Physics. — “On the Equation of State for Arbitrary Temperatures
and Volumes. 11I. On the Law of Force between the Molecules
of Mon-atomic Substances”. By Dr. J. J. van Laagr. (Com-
municated by Prof. H. A. LoREnTz).

(Communicated at the meeting of November 26, 1921).

$§ 8. General Considerations.

In the two preceding papers') it has been demonstrated that a
closer consideration of the problem of the movement of a molecule
to and fro between the two adjacent molecules (for the sake of
simplicity reduced to a problem of one-dimension) necessarily leads
at low temperatures to an expression of the form

24
e=A + S 1
eRT 1

in which A represents the zero-point energy, i.e. the energy of the
active forces, which remains when the temperature (determined
by the time-average of u*) has become = 0 [loc. cit. p.1198 (A is
there represented by E,) and p. 905].

If it could be proved that in this A =?*/, Nhv, the analogy with
Pranck’s formula would become identity. But to reach this, we
should have to know the accurate law of attraction, i.e. a law
which takes into account the motion in closed orbits of the negative
electrons round the positive nucleus of the atoms. The prevalent
laws of attraction have not taken this into account as yet; either
because the integrability of the equations of motion required a
simple — although still plausible — law of attraction, so that the
accurate law had to be purposely set aside for one of a simpler
form; or because in the derivation of the required law the influence
of the said motion was (consciously or unconsciously) eliminated

) These Proc. Vol. XXI, N 9, p. 1184, and These Proc. Vol. XXIII, N°. 6,
p. 887.
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by taking averages, as e.g. DEBUE did in his paper on the VANDER
Waars’ cohesion forces *).

In our first paper (see p. 1188) we assumed for the attractive
force I'—= f >< 2z, in which 2 represents the distance of the moving
molecule from the neutral point; and for the repulsive force on
collision 2& >y, in which % represents the compression of the
molecule.

Later on (p. 897) 1 substituted for the two separate laws of force
one single law of the form (cf. the cited paper for the meaning ot

the different letters)
(0—2) (6—s)
b ) ) [ (PR A Sy
/ ””[ (=) — a7

which rendered the solution of the problem raised there still just
possible by the aid of elliptical functions.

Though these two laws of attraction by no means represent
reality quantitatively accurately, yet at low temperatures we found
a relation between / and 7', which is analogous with PraNck’s
well-known expression — which certainly proves that the essential
part of our considerations (viz. our abservance of the time-average) rests
on solid foundations. The exact form of the law of attraction seems
here to a certain extent to be of minor importance, and according
to the results of the two papers to have influence only on some
numerical coefficients.

) Phys. Zeitschr. 21, 178 (1920). In 1908 VAN DER WaALS Jr. already treated
a simular problem, but he still considered the atoms (molecules) as electric
double points which, like DEBUE, he besides supposed far enough apart to
simplify the problem. He found that the force decreased more rapidly
than »—7.

Later also KeesoM wrote a paper in connection with the said paper by
DeBUE (These Proc. Vol. XXIII, N 6, p. 939 and 943; also Phys.-Zeitsth.
22, 129 (1921) and Mededeelingen Utrecht NO. 6) on the question of the
forces of attraction. There he demonstrates that for Hy, O, and Ny DEBLE’s
quadrupoles yield a too large value; further that — at least for the said gases
— the quadrupole-attraction has considerably more influence on the second
virial-coefficient B than the so-called “induced” attraction (unless the tempe-
rature is very high), and that the VAN DER WAALS cohesion-forces can chiefly
be attributed to forces which the molecules exert on each other in virtue of
their quadrupole-momenta.

BurGers (Dissertatie, Leiden 1918, p. 186) calculated the quadrupole-
momentum of the Hy-molecule according to the model constructed by BoHRr
and DEBUE (to which, however, there are several objections), and found a
remarkable agreement with the value 2,03.10—26 (electrostatic units X cm?;
uncorrected for the polarisation of the molecules in each others’ electri¢
field), derived by Keesom (Comm. Leiden, Suppl. 39a, p. 15) from the 2nd
virial-coefficient, viz. 2,05.10—26,
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But, as has been said, a true insight — especially as far as the
relation between A and /Av is concerned — cannot be obtained
until the law of attraction is accurately known; then the quantities
h and » will also appear automatously in the law of the action
between two atoms (molecules).

We shall see in what follows that the real active force is by no
means merely an exclusively attractive action increasing in intensity,
which is only transformed into a repulsive force at collision or at
a very short distance — but that from the very beginning the action
has been periodically attractive and repulsive, which only becomes
stronger and stronger on approach of the atoms. Several known
phenomena can now be explained more easily, not only in the
sphere of the solid bodies (and of the liquids), but also in that of
the gases — particularly as concerns the so-called ““gas-degeneration”
at very low temperatures.

$ 9. Derivation of the Elementary Law of Force.

To simplify the calculations, we shall again place ourselves at
the standpoint of the problem of one dimension. In connection with
this the circular motion of the electrons round the positive nucleus
must be transformed into a motion to and fro rectilinearly, viz.
the projection of the circular motion on the direction of the joining
line of the two nuclei, so that the electrons always move (fictitiously)
to and fro through the nucleus.

Let » be the distance of the two nuclei A and B, a the radius of

the orbit of the electrons (thought

A 2 B perfectly circular), so that the devia-

et e
= J tions # and y of the electrons
Fig. 1. from the centre are represented by

/

t
z = a sin2n %, y=asindx T We then have together for the

repulsive and attractive forces (see Fig. 1):

F—y[_l_ L 1 1 1 ]
- r (Fa—y) 4 (r—y))
when for the present we confine ourselves in our considerations to
mon-atomic substances, while only one electron moves round the
nucleus. (H-atoms).

When an atom M moves between two other atoms P and Q, the
total action (taken positive when M is drawn to the right (P))
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becomes evidently (see fig. 2) — on the supposition that the atoms
@ o Z_pMt: P
o—t ;M::J;L"‘“"‘O
>~ \_’—-\ﬁf—)
Fig. 2.

P and Q are on an average at rest, and the mutual polarizing
action of the atoms may be neglected:

F 1 1 1 1

et (I—2) (—ztaz—y)* tas ¢ +a) T (—z—y)*
R N 1 1 1
(42 (4z—a—y) (+2—2) (+2—y)]

when [ is the mean distance of the atoms, and z the distance of
the moving atom on the right from the mean position of equilibrium
(neutral point) O, If therefore F is positive, the force of M is
directed towards P.

Now the motion of the electrons round P and Q will exhibit
phase-difference with that of the electron round M, so that we shall
have to calculate the mean value for different values of y and ¥/,
retaining the value of 2, that varies periodically with the time in
the considered molecule M, which we shall, accordingly, not eliminate
by taking averages. The integral

2

2w
J— lf do =1 f dw
“2x)((—2)ta—y) 2= t t 1
”0 ((=2)+2—y) 0 |:(l—z)—}—aain2n§'—asin(29: T-{—w)]

has the form
+2n
a1 dep

2x (p—a sin @)’

?
t . . .

when 2x - + o = ¢ is put. (w is the phase-difference between P

and M). With ¢ =90 4 ¢ this becomes:

a4-2n
p

[— _1_ da .
T 2 f(p+a cos @) (p*—a’)h’

as is easy to derive. Hence we get, performing the same thing with
the integrals in which %’ occurs:
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F 1 l—z+4a 1 l—2
¢ Ty (U—s tay—ayh T (—eta) T ((—ay—ah "
1 l+2—= 1 4z '
+ (I +2) T ((+z—-2)—a*yh  (+z—a) ((I+2)'—a’)h

and this will be the law of action between M and the two adja-
cent atoms P and Q. The first four terms refer to P, towards which
M e.g. moves; the last four to @, from which M then moves away.

The expression (1) yields in the equation of motion perfectly
unintegrable forms, and we shall try to find for them an approxi-
mate expression, when z aud « are not too great with respect to /.
At any rate it appears at once that I contains the factor w, so that
the law of action becomes a purely periodical one.

Whenever x becomes =0, i.e. the electron (fictitiously) moves
through the nucleus, /' will also become = 0, and the total
force change from positive (at @ positive), i.e. directed towards the
right, into negative (at x negative), i.e. directed towards the left,
and vice versa. In reality for 2 = 0 both the first part ot the second
member of (1) becomes = 0, and the second part.

When in his cited article (p. 179 righthand side) DeBIJE states that the
_potential of a sphere with charge 4 ¢ in its centre and — ¢ on its
circumference is on an average =0, he is, of course, right. But in the first
place I object to this view of the problem, since it will depend on the
mutual position of the electrons in their orbits round the two centres
and on their phace-difference, what action will result; which also
renders it doubtful whether all orientations of the two electrons
on the two sphere-surfaces will, indeed, be equivalent — even on an
“average”’. And in the second place it seems to me that his method
— in order to find still a positive value (i.e. attractive action) for
the resulting force — of taking the action into account which one
atom exerts on the electric moment of the other, is open to doubt.
For according to DeBwr himself the electric field of this one atom
will be on an average — 0 (see a few lines lower). How can then
this field, which is==0 on an average, exert an appreciable polari-
zing action') on the other atom?

That the attractive action with the periodicity found by us, is

1 Even apart from the fact that the polarization will certainly always be
very small, because in my opinion the exceedingly great velocity of the
electrons in their orbits excludes an appreciable deformation. DEBIE finds
finally for the attractive action proportionality as »—9 (for so-called dipole
gases on the other hand »—7, cf. note 1 on page 183), as against VAN DER
WaaLs Jr. as r—(719).
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not quite symmetrical with the repulsive action, is clear from
formula (1). More-over, also for an estimation of the relative order
of magnitude of these forces, we shall give some numerical conside-
rations in the following paragraph.

§ 10. Some Numerical Calculations.

Since the centres of the atoms cannot get nearer to each other
than 2a, a mean distance of [ = 3a is, indeed, an extreme value
for solid bodies and liquids, sooner too great than too small. For
when it is considered that for many liquids (v—b6):v is ="'/,, in
the neighbourhood of the point of solidification, then /= (1 4 '/,,) 2a.
But as the quantity & in the equation of state will very certainly
not be equal to the real volume of the molecules, but larger, in
reality / will be > 2,05a. Even at the absolute zero-point / will
probably not be smaller than 2,1 a. Let us now first put

1= 3a.
1. z2=0. The moving molecule is then exactly in O, halfway

between the two others.
We can now write for (1):

f_[’ l—z _ 1 L_ l—2+4a . 1 g]_
e'” | |((—2)—a®)h (I—2)* 3(l—z+.'v)’—a’)"/ﬂ (l—=+2?) 2 (1a)

— [id. with + z and — 2]
in which we get for the case z=0: |

F l 1 I+ 1
o D(P——N—Ft_ ((+ay—a)h  (+a) ]“
l 1 l—z 1 ‘
B [3«——27 o ( B 3 (—ay—a’)h  (—a) ]
in which the first and the third part cancel each other. In order,
however, to get to know something of the mutual order of magnitude

of the different parts, we have not omitted these terms.

For =0 all the 4 terms are equal to each other; i.e.=
(3:8% —1:9):a* =(0,1326—0,1111): a* = 0,0215:a*, and we have-
a' F:e* = (0,0215—0,0215) — (0,0215—0,0215) = 0—0 = 0.

For ® = + a (extreme deviation of the electron towards the side
of Q (see fig. 2) is found with 4:15%— (1:16) = 0,0689—0,0625 —
0,0064, and 2: 3%»—1:4 = 0,3849—0,25 = 0,1349:
a’Fie*=(0,0215—-0,0064)—(0,0215—-0,1349)—=0,0151 —(-0,1134)=0,1285.

A force, therefore, directed towards the right, chiefly originating
from the repulsive action exerted by Q on M.
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For # = — a (greatest deviation to the side of P) everything is
just the opposite, and we have:
a*F.e* = (--0,1134) — 0,0151 = — 0,1285.
Now the repulsive force predominates, which P exerts on M.

2. z="/,a. This is a mean position of M between O and the

perfect contact at z — a.

For =0 we have here, since 2'/, : (5!/)» — (1 : 6'/,) =
= 0,2078 — 0,16 — 0,0478, and 3'/, : (11'/) — (1 :12'/,) =
= 0,09276 — 0,08163 — 0,0111:

a’ F:e' = (0,0478—0,0478) — (0,0111—0,0111) = 0—0 =0.

For x = a we find:

a’F:e*=(0,0478-0,0111)—(0,0111-0,0478)—=0,0366—(—0,0366)—0,0732.

Here the attractive force of P supports the repulsive force of Q
(which happens to have the same value).

Finally * = — a yields with 1'/,:(1'/)% — (1:2'/,)=1,0733 —
— 0,4444 = 0,6289, and 4'/, : (19'/)% — (1:20'/,)=0,0533 —
— 0,0494 = 0,0039:
a’F:¢*=(0,0478—0,6289)—(0,04111—0,0039)=(—0,5811)—0,0072=—0,5883.

It will be seen that the action is now quite asymmetric: that towards
the right at =+ a is much weaker than that towards the left at

& = —a. This is, of course, owing to the fact that in this latter
position the electron is much nearer P than it is to @ in the case

z=+ a.

3. z=a. This is the extreme position of M close to P (distance

of the centres — 2a), in which we shall now find an infinitely
great repulsive force at 2 = — a.
In the case + =0 we get:

a’F :¢' = (0,1349 0,1349) — (0,0064—0,0064) = 0—0 — 0.
For 2 = 4+ a we find:
a’F:e'=(0,1349—0.0215)——(0,0064—0,0215):0,1134—-—(—0,0151):&&8_5.
And = —a yields with (1 : 0% — (1:1) = o —1, and
(5:24%) — (1 : 25) = 0,0425 — 0,04 = 0,0025 :
@ F : e = (0,1849 — w) — (0,0064—0,0025) = (— o) — 0,0039 = — oo.

The above can be combined in the following survey (values of
a* F:e).



8=0 s="%a s=a

xr=0 0 0 0
(!l=3a) r=+a 0,1285 0,0732 0,1285
r=—a —0,1285 — 0,5883 —®

Let us now repeat these calculations for the case

1=2,la

1. z=0.

For «+ =+ a is found with 3,1 :(8,61) —(1:9,61)=0,12 —
—0,10=0,02,and 1,1 : (0,21)> — (1 :1,21)=11,43 — 0,83 =10,60:
@ F:e*= — 0,02 + 10,60 = 10,58

while for + = — a of course — 10,58 will be found.

2. z=0,05aq.

With 2,05 : (3,2025)» — (1 : 4,2025) = 0,36 —0,24 = 0,12; 2,15 :
: (3,6225)%: — (1 :4,6225) =0,31* — 0,21°* = 0,10; 3,05 : (8,3025)% —
—(1:9,3025) = 0,13 — 0,11 =0,02;1,15:(0,3225)": — (1:1,3225)=
= 6,28 — 0,76 = 5,52 we get for 2 = + a:

a*k:e* = (0,12—0,02) — (0,10—5,52) = 5,52,
while # —=— a, with 3,15:(8,9225)%— (1:9,9225)=0,12—0,10 =
= 0,02; 1,05:(0,1025)> — (1 : 1,1025) = 32,00 — 0,91 = 31,09, gives:
a*F: e = (0,12—31,09) — (0,10—0,02) = — 31,05.

3. 2=1,1a.

With (2:3%) —(1:4)=0,38° — 0,25 =0,13%2,2: (3,84): — (1 :
:4,84) = 0,29** — 0,20°°=0,08°; (3:8%) —(1:9)=0,13 —0,11 =
=0,02; (1,2:0,44%) —(1:1,44) =4,11 — 0,69 = 3,42 we get for
=+ a:

a' Fie* = (0,18°—0,02) — (0,08° —3,42) = 3,45.

The value — o will again be found for # — — a. Hence we
have now for a* F': ¢*:

s8=0 8=005a | 8=0,1la

x=0 0 0 0
((=21a) r=-a 10,58 5,52 3,45

r=-—a — 10,58 — 31,05 —
l

20
Proceedings Royal Acad. Amsterdam. Vol. XXIV.
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In consequence of the so much smaller distance of the molecules,
the action has in many cases become as much as 80-times greater.
It appears from the above calculations that at low temperatures,
in which case [ approaches to 2a, the terms without # can very
well be omitted, so that we then might write, putting zeverywhere =) s

low temp) [ 4= B 1 :l*_[ l—a ](
[ - 2a ((+a)y—a®)s ((4)° ((l—x)*—a )'/: (+)> | ‘)

in which the 1%t term predominates atxz = — a, the 2rdat g — + a.
Though we may now write:

_e'dL

T mda’

(E_o’l:i 1 1 t+ ’ B 1
dt* m| de V{ta)y—a Clta) | da V{i—2)y—a z

the direct integration of this equation is impossible For, since

z=asime¢ (in which ¢ is in general :2::——]— 6, because at

the beginning of the motion of M through 0 towards P(t=0,
when M in ) the electron need not necessarily at the same time
be in the position #=0), we get:

d’z _e'dLdt ¢ dL T:2n ¢ dL

dt*  mdtde mdt acos(2nt/T+6)  a co.wpa'
and evidently nothing can be done with this differential equation
— on account of the complicated form of L, while V'a’—a* can
be substituted for a cos ¢.

Hence nothing remains but making the expression (1%) or (19)

integrable by expansion into series.

§ 11. Expansion into Series for F.

l—z 1
((—2) —a% (—2)
1 1
Vil— @ —0® [t
and then differentiate the result with respect to z, which is easier.
We then get:

1 1 . 1 1 2 ') —1s
<1—z+a)’<l—z—a)'/=“l—_z"vmz( lta ( l—a) ‘_

-7

For the expression between {} we may write by joining corre-
sponding terms:

Instead of e.g. we shall expand
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L 18, P4 185 048
1 4+ 22 4 — 22?
s E e Pay 246 (P—a
1.35.7 I+ 60’ +af
‘ te.
2468 “@—ay T
PRSI IS 1185, Ua
22 e T304 Gy T2 2460 Gy T
13 13 , 1 e
+ﬂ§—4‘ — ,—);-I- )

the structure of which is clear.
1

(/*—a*—"h and expansion of (1 ——l

21

Hence, after multiplication by

, the original form becomes:

1 1.3
1 1 ( 2 1) (2—1(*"'”~ DA
(Vm—7)+ EF—ayh 1 + (*—a)h )t

1352l’ 3la* 132 I*—a?
e 20+ )+——(—a)1>
e (—a)ls F)T
1.3.5.7 4 3 3 4 _l 2 2\ (/2 3 }_3 131 a?)?
2—4—6—82(l+ﬁla +a)+2 346°(l+a)(5—a)+,,4 2—4( a’) 1
2 @~ aryh T + etc.,

i.e.

A+ Pz + P 2+ P, 2" + P,2* + ...,

in which A4, P,, ete. contain only / and a. Through differentiation

now arises:
l—z 1
((—zy—ayh — (—2f
and likewise:
42 1
((U+2)—a’)h  (I42)

=P,

=P, + 2Pz + 3P,z + 4P.2" +...,

— 2P+ 8P+ 4P+ ...,

so that the difference of these two expressions (c.f. equation (1a))is

represented by
f(e)=4Pz + 8P,* + 12P2" + ...

After substitution of z—a for 2z, we have also:
f(z—ax) = 4P, (2—=) + 8P, (:—=x)® + 12P; (:— )" +
and finally the following equation is obtained:
F:e8 = f(2) — flz2—a) = 4P,x + 8P, (32*x—3za* + 2°) +
+ 12P, (52'a—10z"2* 4 ...

so that #' clearly contains the factor x (see § 9).

+ 2*) + etc., .

@)

20%
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After calculation of the numerators (to which also P, has been
added), we have:

i S . s 1'

1= @— aa)i/’ - B! 3 — (l’—a’)% I
le+1s/ l‘a’-{-”/ l2a 4_*_5/” 1 ’

3

Ps ( 1 a)n/’ - ﬁ i etc.

For small values of z F':e* approaches:

27t
(2=0) F:e# —=4Pax{8P,a*+12P, 2"+ etc. ; .r:a(sin—;——}—ﬁ) 4)

Remark. That the coefficients of 2, [*, I°, etc. in the expressions
for P, P,, P,, etc. become every time — 1, is not surprising. For

1.3 % 1.3.5.7 1 135 1.3)\?
they are resp. 2(2 4)+(—2) , 2 m) -+ 2 (—2 ﬂ_b)+(§—4) ,

.etc., being the coefficients of the expansion of (1—y)—"2(1—y) ',
i.e. of 1—y)—!, which are all = 1. The coefficients of a*, a*, a’ etc.,
Z. /5 *s */ie» Otc. are evidently those of the expansion (/=0)

VI1Z.
2\~ 2\ 'k 2N\, 1 13 1856
of (1—;{) (1+a—) —(1-—(1—’) ,1.e.—2, ﬁ’ m. ete

According to what follows, the coefficients of the second terms, viz.
', 3, '%/,, 14, etc. are represented for P, P,.... P, by /., n(n—+1),

i.e. by 1§2,3§4, 71<8, etc. [When we add to this resp. */,, °/,,
etc. (=1'/,(2n 4 3)) of the exponents in the denominators, we get
the coefficients of the limiting values of P, P,, etc. for /= oo,
3x4 5X6 TX8
4’ 4 & ,etc.J.
Indeed, a somewhat different way of expansion into series of
l—z

. 1
((—2y—a)h (=2

mentioned farther on viz. '/, (n 4 2) (n 4 3) =

leads to

I

1 3 a 3.5 3 a? 3.5 at
(l—z)’[E(T—z)’+2_i(l_z)‘ ] 5(_—7)‘+24U TR

al
s
8 a? 1 42 452 3.5a* 62 6.72 -
=5 N Mool N 24" ——+——+... + etc.=

—11t1an 130
. a® 38.5a! 3 4a+35 6 a*
‘(/’7+ﬂ’ﬁ+"' tHg ittt )t
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so that for the factor of z is found (see above):

a’ (3 4 35 6 a’
2P, — — |- . — +— . — — ... ); for that of z* we have
T (2 rtea1e T ) or that ot 2
* /3 4.5.6 3.5 6.7.8 a*
4P, = % (5 2 . ) ; we get further

123 " 24 123 P

6P __a*(3 4.5.6.7.8 3. 5 6.7.8.9.10a* ) '
=3\ 12845 T 2d Tasas 51 o) ok oo

3 4.5.6.7.8a’

On the one hand e.g. 6 approaches for /— o to T TRBAEF"

while on the other hand according to (3) P, evidently becomes
13
=(.v‘ + - 15 if x, represents the coefficient of /*a’. In P, we

1 3(n+1)(n+2)(n+3) 2043 (n+2)(n43)
nt12 6 g 4

have therefore x, —

27z+3_n(n+1)
2 T4

, by which the above is proved.

According to (4) we can now write for F':e*:
—0 F_2a’ 3 4 35 6a? +2a’(3 456 3.5 6.7.8a? P
=05=2%s 1rea 1) PPl 1zs e rasn t )t
a’ (3 4.5.6.7.8 3.5 6.7.8.9.10q® . ¢
w\2 12345 24 12845 n T o T

or also:
(z:O)—F::lZa—’.vli 142 88 BT 5“—+§£.E“—6+...=+
2 Iz 4740 T46 2l T168 4 10
4.5.6.7;'31 5 6.7.84" 5.7 8.9.10a*

2340 14560 T46° 456 &

e

6.7.8 2 5 6.7.8.9.10a* 5.7 8.9.10.11.124*
+mﬂ‘ 1 15678 b 46 45678 B “*“]‘
1.e.
a? 15a* 85 a* 525a®
(z=0)8—1=12—l—‘x|:31 §F+1—é—7 T_2_87+t+
2 4 5 4
+57 0 +Z‘;,+%%+ z+14% 1+%%+1—§—%+...&+etc],

for which may be written:

2 4

(2=0) ﬁ:— 12 l—m[(pl -+ 5 - Py + 14 T Ps +etc] . (4a)
e
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Two limiting cases.
1. If [ is large with respect to a (gases), (4) or (4a) evidently

approaches to
3

;:lZ%x, (1 large), - . - - . . . (5)
and this not only for z=0, but also for finite values of z, provided
they are not large with respect to /.

This is, therefore, the limiting value of the action, when the
moving molecule, with comparatively large distances of the molecules,
is between P and @, if not too close to one of them. The action is
in inverse ratio to the fifth power of /, and directly proportional
to the square of the radius a of the orbit of the electrons. It remains
pretty well unchanged at the same value of z, when M moves from
slightly to the left or to the right, but it is on the contrary pro-
portional to the deviation x of the electron in its orbit; hence it
is purely periodical. KFor x— 0 the action is —0, but not so for
x=-4a or a=—a, even if M is in the neutral point O.

As regards the action between M and P, resp. Q separately, we
have according to (1a) and what was found above:

F,:e*= (P, + 2P,z +38Pz* +...) — (P, + 2P, (:—=&) + 8P, (¢ —2)*),
i.e.

F:¢= 2P&+ 3P, (22a—2a") + 4P, (82’2 —3zz* 4 2*) + ...

and likewise ,
F,:e»=—2P &+ 3P, (222 —a*) — 4P, (32°2—3za* 4+ 2*) ...

so that about half of the total action (F,—F)): e’ =4P x4 etec.
comes from the atom P; the other part, as the action of a force in
the opposite direction, from the atom Q. If e.g. 2= a, the electron
is as far as possible in the direction of @, and M will be attracted
by P with a force — about 2P, ae’, and repelled by Q with an
almost equal force. (Here P, = 3a*:[").

When the gas-molecule M moves towards P, iis velocity u will,
accordingly, also undergo periodical modifications, till it has approached
P so closely, that at [— z=about 2a, the attractive force being
still finite at x = -+ a, the repulsive force begins already to approach
infinity at x = —a. (see § 10); hence the velocity is reduced to O,
after which M moves back (collision).

But with wvery small values of w it may occur that this return
already takes place long before P has been reached. We shall revert
to this in the next paragraph; it is the well-known case of gas-
degeneration.
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2. If [ is small with regard to a (liquids and solid bodies), then
!l ~2a, z -0 may be put, and (4) holds therefore again, in which
now, however, P, P,, etc. approach according to (3) to the following
values: ')

1 1 1 0,1637 p __0.6548
1/ 227 1 0,1710 1,3680
= (—y8—— |== , 8P, =""""
Py a‘( 1o1z V3 7 23 ) a " : at '
1,/1103 1 0,1560 1,8718
= (— V- | =— , 12P, =
a (11664 v 128) a’ ’ a’
so that now F':e* will approach
F 0,655 ? 4
== m(1+2.089“"’_+2,859"”—+...) ... (6)
e al a’ at

It is self-evident that this expansion into series is now only valid
for small values of x with respect to a. For z = =+ a of course F
becomes — + . I will just point out here, that when in x=—asin¢
means are taken over all values of ¢ between 0 and 2ux, according
to (2) and (4) the total force would become — 0 only at z = 0.
But when z is not =0, hence when M is no longer halfway
between P and Q, this is evidently no longer the case (even powers
of ). And according to the above separate expressions of F, and
F, they do not become — 0 at z—=0 even when averaged. The
separate forces ‘“‘averaged” with respect to x, and also the mean
total force will always be repulsive (excepted at z = 0 in the last case),
because the terms with even powers of z have all of them the - sign.?)
And this refutes DeBuE’s assertion (see § 8), that without special
suppositions (polarisation of the molecules in each other’s electric
field) the resulting action would always be — 0 according to a
well-known electric theorem. It is possible to verify by calculation
that this is also true for the problem in three-dimensional space.

) For the quantities ¢, 9y, etc. in (4a) the values p, = —?g X 0,6548 = 1,7459;

128 512
g = = X 1,3680 =2,9184; @3 = 168 X 1,8718 = 5,7045; etc. are easily found.
%) This has of course nothing to do with the question of the Vz'rial of
attraction and repulsion, as in the calculation of this the #/me-average plays
. . pv b alv
a part. Indeed, in the equation of state for gases — =14 — — —_ also th
Rt T, TR ¢
Virial of repulsion /v predominates at high temperatures. This question must
afterwards be treated separately.
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§ 12. The Equations of Motion. Possibility of Multiple
Orbits at Low Temperatures.

Since with small values of z we may write according to (4):

F=71d" + 7.‘”' + Yl‘”‘ + s (a:=au'n(p),
this may always be reduced to

F=a singp + a,4in3¢p + a;sindp + . ..),
after - which integration is possible. But since the expansion into
series is not practicable after all for large values of z, in the neigh-
bourhood of 4 a or — a, it is better to retain only the 1%t term in
the original equation, or to write:

F:yo(l 4+ 40" + A2 +..)),
and take the averages with respect to the factor hetween parentheses.
Then we get:
F=1yz X An=ya,

in which y will be > 0,655 ¢*: a®, when [ approaches 2a. As now

l/’g
- sin® @ is = 4, the same with sin*¢ will be = —, with sin’p
/s ® 2.4
0
. 1.3.5 , )
8= 5715 etc., F' becomes for / = 2 a according to (6):

0,655 ¢*
F= = z(1 4+ 1,04 41,074 ..)),

hence averaged many times greater than y, x. Let us now, for the
sake of orientation, integrate the simple equation
d’ F
——i=—_—_1m,........(7)
di* m m
in which y for small values of z will approach y,, when !/ - 2a
(solid bodies and liquids), whereas for large values of / (gases) y
approaches 12a* ¢*: I* (see above).

Thus we find with q)=2:r%,+ 6:

dz

— =U=uU, — ( .nw— 080, . . 8
— — a 81 a C . %
l; o 2.7'm ) ()

so that duly w becomes = u, at ¢ =0 (when M passes through the
neutral point 0). Repeated integration yields for the path passed
over:

T s
z:(uo-}—%%acosﬂ)t—(ﬂ) ;Y(asin(p-—-asinﬁ), . 9
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which yields z=0 at t=0. It will now further entirely depend:
on the value of the phase-difference & (the difference of time be-
tween the fictitious passage of the electron through the nucleus, and
of M through 0), what type of path of periodic movement will be
obtained.

1. If 0 =0 (the electron passes (fictitiously) the nucleus from the

right towards the /left exactly when A/ moves in O towards the
right in the direction of P°), we get:

]

t
u=u, + 2—7—;%(a—acos¢p) 7 op=2m —,

T

The value of u (see fig. 3) will now always be > u,, so that
there can only be question of its becoming O on collision ((—z = 2a).

/‘“ & =
y i 1 ;
h- ] :..-._\‘.. .....
] R
“ I T
O i Ah i Z
o 4T ) Br T -
Xed +a AOT _’éa y))
Fig. 3.

The molecule M will then approach P so closely till the electron
has assumed the position close to ¥ — -— a, in consequence of which
the repulsive force becomes very great. Then the velocity becomes
=0 in an exceedingly short moment, and the molecule is thrown

Fig. 3a. (Gases).

back (in A, close to t="1/,7"). When the molecules are far enough
from each other (gases), several periods may pass before this collision
at last sets in (Fig. 3a). The increasing values of the amplitudes in
Fig. 3a must of course be attributed to the increasing influence of
z, through which the action exerted becomes stronger and stronger
{cf. also the calculations in § 10). This gives also rise to the devia-
tions of the course, following from (8), close to the collision (repre-
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sented by the dotted lines). Indeed, for the sake of simplicity we
have so far always neglected the influence of z.

We still point out that the magnitude and the sign of the action
exercised are always represented in the figures by the inclination
of the tangents to the curve. '

2. # =180°. Then the electron passes the nucleus (fictitiously)

just from the left to the right, when M goes from O to P, and (8)

becomes:

T v t
u=—=u,———(atacosp) ; @p=2x— + m.
27 T

Now the velocity u always remains below u, (see Fig. 4). The
case of “collision” has been drawn at two successively possible
places, viz. at A and A4’.

What distinguishes this case from the preceding one, is the possi-
bility that u becomes — 0 before the ‘“collision”, and the molecule

4)! ! Pl ,:‘
Feo 4T AT 4 7
Z=0 é“- /0 f/-’d. ] .7’3':

Fig.54.

accordingly already ‘“‘returns”’ before P has been reached. This will
evidently take place as soon as u, is so small that M lies low
enough for the curve to intersect the t-axis (v = 0) (Fig. 4a). This
takes place e.g. in B. Transformed spatially this means that the
molecules will move round the position of equilibrium O in closed
orbits, as soon as we get below the point where the curve touches
the t-axis for the first time (melting point)'). In this case the

AN

T T
Fig. 4a.

) I may be allowed to anticipate on what follows, and state here that the
melting-point calculated in this way for H — if it were realisable — will lie
at 36°4 abs. As this melting-point must lie higher than that of H, (because
the molecular attraction a that plays a part in it, is greater for H than for
H,), this result is not impossible. (melting-point H; lies at 14° abs.).
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central force directed towards the centre (0) will always correspond
to the resulting repulsion of the surrounding molecules.

Also for gases can this take place, but as the distance of the
molecules is then greater, hence the oscillations in the value of u
much smaller, the limiting value of u, (point of degeneration)
lies much lower than the corresponding value of u, (melting-point)
for solid bodies. Besides — in accordance with the mutual distance

Fig. 4b. (Gases).

of the molecules — this transition may take place at different places,
during the 1%t period, the 2nd, the 34 period etc. (Cf. Fig. 46, where
the return takes place at the third period).

To given mutual distance of the molecules (gas density) corresponds,
therefore, a definite value of u, for which the transition already
takes place at the 15t period, (degeneration point proper), a value
where the transition does not occur until the 2md period, etc. ete.
Here too the molecules will, therefore, revolve round the positions
of equilibrium in closed, ever narrower orbits -—— as the tempera-
ture descends.

And thus the phenomenon of gas-generation has been explained
in a natural way.

When at a given gas-density u, becomes too great, then u does
not become 0 before the molecule comes in contact with P (“collides’),
as is drawn at 4 in Fig. 3 and 4. Hence no longer any closed
orbits (solid bodies above the melting-point; gases above the
degeneration point).

It is very remarkable in this, that when w, (for gases) becomes
gradually smaller and smaller (hence the temperature lower and
lower), the place where u becomes zero suddenly skips from Cto D
(see Fig. 4b), from I to F, etc. — which corresponds to this that
the corresponding wider orbit round the position of equilibrium
abruptly, hence discontinuously, changes into a narrower orbit. The
latter varies only between D and I, lying close to each other (the
figure represents time-abscissae, but distance-abscissae of course
correspond with them in a corresponding z—u diagram), after which
it suddenly skips again to the still narrower orbit, corresponding to
F. This is then the final orbit, which as u, gets still lower, again
gradually shrinks. It does not diminish to 0, however, but to a
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limiting orbit, which will be discussed later {in connection with
the zero-point energy)').

And thus an analogue has been obtained of the possible quantizised
orbits which a negative electron can describe round the positive
nucleus. The points D and E lie in this latter case exceedingly close
together, so that the discontinuity in the value of the radii of the
possible orbits is almost complete.

But for this the assumption is required that also for electron and
nucleus the force acts periodically, e.g. through this that the positive
nucleus executes a pulsating movement (analogous to the motion
studied by BikrknEs)?). It may also be assumed that the nucleus
always sucks in “‘ether” from its surroundings (which is led off to the
4th dimension), the electron expelling ether in the same way. When
a rotation is assumed to take place of the electron round an axis
coinciding with the direction of the motion, the known equations
can be derived of the electro-magnetic field®).

But this cannot yet be fully discussed here. One thing at least
is certain, that if the electrons revolve round the nucleus in definite
orbits (in which the quantity % plays a part in the determination
of radius and velocity), that then necessarily, in consequence of our
above considerations, this same quantity 4 must play a part in the
movement of the molecules in closed orbits round positions of
equilibrium —- in consequence of which that quantity will naturally
occur in the relation between E and 7' which we derived in our
previous paper, as analogue of Pranck’s relation; while the quantity
v will be in connection with the time of revolution of the molecules
in their closed orbits, which in its turn will again be in relation
with the time of revolution 7" of the electrons round the nucleus —
as we saw above.

Clarens, summer 1921. To be continued.

") On decrease of temperature such an abrupt succession of some ever
narrower orbits is perhaps also possible for sol/id bodies, and this may
possibly be brought in connection with some allotropic states, which are
met with in many elements and compounds.

%) Very suggestive in this respect is an old Paper, almost entirely forgotten,
by VoiGT in the “Journ. f. reine v. angew. Mathematik”, Band 89, on “Der
leuchtende Punkt.” Voigr chiefly calculated the state of vibration close to
this point, when either a periodic translatory movement, or a periodic rotatory
movement was supposed. Later on KiRCHHOFF (Ibid 90, p. 34) considerably
simplified VoiGT’s derivation.

%) The assumption of expulsion of ether from the electron with the velocsty
of light would then also explain that the velocity of the electron can never
exceed the velocity of light, and an idea can be obtained of the mechanics
of relativity (factor 1—2%/c?.





