Mathematics. — "Involutorial Correspondences (2,2) of the First Class". By Prof. Jan de Vries.

(Communicated at the meeting of April 30, 1921).

§ 1. An involutorial correspondence (2,2) of the *first class* is characterized by the property that an arbitrary straight line contains one pair of associated points P, P^* . If we associate to each other the straight lines joining a point P to the two homologous points P_1 and P_2 , also the field of rays is arranged in an involutorial (2,2). At the same time there arises a null system, if we associate to P the straight lines PP_1 and PP_2 ; each straight line has in this case two null points, each point has two null rays.

If the point P describes the straight line r, its null rays envelop a curve (r) of the fourth class that has r as a double tangent. The six points V in which $(r)_4$ is cut by r, are evidently branch points of the (2,2). The branch curve (V) of the (2,2) is therefore a curve of the order six.

We shall now suppose that the locus of the coincidences $P \equiv P^*$ is a curve of the order n. If P describes the line r, the points P_1 , P_2 associated to P_1 , describe a curve ρ , which has the n coincidences on r and the pair of associated points on r, P_1 , P_2 , in common with r.

Through this correspondence r is therefore transformed into a curve ϱ^{n+2} of the order (n+2).

Let us now consider the curves ϱ_1^{n+2} and ϱ_2^{n+2} corresponding to the straight lines r_1 and r_2 . Besides the two points associated to $S \equiv r_1 r_2$ they have the points P in common for which P_1 lies on r_1 and P_2 on r_2 ; the other common points are singular, i.e. each of them is associated to ∞^1 pairs P_1 , P_2 .

The curves $(r_1)_4$ and $(r_2)_4$ corresponding to the straight lines r_1 and r_2 , have in the first place the two null rays of the point S in common. The line r_2 cuts $\hat{\varrho}_1^{n+2}$ in (n+2) points P_2 , which are associated to as many points P_1 on r_1 and accordingly define (n+2) common tangents. The other (12-n) common tangents are evidently singular straight lines; each of them bears ∞^1 pairs of points P_1 ?*.

Let us also consider the locus of the pairs of points P, P^* which are collinear with a point O. Let O_1 and O_2 be the points conjugated to O through (2,2); the curve in consideration ω is touched at O

by $O\dot{O}_1$, and OO_2 ; it is therefore a *nodal* curve ω^4 . Through O there pass six of its tangents; according to a theorem found by Bertini the six points of contact, coincidences of the (2,2), lie on a conic 1). The bearers of the *coincidences* of the (2,2) envelop consequently a curve of the *sixth class*.

§ 2. We arrive in the following way at a (2,2) for which n=2. Let the conic a^2 and the pencil of conics (b^2) be given. To the point P we associate the points P_1 and P_2 in which the conic b^2 through P is cut by the polar line p of P relative to a^2 . On a straight line r, (b^2) defines an involution; as a rule this has one pair of points in common with the involution on r of the pairs of points that are harmonically separated by a^2 . This (2,2) belongs accordingly to the first class.

The points of n^2 are evidently the coincidences of this (2,2). The straight line r is transformed into a nodal ϱ^4 , which has the pole R of r as double point. For when P moves along r, its polar line ρ revolves round R and bears the two points P_1, P_2 associated to P.

The base points B_k (k = 1, 2, 3, 4) of (b^2) are singular points. On the polar line b_k of B_k (b^2) defines ∞^1 pairs of points P_1 , P_2 which are associated to B_k . If P gets into the intersection of b_k with r, one of the points associated to P coincides with B_k ; hence ϱ^4 passes through the four points B_k .

The conic b^s through R cuts r in two points R_1 , R_2 , which are associated to R; hence ϱ^4 has a double point in R.

The six tangents of ϱ^4 meeting in R bear double points $P_1 \equiv P_2$; from this it follows again that the *branch curve* is a $(V)^6$. It has double points in the base points of (b^2) ; for the involution of the pairs of points on b_k associated to B_k contains two double points for which B_k is a branch point.

With a $b^2(V)^6$ has four points in common besides the double points B_k ; they are the branch points of the correspondence (2,2) on b^2 . The curve $(V)^6$ touches a^2 in the six coincidences of the involution I^4 in which (b^2) cuts a^2 .

§ 3. Any point A of a^2 is a coincidence of the (2,2), but it is also associated to the point A' which the tangent a at A has further in

¹⁾ Relative to this conic ω^2 as an invariant curve, ω^4 is transformed into itself by a central quadratic involution (inversion) with centre O of which the other two fundamental points lie on the polar line of O relative to ω^2 ; this straight line contains the points of contact O_1 , O_2 of O. (See J. de Vries, La quartique nodale, Archives Teyler, série II, tome IX, § 12).

common with the b^2 through A. Of the locus a of the points A' a b^2 contains four points besides the base points B; they are defined by the points of intersection of b^2 with a^2 . On each of the two tangents a through B_k , A' coincides with B_k ; hence a has double points in B_k .

Consequently the curve in question is an a^b . As it corresponds point for point to a^a and is therefore rational, it must have six more double points. There are therefore six points A' each corresponding to two points A; the b^a through such a point A' cuts a^a in the two points A which it has in common with the polar line of A'.

The straight line b_k is transformed by (2,2) into a β^4 with triple point β_k . When P moves along b_k the polar line p continues to pass through β_k , so that always one of the points P_1 , P_2 associated to P, coincides with β_k . If also the second point is to coincide with β_k , p must touch the b^2 through P at β_k . Now any straight line p through β_k touches one b^2 ; if we associate the points Q_1 , Q_2 which this b^2 defines on b_k , to the pole P of p, there arises a correspondence (1,2) between P and Q. Hence Q coincides three times with P; but then the curve β_k into which b_k is transformed, has a threefold point in B_k and is therefore a rational β^4 . 1)

§ 4. We shall now try to find the locus of the double points $P_1 \equiv P_2$. It has in the first place threefold points in B_k . On each b^2 there lie besides the base points four more points of the curve in question, namely the double points of the (2,2) in which the points of b are arranged. Consequently it is a d^8 . As it corresponds point for point to the branch curve $(V)^6$ it is just as the latter of the genus six; hence it must have three more double points. These we find in the double points of the three pairs of lines belonging to b^2 .

The bearers of the double point $P_1 \equiv P_2$ envelop a curve of the sixth class (§ 1) of the same genus as the branch curve, hence with four double tangents; these we find in the straight lines b_k .

For the points where b_k is touched by two of the conics b^2 , correspond as double points to the branch point B_k .

¹⁾ On b_k there lie 2 points that are associated in the (2,2) to each other and at the same time to B_k , and which therefore together with that point form a polar triangle of a^2 . The b^2 containing them is consequently circumscribed to ∞^1 polar triangles so that on it the (2,2) has been transformed into a *cubic involution* In this involution *each* base point B is associated to the points of intersection of b^2 with the polar line of B.

If we define the pencil (b^2) by two conics, each circumscribed to a polar triangle of a^2 , each b^2 bears a cubic involution and the whole correspondence (2,2) is transformed into a system of ∞ involutorial triplets.

§ 5. Each straight line $B_k B_l$ is evidently singular, for it bears ∞^1 pairs of points that are harmonically separated by a^2 .

A straight line would also be singular if the involution in which it is cut by (b^2) , coincided with the involution of the pairs of points that are harmonically separated by a^2 . And this will be the case when this straight line is touched in its two points of intersection with a^2 by conics b^2 .

Now the straight lines t that touch b^2 at its points of intersection with a^2 , envelop a curve of the class six. For the points of contact of the tangents out of any point to the conics b^2 lie on a cubic and this meets a^2 in six points, each of which defines a straight line t. This envelope is rational; it has therefore $ten\ double\ tangents$; to them belong evidently the six straight lines $B_k\ B_l$.

Hence there are, besides these, four more singular straight lines, s_k . The straight line s_k is transformed through (2,2) into the system of s_k and a nodal cubic that has its double point in the pole of s_k . The straight line $B_k B_l$ is transformed into the system of $B_k B_l$, $B_m B_n$, b_k and b_l .

§ 6. The points P_1 and P_2 associated to P in the (2,2), correspond to each other in another (2,2), which may be called the derivative of the former. This $(2,2)^*$ is likewise of the *first class*; for on a straight line p there lies only the pair in which p cuts the conic b^2 passing through the pole P of p.

Also this $(2,2)^*$ has singular points in B_k ; for if P describes the polar line b_k , P_1 remains in B_1 and P_2 describes the above mentioned rational curve β_k^4 .

The curves ϱ_1^4 and ϱ_2^4 corresponding in the (2,2) to the straight lines r_1 and r_2 , have $(\S 1)$ 10 points P in common for which P_1 lies on r_1 , P_2 on r_2 . Hence P_2 describes a curve ϱ^{10} when P_1 describes the straight line r_1 . This ϱ^{10} has quadruple points in B_k , for r_1 cuts the curve β_k^4 in four points P_1 .

Each branch point of the (2,2) is at the same time a branch point of the $(2,2)^*$; accordingly they have also the same branch curve $(V)^s$. The coincidences of the $(2,2)^*$ are the double points of the (2,2); the curve of coincidence is therefore the above mentioned d^s , which passes three times through B_k , twice through the double points of the pairs of lines. We find the points of intersection of r with ϱ^{10} in the eight points which r has in common with d^s and in the pair of points P_1 , P_2 on r.

The four singular straight lines (§ 1) of the $(2,2)^*$ are found in the straight lines b_k .

§ 7. In the following way we arrive at a (2,2) for which n=3. Let a^3 be a cubic, p^2 the polar conic, p the polar straight line of P. To P we associate the two points of intersection F_1 and P_2 of p^2 with p. The correspondence (2,2) arising in this way, is involutorial, because P and P_1 may be considered as threefold elements in a cubic involution where the points of intersection of PP_1 with a^3 form a group p^3 , or as the double points of the cyclic projectivity defined by this group. The class of this (2,2) is therefore one.

If P gets on a^3 , P_1 and P_2 coincide with P; P is in this case a branch point coinciding with the corresponding double point. If on the other hand P gets into a point of inflexion B, p is a part of p^2 , so that B is a singular point and the stationary tangent is a singular straight line.

If P gets on the Hessian H^3 of a^3 , p passes through the double point of p^2 , also lying on the Hessian, and P_1 coincides with P_2 , so that P is a branch point. The $branch\ curve\ (V)^6$ consists therefore of a^3 and H^3 and these curves are at the same time the locus of the $double\ points$.

When P describes the straight line r, p^2 describes a pencil and p envelops a conic. In each base point of (p^2) there lie therefore two points associated to P. As a p^2 contains moreover the two points of intersection with the corresponding p, the straight line r is transformed into a quadrinodal curve q^5 . This contains the nine points of inflexion of a^3 , as these correspond to the points in which r cuts the stationary tangents. Consequently q^5 touches a^3 in the three points of intersection of a^3 with r.

The derivative of this (2,2) is of the *fourth class*. For a straight line p has four poles and contains therefore the four pairs P_1 , P_2 in which it is cut by the corresponding four polar conics p^2 .

¹⁾ Kohn, Zur Theorie der harmonischen Mittelpunkte. (Sitz. ber. der Akad. der Wiss. Wien, Bd. LXXXVIII, S. 424).