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system, the origin of which is consequently situated in the centre
of gravity of the system of points, while the total moment of
momentum continuously vanishes (§ 2).

my @'y = X, myy, =Y

S )
Zme'=0 Zmy'=0, . . . . . (10a)

Sm@y —ydy=0 . . . . . . (100

First we pass to a second system of axes, with its origin perma-

nently in point 1 of the system of points and which is continuously
parallel to the principal system, for this second system holds:

xu:&«wgl 2‘:/‘,::3*“1“1 Loe e e (H)
m, m, my,  m,
EmEm(mg;wyt:o)~ (Emem_;/~~-—EmyE7n.;o)mO . (12)

(10b), becomes (12) because according to (10a) &', =m = —2'mz,
Y =2m = — = my.

If we take a third system of axes with its origin also in point 1
and its axis of X permanently through point 2, and indicate the
velocity of rotation of the third system of axes with respect to the
second by one w, the equations (11) and (12) pass after transform-
ation into the final equations (9a) and (b). Now w can be con-
sidered as an auxiliary quantity, that can be substituted from (96)
into (9a).

For the transformations of § 3 the first system of axes can also
be chosen with its origin in the centre of gravity of the system of
points, the calculations are quite analogous, however more complicated.

1
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Physics. — “Space-time symmetry. 1. General Considerations”. By
N. H. Korkmewer. Communication N°. 7a from the Laboratory
of Physics and Physical Chemistry of the Veterinary College
at Utrecht. (Communicated on behalf of Prof. W. H. Krnsou,
Director of the Laboratory, by Prof. H. KamerrLinew ONNES).

(Communicated at the meeting of December 18,' 1920).

§ 1. Introduction. In the literature of later years some propositions
are found for changes in the original atom-model of Rurnurrornp-Bonr.
These propositions are founded on different considerations. So Lnwis?)
and Lanemuir ?) were led by considerations on the chemical structure.
SommERFELD *) was brought to his combinations of ellipses by investi-
gations of the cause of the fact that the defect of charge of the
nucleus is not a whole number for the IL-series. Born, Lanpg and
MapzrLune *) again studied the absolute dimensions of the elementary
cells of ecrystals, the transformations of energy, and especially the
compressibility. By these considerations they were led (partly in
cooperation) to the invention and nearer inspection of cubical
models analogous to those of Luwis and LaNGMUIR.

Evidently Born, LanpE and MaprrLune especially felt the necessity
of a change in the considerations on symmetry that were valid until
now, because they considered moving systems. On the same ground
I felt necessitated to introduce some new symmetry-elements, in
which time also plays a role®). It now seemed desirable to consider
the space-time-symmetry more systematically than could be done in
Communication N°. 4. In this paper the way to attack this problem
will be indicated. '

§ 2. Restriction to a definite kind of operations. A symmetry
operation will further on be denoted by A, a complex symmeiry
1) G. N. Lewis, Journ. of the Amer. Chem. Soc. 38 (19i6) p. 762.
2) 1. Lanemuir, Journ. of the Amer. Chem. Soc. 41 (1919) p. 868.
8) A. Sommervrip, Physik. Z3. 19 (1918) p. 297.
4 M. Born and A. Lawng, Verh. d. D. Phys. Ges. 20 (1918) p. 210.
M. Born, Verh. d. D. Phys. Ges. 20 (1918) p. 230.
A. Lanpg, Sitz.-Ber. d. Berl. Akad. 1919 p. 101.
Verh. d. D. Phys. Ges. 21 (1919) p. 2, 644, 653.
ZS. f. Phys. 2 (1920) p. 88.
E. Maperong and A. Lawo#, 725, f. Phys. 2 (1920) p. 230.
5 N. H. Kowkmegr, Comm. NC 4, These Proceedings 23 (1920) p. ¥20.
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operation ') by AA. Scuornruirs®) and his predecessors only consider
such A’s that an application of them to a point 4 produces a point
B, the coordinates of which are found from those of A by alinear
orthogonal substitution. By these operations the distance between
two points therefore does not change.

It seems natural to introduce for space-time symmetry-operations
too the restriction that an application of them to two four-dimensio-
nal wyz-ict-points (or rather z'a’a’z‘-points) 4 and B does not change
the four-dimensional distance 4 B.

In the first place we thus limit our considerations to those D’
the algebraic representation of which is a linear orthogonal four
dimensional substitution and to corresponding symmetry-elements.

Secondly, (as was also done by Scrorsrrirs and his predecessors
in an analogous sense) we exclude those A’s, the repeated applica-
tion of which to a point A gives an infinite number of points at
the same time within a finite space or within a finite time-interval
at the same place.

Thirdly it will prove desirable to introduce still one restriction,
which has not its analogue in the three-dimensional problem.
From the algebraic substitution mentioned we see, that .'vl,x':’, 2 of
the new point B depend on z* of the original point 4. Thus, applica-
tion of the A’s in question to 4 gives a point B that is displaced
in the course of time to an infinite distance even when A remains
on the spot. This fact is an objection against the consideration of
such a A; an objection however that may be avoided by considering
only the final result of subsequent applications of more than one A
of the kind mentioned to a point A, of a AL therefore.

So we limit ourselves to the consideration of such A’s, the appli-
cation of which to a point 4 gives a point B with a world-line
" parallel with the @ s.axis, when the world-line of 4 has that direction.

In the next §¢ we shall see to which kind of A’s we are led by
this restriction.

§ 3. Geometrical meaning and analytical indication of one of the
kinds of operations considered. In a R, with coordinates 2%, 2% a’
and 2* =icf, R, be an arbitrary linear space of three dimensions.
We shall call B, a symmetry-space’) (symbol v) when the
corresponding operation (symbol X, name space-time-reflection) changes

1) In the same sense as f.i. a rotatory-reflection is a AA.

%) A. Scmoenruzs. Krystallsysteme und Krystallstructur, Leipzig 1891.

% This name has already been used by P. H. Scuoure, Verh. Kon. Ak. Amst
Ferste Sectie 11 7. (1894) p. 16.
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a point A(z}, 21, 2% 2% into a point B(z,', & % 2,*) that is
geometrically to be found in the following way.

Draw through A a perpendicular to r and measure the length of
that perpendicular on the other side of its point of intersection
with r. The end-point of this stretch is the point B.

When R is given by the length /, of the perpendicular from the
origin of £, on r and its direction cosines (pll, @2, ¢t and ¢,*, where

e et e =1L . . oL (D)
then we find by substitution of one of the four indices 1,2,3 and 4
for n
&, ==yt + 2 2% (llw(pll ‘7711““(/)1ﬂ wli”“(pl‘ “"1‘3"’M(p14 ‘7"14) LN (2)
» When in a three-dimensional a'z*a’-system we consider a plane
V" through the origin, the direction cosines of its normal being
in the ratio ¢,', @, and ¢,*, then the points 4’ and 5’, corres-
ponding in this system to 4 and B in the four-dimensional system,
are lying on the same perpendicularto V, z,7~—a " being proportional
to ¢," for the values n=1, 2, 3.

When the distances from A4’ and B’ to V' are denoted by —-y,

with m ==1 and 2 resp., then we have

H 3
Ym T |/1~—~(p%2 N )
and therefore

1= + 2 l/l (}012 (l . l/l~-f701 y1“”6p1 '14)

4

ot =t 4 20,0 (— V1= y—p, @) @

Thus the  distance from B’ to V' and the new value of ict are
evidently found from the values of these quantities for the point-
incident 4 by drawing in a two-dimensional yz'-system a line in
such a way, that the perpendicular to it from the origin has a
length /, and forms with the &' axis an angle with a cosine = ¢,*
and by reflecting the point 4" with the coordinates x,* and v, in that
line. The coordinates of the point 5" thus found give the new value
of the time and the new distance to V in the three-dimensional figure.

§ 4. Each space-time-symmetry-operation of the considered kind
may be regarded as a complex symmetry-operation of space-time-
reflections.

The A’s treated by Scmornruies and predecessors, reflection in

a plane, inversion about a centre, translation, rotation through

2x 27 2m 271'
TS and —-, 2-, 3-, 4- and 6-al screws, 2-, 3-, 4- and 6-al

rotatm-y-reﬂectiom and gliding reflection may all be regarded as



1422

complex reflections in one or more planes?). This is a consequence
of the linear-orthogonal character of the substitution by which ouly
congruent and symmetrical figures are possible.

For the same reason we must also assume that each imaginable
space-time-A of the considered kind may be considered as a complex
reflection in one or more symmetry-spaces. This shows at once the
way in which each space-time-symmetry-element can be found.

§ 5. General formula for the coordinates of the point B, found
Ffrom the point A by application of an arbitrary complex space-time-
symmetry-operation of the above considered kind.

fe==m

) == &, - 2 kE V(le—opit @y 1" ) —aqi’ @ ¢ @,*) ot +
! —t

l=m

+ 1m§+l(ﬁl" (G0 4 =GPy k) + Z(Gp)(pag) (g0 B) He )11 (B)

where (p, ¢) has been written for
— 2 (yp! ‘I)q1 + (/’p2 Pg* -+ ‘Ppa' (an + 'ﬁp4 Pq')s
while we must take > p > ¢ >k etc.

§ 6. We can derive all space-time-symmetry-operations by simply
combmmg all space S J7727126t72/ operations that have been mentioned
without the lLimiting to 2-. 3-, 4 or 6-al awes with time-symmetry-
operations. The linear orthogonal substitution, expressed by formula
(5) will have a scheme of coefficients:

1%y 18y 105 1@ %5,

2@ 99p 393 2@y 4%

201 35 3%y 30y 3%

4a’1 40’2 4a3 4a4 4a5

while these coefficients are connected by the following relations:

10y 185, 12“1“*“3“1 N R 4“2'—"0

a0 0, e, = 1)

N N A 2»»-|—4a,’: '(6) Ay 10y 40y 4@ 50y 58y 8y 2y =0
T A N \ NO) +2a”a4{ $0y 30, 4,0, 2, =0 L)
a0 et e et =1 1@y 1 Gy - 48, 40y -F 10, 0, - 0y (g == 0|

3 21(1» + azza +3 23a4+4a24a4—_‘0

10y 1Oy 58 50 30 30, 0y 40 = 0

1) (Note added during translation). See fi. C. Viona N. Jahrb. f. Miner., Geol.
und Pal. Beil. Bd. 10 p. 495 1896. G. Wurrr Zs f. Kryst. u. Miner. 27 p. 5566
1896.
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Because of the third restriction introduced in § 2 we must suppose
W, ,a, and ,a, to equal zero. Substituting this in (6) and (7) we find :

o2=1 ,a,=0 ,0,=0 =0 . . . . . (8
while (6) and (7) are then reduced to:
a12y+mﬂalﬂ_f_3a12:1\ allz“:lz nE a’1aﬁ“"oi
18" et e =11 . (9)and a; a4, + 44 205 1 5@y 40y =20 . (10)
145" ‘saaz’{"asxl 1218-‘{27128»{!233“““"0

Equations (8) say, that the transformed time depends on the time
only, and that the transformed space-coordinates are dependent of
the original ones only. Equations (9) and k(lO) show, that this last
transformation is linear orthogonal. By this we have proved the
proposition stated at the beginning of this §. We need therefore
only apply equation (5) for values of ¢,' =0 viz. for a pure space-
transformation and of ¢,* =1 viz. for a pure time-transformation.

§ 7. Meaning of the cases @.,' =0 and ¢p*=1. A X with
¢@m" = 0 is nothing else than a reflection. (Symbol &, symbol of the
symmetry-plane ). ‘

[t might seem interesting to derive all imaginable space-L’s by
investigating which combinations of &’s when considered as complex
A, are compatible with the restrictions 1 and 2 of § 2'). A point
of consideration could be whether the order of application of the
reflections in the AA should be chosen arbitrarily or not. In the
first case®), we find, that each AA may be regarded as a combination
of those already used by Scmounruirs and predecessors, but we might
say just as well, that the A’s used by ScHOBNFLIES are but combi-
nations of s and that there exist combinations, which were not
treated by him. Proceeding in the indicated way, we find- some
A’s that are aequivalent with point- and space-groups of SCHOENFLIES.
After this we might investigate which space-groups can be formed
from those A’s.

As however the result of such an - investigation has already been
obtained by SOHOENE‘LIES we shall do better to combine each of his

1) (Note added during translation). C. Viora and G. Wuwpr partly executed
such a plan (l.c.).

%) This seems natural by analogy with A's that were known before and is also
demanded by the principle that around each particle the configuration of the other
particles is the same. An exception to this last demand is formed by the definition
of the sense of rotalion and translation resp. dilation for a screw resp. time-
rotation (see further on). %

99
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1424

A’s without restrietion to 2-, 3-, 4- or 6-al axes with the possible
time-A’s '). Which are these? '

One single N with ¢* =1 will be called a “retroduction”?),
the corresponding symmetry-element a ‘“symmetry-moment”. In a
moving system of particles there exists a W (symbol for a.r.'etro-
duction), when each point P, where at the moment ¢ a particle A
is present, is also occupied by a particle 5 at the moment 2m-—¢,
where m is the gymbol for a symmetry-moment and so the valueu
of its ¢ too. When then at the moment /- A¢ 4 is at ¢, there
must also be present a particle at @ at the moment 2m—i—Af
Because. of the second restriction of § 2 we conclude that this last
particle must be particle B. The velocities of 4 and B at P are
therefore equal and opposite. At the moment m there would thus
be at the same place two particles with opposite velocities. This
would be in conflict with the impermeability of matter (which we
shall assume to hold for the electrons too), unless the two particles
are identical *). Let us therefore suppose this to be the case. Then
each particle -must have come to rest at the moment m and hence
describe its path in the opposite direction.

When we have however a AA of a M and a € we must change
the above “at the same place” into ‘““at the image of the place in 8”.
Then the difficnlty of ftwo particles with different velocities being
at the same moment (at the moment m) at the same place, would
be avoided, unless at the moment m the particles were lying in the 8.
In this case the velocity at that moment would not necessarily be
0, when only the two particles were supposed to be identical.
Having passed the 8 the particle then describes the symmetrical
~path and when moreover the 8 was intersected perpendicularly by
the path there would not be any discontinuity in the motion. {n
Comm. n°. 4 l.c. the symmetry-element of such a A (symbol MS)
has been called ‘“‘reversal-symmetry-plane”. Further on we shall call
it reversal-plane and the operation reversal-reflexion.

Other AZL’s of time- and space-A’s may be investigated in the
indicated way.

") After this we have still to form groups with the A’s used by Scmousruies
and with the newly introduced ones. v '

%) This name (from retro = back and duco==1 lead) and the name dilat{on
(from  differo =1 postpone) introduced later on have been chosen in consultation
with Prof. Damsré of Utrecht.

%) We exclude therefore cases as imaginéd by Lawof lLe., in which after a
collision two electrons suddenly get each others velocities in direction and mag-
nitude. Lanok himself designs these cases as improbable.
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§ 8. The LL’s of two and more W’s. Regarding time-A’s as special
cases of M’s, we see from the end of § 4, that we can find all
kinds of time-&’s by only studying AA’s of Ms.

The applicability of the complex symmefry-operation of M, and

M, (symbol B, name “dilation”, symbol and name of the symmetry-

element p and “period”) to a system of particles, means that when
at a moment ¢ a particle 4 is at the point P there are also particles
B resp. C at P at the moments 2m,—2m, 4~ ¢ and 2m-—2m, ¢
respectively. In this case P is every time occupied by a particle
after a lapse of time, 2(m,—m,). When the number of particles at
our disposition is not infinite, the same particle 4 must necessarily
at the end arrive at P again. Moreover, each particle, when arriving
at P must have the same velocity and the same direction of motion,
which will become evident, when we consider the state at moments
2(m,—m,) 4 ¢ - At All particles are thus distributed in unequal
numbers over differently shaped closed paths in which they circulate
with phase-differences, that are the same for the different paths and
also for the different particles in one and the same path. The times
of revolution in two paths are proportional to the numbers of the
circulating particles.

o1
A AA of a P and a rotation through - about a n-al symme-
n

try-axis was already used in Comm. n’ 4 lc. We shall call its
symuwmetry-element n-al time-axig, the sy mmetry-operation time-rota-
tion ') (symbol PA). '
The complex operation of M,, M, and M, (symbol O, name reversal-
dilation) is a symmetry-operation of a system of particles, when it
fulfills this condition: When at the moment ¢ the point [ is occupied
by a particle A4, we shall find there particles B, (' etc. at the
moments :
—=2m, -2, -2 g, 2m,— 2m, 4-9m —¢ and 2m, 4-2m, —9m,— ¢,

In the first place we have therefore three symmetry moments.

At those moments all particles must therefore return in their paths.

As this must happen at more than one moment each particle oseil-
lates in a different path of arbitrary form, while the moments of
returning are the same for all paths. It is evident that in each
path one particle only can circulate now. Secondly there evidently
exists a period. To find it the following considerations will be of
use: When to a moment ¢ we apply the order MMM, and to the

) The distinction we must .make here between the two possible combinations
of sense of rotation and sense of dilation is analogous. to that which SCHOENELIES
and his predecessors made between left- and right-handed screws.

@

92*
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result of this operation the ordev M, M, M,, the influences of M,
neutralize each other, so that in fact we have only applied the
double dilation M, MM, M, *). Besides the intervals of time 4 (n1,-—m,)
between the passages of particles by P, we find the intervals

second vrestriction of § 2, unless the quantities m,—m, and m;—m,
have a greatest common measure. This is the time of oscillation.
We can easily prove that then all demands of § 2 are satistied.

By the investigation of AA’s of £)’s and space-A’s we shall find
i.a. that the paths may be closed in the same way as has been
found for P, but that then half of the paths (chosen in a definite
way) is described in the opposite direction.

§ 9. There are no other time L’s than M, P and . For all
LL’s of even numbers of M’s the same considerations hold as the
following for four 9’s. When at a moment ¢ the particle 4 is at
P, and when we have to do with a AL of four M’'s we must find at
P also particles B, C'ete. at the moments ==2m, 4=2m o=2m =2m |-,
‘where the sign -} has to be chosen for half of the ==-signs, the
sign — for the other half. This gives therefore more than one dila-
tion, which together yield however (comp. the considerations on )
only a dilation equal to their greatest common measure, which case
is already comprised in .

For all AA’s of uneven numbers of 3W's we can follow the
reasoning on the case of 9. Thus this neither gives something new.

Combinations of time-A’s yield nothing that has not yet been treated.

§ 10. Symbols for the new symmetry-operations and symmetry
elements. For shortness sake we shall give names and symbols to
the ¢.-t.-A’s and symmetry-elements. As a preliminary system we
propose the following:

With a small change now and then we retain the names and
symbols ot ScHomnrrirs. When now a A of ScrHorNrLizs is combined
with a retroduction the name of the first A might be changed by
joining to it the prefix reversal. The same may be done with the
names of the symmetry-elements. Before the symbols of A’s and
symmetry-elements we add 9% and m resp. When the change relates
to a dilation the prefix is ‘“time”, for the symbols this becomes

) In the here indicated way the treatment of Aa’s of %i's (and therefore of
M’s and &’s) is much simplified. By applying one of the a's thus found to the
symmetry-elements of another one we can see whether this brings us into conflict
with the restrictions of § 2. A a4 found in this way evidently forms a group

of A's.
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P and p. When an operation is combined with a reversal-dilation
we- add the prefix reversal-time and for the symbols £ and q.
Sometimes the name obtained in this way is still somewhat shortened.
In the following table we find these provisionally fixed names
together with the symbols.

Without time p With .

Identity i | Retroduction (symm.-moment). . .M
Inversion (centre). .3 i Reversal-inversion . . . . , , , MY
Reflection (symmetry-plane). . G % Reversal-reflection (reversal-plane) . M&
Rotation (n-al axis) . AU Reversal-rotation. . ., . . ., . .
Rotatory-reflection (n-al reflect.. axis) U Reversal-rotatory reflection . ., . . U
Translation (place-period). . (53 t Reversal-translation . , ., . . ., . 9MT
Gliding-reflection (gliding plane) . . € Reversal-gliding-reflection . . ., ., Mm%
Screw (n-al screw axis) . Reversal screw . . . . . . . .ME
with P With £

Dilation (period) . . . . . ., ., . § P Reversal-dilation . . ., ., ., . .| | O
Time-inversion. . . . . . . . | P pi Reversal-time-inversion N
Time-reflection (time-plane) . P | p8 Reversal-time-reflection . . . . . OIS
Time-rotation . ., . . ., , . . P pa | Reversal-time.rotation . . . ., . ., O
Time-rotatory-reflection. . . , . | P Reversal-time-rotatory-reflection . . £
Time-translation . . . . . . . | 9[)% pt Reversal-time-translation . . . . . N
Time-gliding-reflection . . PE Reversal-time-gliding-reflection. . . 9%
Time-screw . . . . . . ., . P Reversal-time screw. . . . , . . D%

S M. The way in which s.-t.-symmetry-operations may be combined
wmio groups. When the point groups of SCHOENFLIES are completed
by those, which contain other than 2-, 3-, 4- and 6-al rotations ete.
we can form from each of the thus found groups, s.-t.-groups by
combining each of the non-aequivalent operations of a group with
either no time-operation or with a ™M or with a M, or with a 9. Bach
of the thus found groups must then still be examined to find out
whether the time-operations added are perhaps in conflict with each
other. Several of the groups obtained will also be found to be the same.

The same might be done with the translation-groups ), which are
formed by ScuomnkLins as a means to change point-groups into
space-groups. After this, all obtained s.-t.-point-groups are multiplied
by each of the s.-L.-translation-groups found. Examples of such groups
will be given in a following paper (N°. 75).

) In the case of translation-groups we have no longer a ground for the assump-
tion that a ¥ and a © cause the paths to be closed. The only thing we should
have won by omilling this hypothesis however would be the aliowance of a conti-
nuous translatory motion of the whole system of particles. It would not be desirable
to include this motion in our considerations.
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