact, we have shown that in this very special case in which the
classical continuation by means of power-series is impossible, a new
kind of continuation, as complete as could be desired, is furnished
by the series of LiamserT along the radii of an enumerable infinite set.
The question arises, whether cases exist in which the continuation
by means of a series of Lamperr is effected along the radii of a
set having the power ¢ of the continuum. The answer is in the
affirmative, we only want to choose a LaAMBERT series the coefficients
of which are decreasing more rapidly. For instance I will consider
the series

. will ceyrtainly be convergent, if only § >,

G(z) = ngml— . —f—
ne1 nl 1—2n
Again in this new series the coefficients are positive and zero is
their common limit, hence according to the proposition mentioned
in the footnote on p. 1228, the rational points on the circle C are
singularities of the analytic functions W, (2) and ¥, (2) defined by
( (z) inside and outside C. , @
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"Again some insight in the behaviour of these functions in the
neighbourhood of the singularities is obtained by the application of
FuLer’s summation-formula. Giving in the first place z the positive

value x <1, I find
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and the absolute value of the error committed by stopping at any
particular stage in the series always will be less than that of the
last writien term.
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Putting then z==ge¢ 7 = g’ and making o tend to unity, we
will find
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The function p, (2} behaves in the neighbourhood of a singular
point in a similar manner because of the relation
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Now, let & be a transcendental number of the interval (0,1) the
expansion of which in a continued fraction gives
11 1 1
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where all integers ap are less than a given finite number L
Evidently these numbers & and therefore also the points 7%
form a set of power ¢, the set of points ¢?i¢ however being not
dense on the circle. By the known properties of continued fractions
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we have, & being an arbitrary integer, ﬁﬁ the n-th convergent
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and as N, is manifestly always less than (/4-1), we may write
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Determining then the integer £ by the condition 1§ — k|< 4 and
putting z = ge %%, we get by the same reasoning as before

z]n'-—| >1 , if cos 2 ang <0,
1 >4n) § . > o if cos 2an§ >0
(1t -
and consequently
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Hence the series Gt (2) will converge absolutely on the radius of
the point ¢ and the convergence will be uniform on’lmny segment
of that radius.

Thus then, we have shown that in this case the functions ¥, (2)
and W, (2) are connected at all points of an aggregate of power ¢
and that along the radii of these points the series of Liamsrrr G (2)
procures a faultless continuation, whereas the analytic coniinuation
necessarily fails *).

The elementary examples | discussed show as well as the examples
of Borer that sometimes we are led to regard as a single function
a group of distinct analytic functions existing in separate regions.
And from the fact that in these cases a non-analytic continuation
can be effectuated, the question arises whether a certain extension
should not be given to the concept of functionality. Boren made a
step in this direction by developing the theory of a class of non-
analytic, monogenic functions existing in a so-called domain of
CavcHY “) ‘

1 1
1} As we have ol <»-- for all values of s, if only % is sufficiently large, we

are certain that the series G{g) also furnishes the continuation along. the radii of
algebraic points of order whatever.

%) Lecons sur les fonctions monogénes uniformes d’une variable complexe.
Chap. V.





