Mathematics. - "Involutorial Correspondences (2,2) of the First Class". By Prof. Jan de Vries.

(Communicated at the meeting of April 30, 1921).
\$ 1. An involutorial correspondence (2,2) of the first class is characterized by the property that an arbitrary straight line contains one pair of associated points P, P^{*}. If we associate to each other the straight lines joining a point P to the two homologous points P_{1} and P_{2}, also the field of rays is arranged in an involutorial (2,2). At the same time there arises a null system, if we associate to P the straight lines $P P_{1}$ and $P P_{2}$; each straight line has in this case two null points, each point has two null rays.

If the point P describes the straight line r, its null rays envelop a curve (r) of the fourth class that has r as a double tangent. The six points V in which $(r)_{4}$ is cut by r, are evidently branch points of the $(2,2)$. The brancll curve (V) of the $(2,2)$ is therefore a curve of the order six.

We shall now suppose that the locus of the coincidences $P \equiv P^{*}$ is a curve of the order n. If P describes the line r, the points P_{1}, P, associated to P, describe a curve ϱ, which has the n coincidences on r and the pair of associated points on r, P, P^{*}, in common with r.

Through this correspondence r is therefore transformed into a curve ρ^{n+2} of the order $(n+2)$.

Let us now consider the curves $\rho_{1}{ }^{n+2}$ and $\rho_{2}{ }^{n+2}$ corresponding to the straight lines r_{1} arid r_{1}. Besides the two points associated to $S \equiv r_{1} r_{2}$ they have the points P in common for which P_{1} lies on r_{1} and P_{2} on r_{2}; the other common points are singular, i.e. each of them is associated to \propto^{1} pairs P_{1}, P_{2}.

The curves $\left(r_{1}\right)_{4}$ and $\left(r_{2}\right)_{4}$ corresponding to the straight lines r_{1} and r_{2}, have in the first place the two null rays of the point S in common. The line r_{2} cuts $\dot{\varrho}_{1}{ }^{n+2}$ in $(n+2)$ points P_{2}, which are associated to as many points P_{1} on r_{1} and accordingly define $(n+2)$ common tangents. The other ($12-n$) common tangents are evidently singular straight lines; each of them bears ∞^{1} pairs of points P, P^{*}.

Let us also consider the locus of the pairs of points $P, P *$ which are collinear with a point O. Let O_{1} and O_{2} be the points conjugated to O through $(2,2)$; the curve in consideration ω is touched at O
by $O \dot{O}_{i}$. and $O O_{2}$; it is therefore a nodal curve ω^{4}. Through O there pass six of its tangents; according to a theorem found by Bertini the six points of contact, coincidences of the (2,2), lie on a conic ${ }^{1}$). The bearers of the coincidences of the $(2,2)$ envelop consequently a curve of the sixth class.
§ 2. We arrive in the following way at a $(2,2)$ for which $n=2$. Let the conic a^{2} and the pencil of conics (b^{2}) be given. To the point P we associate the points P_{1} and P_{2} in which the conic b^{2} through P is cut by the polar line p of P relative to a^{s}. On a straight line $r,\left(b^{2}\right)$ defines an involution; as a rule this has one pair of points in common with the involution on r of the pairs of points that are harmonically separated by a^{2}. This $(2,2)$ belongs accordingly to the first class.

The points of a^{2} are evidently the coincidences of this $(2,2)$. The straight line r is transformed into a nodal ρ^{4}, which has the pole R of r as double point. For when P moves along r, its polar line p revolves round R and bears the two points P_{1}, P_{2} associated to P.

The base points $B_{k}(k=1,2,3,4)$ of $\left(b^{2}\right)$ are singular points. On the polar line b_{k} of $B_{k}\left(b^{2}\right)$ defines ∞^{1} pairs of points P_{1}, P_{2} which are associated to B_{k}. If P gets into the intersection of b_{k} with r, one of the points associated to P coincides with B_{k}; hence o^{4} passes through the four points B_{k}.

The conic b^{2} through R cuts r in two points R_{1}, R_{2}, which are associated to R; hence ϱ^{4} has a double point in R.

The six tangents of ρ^{4} meeting in R bear double points $P_{1} \equiv P_{2}$; from this it follows again that the branch curve is a $(V)^{6}$. It has double points in the base points of $\left(b^{2}\right)$; for the involution of the pairs of points on b_{k} associated to B_{k} contains two double points for which B_{k} is a branch point.

With a $b^{2}(V)^{6}$ has four points in common besides the double points B_{k}; they are the branch points of the correspondence $(2,2)$ on b^{2}. The curve $(V)^{6}$ touches a^{2} in the six coincidences of the involution l^{4} in which $\left(b^{2}\right)$ cuts a^{2}.
§3. Any point A of a^{2} is a coincidence of the (2,2), but it is also associated to the point A^{\prime} which the tangent a at A has further in

[^0]common with the b^{2} through A. Of the locus a of the points A^{\prime} a b^{2} contains four points besides the base points B; they are defined by the points of intersection of b^{2} with a^{2}. On each of the two tangents a through B_{k}, A^{\prime} coincides with B_{k}; hence a has double points in B_{k}.

Consequently the curve in question is an \boldsymbol{a}^{6}. As it corresponds point for point to a^{2} and is therefore rational, it must have six more double points. There are therefore six points A^{\prime} each corresponding to two points A; the b^{2} through such a point A^{\prime} cuts a^{2} in the two points A which it has in common with the polar line of A^{\prime}.

The straight line b_{k} is transformed by $(2,2)$ into a β^{4} with triple point β_{k}. When P moves along b_{k} the polar line p continues to pass through β_{k}, so that always one of the points P_{1}, P_{2} associated to P, coincides with β_{k}. If also the second point is to coincide with β_{k}, p must touch the b^{2} through P at β_{k}. Now any straight line p through β_{k} touches one b^{*}; if we associate the points Q_{1}, Q_{2} which this b^{2} defines on b_{k}, to the pole P of p, there arises a correspondence $(1,2)$ between P and Q. Hence Q coincides three times with P; but then the curve β_{k} into which b_{k} is transformed, has a threefold point in B_{k} and is therefore a rational $\beta^{4} .^{1}$)
§4. We shall now try to find the locus of the double points $P_{1}=P_{2}$. It has in the first place threefold points in B_{k}. On each b^{2} there lie besides the base points four more points of the curve in question, namely the double points of the $(2,2)$ in which the points of b are arranged. Consequently it is a d^{8}. As it corresponds point for point to the branch curve $(V)^{8}$ it is just as the latter of the genus six; hence it must have three more double points. These we find in the double points of the three pairs of lines belonging to b^{2}.

The bearers of the double point $P_{1} \equiv P_{2}$ envelop a curve of the sixth class ($\$ 1$) of the same genus as the branch curve, hence with four double tangents; these we find in the straight lines b_{k}.

For the points where b_{k} is touched by two of the conics b^{2}, correspond as double points to the branch point B_{k}.

[^1]$\oint 5$. Each straight line $B_{k} B_{l}$ is evidently singular, for it bears ∞^{1} pairs of points that are harmonically separated by a^{3}.

A straight line would also be singular if the involution in which it is cut by $\left(b^{2}\right)$, coincided with the involution of the pairs of points that are harmonically separated by a^{2}. And this will be the case when this straight line is touched in its two points of intersection with a^{2} by conics b^{2}.

Now the straight lines t that touch b^{2} at its points of intersection with a^{2}, envelop a curve of the class six. For the points of contact of the tangents out of any point to the conics b^{2} lie on a cubic and this meets a^{2} in six points, each of which defines a straight line t. This envelope is rational; it has therefore ten double tangents; to them belong evidently the six straight lines $B_{k} B_{l}$.

Hence there are, besides these, four more singular straight lines, s_{k}.
The straight line s_{k} is transformed through $(2,2)$ into the system of s_{k} and a nodal cubic that has its double point in the pole of s_{k}. The straight line $B_{k} B_{l}$ is transformed into the system of $B_{k} B_{l}$, $B_{m} B_{n}, b_{k}$ and b_{l}.
\oint 6. The points P_{1} and P_{2} associated to P in the $(2,2)$, correspond to each other in another (2,2), which may be called the derivative of the former. This $(2,2)^{*}$ is likewise of the first class; for on a straight line p there lies only the pair in which p cuts the conic b^{2} passing through the pole P of p.

Also this $(2,2)^{*}$ has singular points in B_{k}; for if P describes the polar line b_{k}, P_{1} remains in B_{1} and P_{2} describes the above mentioned rational curve $\beta_{k}{ }^{4}$.

The curves $\rho_{1}{ }^{4}$ and $\rho_{2}{ }^{4}$ corresponding in the $(2,2)$ to the straight lines r_{1} and r_{2}, have ($\$ 1$) 10 points P in common for which P_{1} lies on r_{1}, P_{2} on r_{2}. Hence P_{2} describes a curve ϱ^{10} when P_{1} describes the straight line r_{1}. This o^{10} has quadruple points in B_{k}, for r_{1} cuts the curve $\boldsymbol{\beta}_{k}{ }^{4}$ in four points P_{1}.

Each branch point of the $(2,2)$ is at the same time a branch point of the $(2,2)^{*}$; accordingly they have also the same brancle curve $(V)^{6}$. The coincidences of the $(2,2)^{*}$ are the double points of the $(2,2)$; the curve of coincidence is therefore the above mentioned d^{8}, which passes three times through B_{k}, twice through the double points of the pairs of lines. We find the points of intersection of r with ϱ^{10} in the eight points which r has in common with d^{8} and in the pair of points P_{1}, P_{2} on r.

The four singular straight lines (\$1) of the (2,2)* are found in the straight lines b_{k}.
$\oint 7$. In the following way we arrive at a $(2,2)$ for which $n=3$. Let a^{3} be a cubic, $\mu^{\prime 2}$ the polar conic, p the polar straight line of P. To P we associate the two points of intersection F_{1} and P_{2} of p^{2} with p. The correspondence $(2,2)$ arising in this way, is involutorial, because P and P_{1} may be considered as threefold elements in a cubic involution where the points of intersection of $P P_{1}$ with α^{3} form a group ${ }^{1}$), or as the double points of the cyclic projectivity defined by this group. The class of this $(2,2)$ is therefore one.

If P gets on a^{3}, P_{1} and P_{2} coincide with $P ; P$ is in this case a branch point coinciding with the corresponding double point. If on the other hand P gets into a point of intlexion B, p is a part of p^{2}, so that B is a singular point and the stationary tangent is a singular straight line.

If P gets on the Hessian H^{3} of a^{3}, p passes through the double point of p^{2}, also lying on the Hessian, and P_{1} coincides with P_{2}, so that P is a branch point. The branch curve $(V)^{b}$ consists therefore of a^{3} and H^{3} and these curves are at the same time the locus of the double points.

When P describes the straight line r, p^{2} describes a pencil and p envelops a conic. In each base point of $\left(p^{2}\right)$ there lie therefore two points associated to P. As a p^{2} contains moreover the two points of intersection with the corresponding p, the straight line r is transformed into a quadrinodal curve ρ^{5}. This contains the nine points of inflexion of a^{3}, as these correspond to the points in which r cuts the stationary tangents. Consequently ϱ^{6} touches a^{3} in the three points of intersection of a^{3} with r.

The derivative of this $(2,2)$ is of the fourth class. For a straight line p has four poles and contains therefore the four pairs $P_{1}, P_{\text {g }}$ in which it is cut by the corresponding four polar conics p^{2}.

[^2]
[^0]: ${ }^{1}$) Relative to this conic ω^{2} as an invariant curve, ω^{4} is transformed into itself by a central quadratic involution (inversion) with centre O of which the other two fundamental points lie on the polar line of O relative to ω^{2}; this straight line contains the points of contact O_{1}, O_{2} of O. (See J. de Vries, La quartique nodale, Archives Teyler, série II, tome IX, § 12).

[^1]: ${ }^{1}$) On b_{k} there lie 2 points that are associated in the $(2,2)$ to each other and at the same time to $B k$, and which therefore together with that point form a polar triangle of a^{2}. The b^{2} containing them is consequently circumscribed to \propto^{1} polar triangles so that on it the $(2,2)$ has been transformed into a cubic involution In this involution each base point B is associated to the points of intersection of b^{2} with the polar line of B.

 If we define the pencil (b^{2}) by two conics, each circumscribed to a polar triangle of a^{2}, each b^{2} bears a cubic involution and the whole correspondence (2,2) is transformed into a system of ∞^{1} involutorial triplets.

[^2]: ${ }^{1}$) Kонн, Zur Theorie der harmonischen Mittelpunkte. (Sitz. ber. der Akad. der Wiss. Wien, Bd. LXXXVIII, S. 424).

