Chemistry. — “In-, mono- and dwariant equilibria’, XXII. By
Prof. F. A. H. SCHREINEMAKERS.

(Communicated at the meeting of October 28, 1922).

Equilibria of n components in n+1 phases, when the quantity of
one of the components approaches to zero. The influence
of a new substance on an invariant equilibrium.

For the equilibrium :
E=I"1+In,+.--+ Fn+1 @ & & 9w 5 @ (1)

of n components in n 4+ 1 phases, as we have seen furtherly, are
valid the equations:
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and further:
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to which still must be added the corresponding equations for the
variables z,z,...u, u,... etc. As it is apparent from the number

of equations (viz. n* 4 n) and the number of variables (viz. n* 4 n <4 1),
this equilibrium is monovariant, consequently, in the P,7-diagram
we represent it by a curve, which we call Z.

When in this equilibrinm # all phases with constant composition
contain together only n—1 of the n components, so that in these
phases one of the components f.i. X is missing, then, in the phases
with variable composition the quantity of this component X may
approach to Zero.

Then the equilibrium Z passes into an equilibrium, that we call
FE (x=0) which consists of n—1 components in n -+ 1 phases and
that, consequeuntly is invariant; in the P,7-diagram it is represented
therefore, by a point which we shall call i(2 = 0). This point is
the invariant terminating — or beginning — point of curve Z.

22
Proceedings Royal Acad. Amsterdam. Vol. XXV.



342
As we do approach the quantity of the component X to zero,
we put again:
Z,=2', + RTzx, log z, ,=2',+ RTz,logz, . (4)

etc. In similar way as we have done formerly, now we find:

0Z'

H; dT — V;dP + RTx; +y;d(5—) +... =—dK . (5)

Yy /i

i=1,2....(n + 1)
Z, =u, e, By =Py &y ovo o Bppt = pp1 @, . . - (6)

0Z' 0Z' 0Z',
dit=d-=. .=md-—T—aKk,. . . . (7)

0y, 0y, 0Ynt1 ‘

To these equations (7) must be added the corresponding equations
for the variables z,z,... u, u,. The sign d indicates that there

must. be differentiated with respect to all variables.
Now we add to one another the n-41 equations (5) after having
multiplied the first with A,, the second with A,, etc. Then we obtain :
S (H).dT — 2 (AV).dP + RT = () 4+ = (2y) dK, + g
+ (). dK, +....= — 2 (2).dK - (8
Now we put:
2@M)=0 of A, +A4,+....+4p1=0
2 (2)==0 of 2,2, +2,&, + ...+ Anp1 ¥np1 =0 ‘
2 ()=0 of 2y, + 2y, + ...+ g1 Ynp1 =20
etc. but not = (AH) and = (V).

Then we have n equations, so that that the n ratio’s between
2, A, ... Auyy are defined. The reaction:

M+ AF, .o Py =0 . . . . (10)

which may occur in the monovariant equilibrium £#, when the
quantity of the component X is infinetely small, is, therefore, also
defined. We shall call this equilibrium, which differs exiremely
little from K (x = o) the equilibrium £ (Lim x = o) or shortly the
equilibrium £ (z). With the aid of (9) now (8) passes into:

(@)__E(w) Loy
T)=Fan -

)

wherein 2, 2, are defined by (9).

Consequently the direction of the tangent to curve £ in its
invariant point of beginning or terminating z (¢ = 0) is defined by
(11). The relation (7) (XIX) is, therefore, true also when the quan-
tity of one of the components approaches to zero.
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Now we put:
2 () =0conseq. 2, + 2, +-... + 41 =0 :
> (J.y) =0 " Avi + Ay, + ...+ 1n+1 Y1 = 0
SA)=0 , Az, + 22,4+ ...+ A1 21 =0 . (12)
E(AV);._O » llV,—I—Z’V’—l—....—*—l".*.l Vn+1=0
but not = (az) and = (AH). The n relations between A, 1, ... 241
are then defined again. Those relations now define the isovolumetrical
reaction in the invariant equilibrium £ (z = o).
Now it follows from (8)

RT = (Az)y
= QH)yy
wherein the index V indicates that 2, A, ... 2,41 must be calculated

from (12) consequently from the isovolumetrical reaction.
Also we may put:
2(*»)=0conseq. 4, + 2, +.... 4+ g1 =0 \
2y =0 , Ly, +A4y,+ ...+ pryngr1 =0
S22)=0 ,, A5 +2z+ ...t A1z =0 ). (14)

(d71)e = — (18)

S@AH)=0 , AH +2,H, 4. ...+ di1 Hp1=0
but not = (ax) and = (AV). The relations between 4,2, ... 2,41
are, therefore, defined and by this also the isentropical reaction,
which may occur in the invariant equilibrium E@ = 0). Now it
follows from (8):

R1' = (az)g
dP), = — . 15
@)=~y (15)
wherein the index H indicates that 2, 2,....4,4; must be calculated

from the isentropical reaction, therefore from (14).

From (11), (13) and (15) follows the relation L

SAV).ZEAH)y. =)y + Z(AH). T(AV)g. Z(Ar)y =0 (16)

While the direction of the tangent to curve £ in the point ¢ (x = 0)
follows from (11), formula (13) is determining whether this curve is
going from this point towards heigher or towards lower temperatures
and (15) is determining whether it is going from this point to higher
or lower pressures.

We may express all this also in the following way. When we
add a new substance to an invariant equilibrium, then it becomes

monovariant, the partition of this substance between the different
22%
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phases is defined by (6). By (13) is defined whether the temperature
is rising or falling; by (15) is defined whether the pressure is in-
creasing or decreasing.

We write the isovolumetrical reaction:

W, =2F, 4 ... 20 Fy+hgp1 Fops + ... . . (17)
wherein all reaction-coefficients have been taken positive. Now we
have: .

E(ZH)VSZVH7+)'?+1H<]+1 + "'-_llHl_ziHl_“"
SAa)yy =2ag+ dg1@p1 +- ... — A @, — A @, — ..

Now we assume that we have written reaction (17) in such a
way that it proceeds on addition of heat from the left to the right;
consequently =(AH )y is positive. In order to determine the sign of
2 (2z)y we have to dissolve 2, 4,... from (12) and we must know
the partition of the new substance between the different phases;
this may be found from (6).

In some cases the sign of = (ix)p is known, however, at once
without this calculation. When f.i. the new substance occurs only
in one or more of the phases, which arise in (17) on addition of
heat, consequently in Fy Fyy,...,thenisa, =02, =0...2,,=0
and, therefore = (2z)y is positive. It follows then from (13) that
(dT), is negative.

When, however, the new substance occurs only in one or more
of the phases, which arise in (17) on withdrawing heat, then
Tg g1 ... are zero, so that 3 (iz)y is negative. Then it follows
from (13) that (d7’)r is positive.

When, however, the new substance occurs in both groups of
phases, then only a calculation more in detail may decide on the
sign of = (Az)y and consequently also on the sign of (d7'),.

Now we represent the isentropical reaction also by

WE, 4+ AMF . . ZMF 2 For +.... . . (18)

However, we have to take .in mind, that 4 ,... in this case,
must not be dissolved from (12) but from (14). Consequently in (18)
Ay 2,... shall have not only other values than in (17), but one or
more of them may have also other signs, so that they must be
transferred from the one part to the other. Now we have:

E(ZV)H:)'QV9+17+1V‘I+1 +'-~- ——J'IVI—ISVS_""
SAe)p=MAag+ 121+ ....— 4o, — Az, —....

Now we assume that reaction (18) is written in such a way that
it is proceeding from left to right with increase of volume. Conse-
quently = (2V)g is positive. When the new substance occurs only
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in one or more of the phases which arise at increase of volume, then
(Az)g is positive and, in accordance with (15) therefore also (dP),.

When, however, the new substance occurs only in one or more
of the phases which arise on decrease of volume, then 2(2z)); i3 nega-
tive and therefore, also (d/), is negative.

Hence we may deduce the following rules:

When we add a new substance to an invariant equilibrium
F@=0) then a monovariant equilibrium £ occurs, which we
represent in a P,T-diagram by a curve E; when the new substance
occurs only in one or more of the phases, which arise at the iso-
volumetrical reaction on addition (withdrawal) of heat, then the
temperature is lowered (raised); consequently curve E proceeds
starting from its invariant beginning-point towards higher (lower)
pressures.

In some cases we may also deduce something on the direction of
curve F in its invariant beginning-point in the following way. We
assume that the new substance which is added to the invariant
equilibrium :

E@=0=F, + F,+4....+ Fy+ Fops + . + Fupa
occurs only in the phases Fyy,...F,4, and, therefore, not in
F, F,...F, This is surely the case when F, ... F, are phases of
constant composition. When we take away from the equilibrium #
the phases Fyy;... Fuyy, than we keep an plarivariant equilibrium
F,...Fy; this is vepresented in the P,7-diagram by a plurivariant
region. As curve £ must be situated in this region, hence follows
the said-above. In the special case that the new substance occurs
in" one of the phases only, curve /7 coincides, therefore, with one
of the monovariant equilibria of the equilibrium £ (x = 0).

Before applying those considerations to some cases, firstly I will
draw the attention to some points, which have been already discussed
before. When we know of the isovolumetrical and isentropical
reaction the ratio of the coéfficients 2,4,.... and also in which
direction those reactions proceed on addition of heat or on increase
of volume, then we shall say that those reactions are known quan-
titatively. When we know, however, only the signs of 2, 4, ....
and also in which direction the reactions are proceeding on addition
of heat or on increase of volume, then we shall say that the
reactions are known qualitatively. Then we only know which phases
are at the one side and which at the other side of the reaction-sign.
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When we know of each phase of the invariant equilibriutu £ (x =0)
the entropy, the volume and the composition, then with the aid
of (12) and (14) we may define the isovolumetrical and isentropical
reaction quantitatively. Consequently we are able to draw exactly
the direction of the different monovariant curves in the P, 7-diagram,
we call it a quantitative P,7-diagram.

When we only now both reactions qualitatively, then we can
define only whether the monovariant curves proceed, starting from
the invariant point towards higher or lower temperatures and towards
higher or lower pressures; but then their situation with respect to
one another is still undefined; this we call a qualitative P, 7T-diagram.

We take for example the reactions:

F,+F,2F,+F,+F, AH>0 AV=0

F+F,+F,2F,+F, AH=10 AV>0
of a ternary invariant equilibrium. The first is, according to the
supposition AV = 0, the isovolumetrical reaction and it takes place,
according to the supposition A H > 0 from left to right on addition
of heat. It appears from A H =0 and AV >0 that the second
one is the isentropical reaction and that the volume increases from
lef to right.

In accordance to our former considerations, now we have:

F,+F,2F,+F,+F, A H>0 AV=0
F)F)EF) | (F)(F)

. 19
towards lower T'| towards higher 7 (8)
Fuarther we have:
F,+F,+ F,2F, +F, AH=0 AV>0
FHF) | F)EFE)E)
(20)

towards higher P I towards lower P

In accordance to our previous notation, herein is:

F)=F,+F, +F +F , F)y=F +F, +F +F, et.

Now we know qualitatively the P,7-diagram; we know viz. that
from the invariant point curve (F)) is going towards higher 7" and
lower P; curve (F,) goes towards higher 7" and at the same time
towards higher P, etc.

Inversely we can also find from a qualitative P,7-diagram the
qualitative isovolumetrical and isentropical reaction. When weknow
f.i. that the curves (#,) and (F,) go towards higher temperatures
and (F,) (F,) and (F,) towards lower temperatures, then we have
to construe (19) in the inverse direction viz. from the bottom to the
tep, in order to find the isovolumetrical reaction.
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When we know that (F)) and (F;) go towards higher tempera-
tures, and (F)) (F,) and (F,) towards lower pressures, then we find
at once, by construing (20) in the inverse direction the isentropical
reaction.

Firstly we shall apply those considerations to a simple case viz.
to the addition of a new substance to the invariant unary equili-
brium EK@=0=F+ L+ G. The P, T-diagram may belong to
two types, viz. when the volume decreases, on melting of the solid
substance, then fig 1 is true; when the volume increases, then fig 2
is valid. The regions in which occur the phases F, L and G are
indicated by the same letters, but in a circle; the curves are repre-
sented by (F), (L) and ((); in accordance with our notation is
(F): L + G, ete.

When we add to /' (x=0) a new substance, which occurs only
in the liquid, then the monovariant equilibrivm £= F 4+ L 4 G
arises; when we take away from it L, then we keep the eqnilibrinm
F4 G= (L.

Curve E coincides therefore in figs 1 and 2 with curve (L) of
the invariant unary equilibrium E (2 = 0).

Fig. 1. Fig. 2.

When we add a volatile substance, then e musl take away
from the monovariant equilibrium the phases L and G, so that we
keep F only. Therefore, curve £ must be situated in the region £,
as f.i. ta, b and vc in the figs 1 and 2.

When we add a substance, which is not volatile, which gives,
however, mixed-crystals with #, then we must take away from the
equilibrium £ the phases F and L, so that the vapour G' only
remains. Therefore, curve £ must be situated in the region (.

We may obtain also these results by using the qualitative iso-
volumetrical and isentropical reaction, which we can deduce easily
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from the figs 1 and 2. It follows tfrom the position of the curves
in fig 1.
towards lower 7'| towards higher 7'

(21)
@@ (F)
F2L+@ AH>0 AV=0
and
towards higher P | towards lower P
l : ‘ (22)
(F) (@ (L)
L2F+ @G AH=0 A V>0

so that both reactions are known qualitatively.

Now we add to this equilibrium E{(x =0)= F + L 4 (7 a sub-
stance, which occurs in the liquid only. As in the isovolumetrical
reaction (21) L is placed at the right side of the reaction-sign,
consequently, in accordance with our rules, 7" is lowered; as in the
isentropical reaction (22) L is placed at the left side of the reaction-
sign, the pressure is also lowered, therefore.

Consequently in fig. 1 curve ZE proceeds starting from point ¢
towards lower 7' and P; this is in accordance with the deduced
above, that curve K coincides with curve (L) in this case.

When we add a volatile substance, than it occurs in L and G.
As both those phases are placed in (21) at the right side of the
reaction-sign, consequently 7’ is lowered. As L and G are placed
in (22) at different sides of the reaction-sign, the pressure may be
as well increased as decreased. Therefore, curve  may be represented
by ia or ¢b in fig. 1. Which of these curves may occur in a
definite case, cannot be deduced in this manner; we are able to do
this, as we shall see further, with the aid of the quantitative reactions.

In order to deduce the qualitative reactions from fig. 2, we write:

towards lower T'| towards higher T’

Co L. (29)
(L) , (F) (G)
F+G2L AH>0 AV =0
and
towards higher P| towards lower P 24
(F) (G) (L) =
L2F4+ @ AH=0 A V>0,

When we aid a new substance, which occurs in L and G, then
we find that curve £ may be represented in fig. 2 by ia, b or ic.
It is apparent from the previous that by simple considerations
we may deduce already something about the direction of curve E
from the qualitative P,7-diagram of an invariant equilibrium £(z =0).
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When, however, we know the quantitative reactions, then we are
able to deduce not only the quantitative P,7-diagram for the equili-
brinm FE(@@=0) but also (d7’); and (dP), for the equilibrium £
and consequently we can define exactly the direction of curve F.
When we represent entropy and volume of F by H and V, of
L by H, and V, and of G by H, and V,, and when we assume
that the substance melts on decrease of volume, then we have:

H,2>H >H and V,>V>V, . . . . (25
We write the isovolumetrical reaction :
F+AsL+A,G=0. . . . . . . (26)
As, in accordance with (12):
14+ A +2,=0and V+4, V, +2,V,=0 . . (27

"it follows:
) A e 28
F oy oy, M A=y (28)
so that 2, and 2, are both negative. Instead of (26) we now write:
F2MLL4+2,6. . . . . . . . (29
wherein
V,—V V—V.
By =ast == — .
g and 4, V7, (30)
and
SAHy=MH, +MH,—H . . . . . (3])

Now we may prove that = (AH)y is generally positive, so that,
on addition of heat the isovolumetrical reaction (29) proceeds from
left to right.

In a similar way we find for the isentropical reaction:

pm, LZF4+p, G . . . . . . . (32

and
2@AV)g =V +u,V, —uV,
wherein
H,—H H —H
u = H—H, en u, = T—F; (33)

so that u, and u, are both positive.

As = (AV)g is positive, reaction (32) proceeds from left to right
with increase of volume.

With the aid of reactions (29) and (32), as is discussed in previous
communications we now can deduce the P,7-diagram quantitatively;
then we find fig. 1.

Now we add a new substance which occurs in the liquid only.



350

When we call its concentration x, then we have:
2 (A2)y = 2, and X (la)y = — p,2,
so that, in accordance with (13) and (15):
— RT p,a,
> @H)y =@V’

(34)

Consequently in fig. 1 curve E proceeds, starting from point ¢
towards lower P and 7.
It follows from (33):

(dP)__ w2 —H+3,H,+iH,_H—H )

ﬁx_ll.vnv‘_{—“lV’—prl _V:—V )
Hence it ap\pears that in fig. 1 curve I coincides with curve (L).
Also we may find (34) at once with the aid of (9) and (11). We
put viz.:
2@MN)=142,4+4,=0 and ZA)=2Az, =0
so that 2, =0 and A, = — 1. Hence it follows:
2 (AH)=H—H, and X AV)=V—V,,
consequently for (11) the same value as in (34).
Wlhen the new substance occurs in liquid and vapour with the
concentrations x, and x, then we have:
in accordance with (29): = (Ax)y = A, @, + A,a,
and in accordance with (32): > Q) )g = — u,2, + p,,
so that (d7), and (dP), are known again. We see that (d7T), is
negative, but that (dP). may be as well positive as negative. Curve

E, therefore, may be situated in fig. 1 as ia or 76.
When we put:

m_Hd—H (36)
u, H—H )
then is
2 (la)g =py (e,—Ka)) . . . . . . (387)

wherein, in accordance to (35), K > 1.
Now we find:

for %> K is (dP), > 0; consequently curve E goes, starting
from point ¢ towards higher pressures;
for z—’<K is (dP); < 0; consequently curve FE goes, starting
1

from point ¢ towards lower pressures.
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When fi. is K =5, then the concentration of the new substance
in the vapour must be at least five times as large as in the liquid,
that curve E is proceeding towards higher pressures, starting from .

In order to define the direction of curve /' we define the values
of 2, and A, according (9) from:

142 +4=0 and A2, + Ao, =0
(11) then passes into:
(dP @, (H,—H)— «, (H,—H)

dT x— Ty (Vl— V) — &, (V,—— V)
by which the direction of curve £ is defined. This direction, as
follows from (37), is dependent on the partition (x,:a,) of the new
substance between gas and liquid. Also it follows from (37) that
curve E must be situated between the curves (L) and (G).

We now add a new substance which forms mixed-crystals with
F, but which does not occur in the vapour. When we represent

its concentration in ¥ and L by x and z, then it follows from (29)
and (32):

(38)

2 M)y =22, —a and 2 (Ao)g =« — p,x,

consequently :
RT (2—2,,) and (dP), — RT (x—p,x,)

@0="5 asyy SRy

It is apparent from (30) and (33) that 2, <1 and p, >1, but
also that 2, differs very little only from 1. It follows from (39):

for —>u, is (d7):> 0and (dP); >0;
wl
Curve E is situated then, f.i. like curve id in fig. 1

for u,>~:i >12, is @T):>0 and (dP), < 0;

Curve E is then situated, f.i. like curve e in fig. 1

(39)

for <2, is (AT):<0 and (dP),< 0;
wl

Curve E then is situated f.i. as curve i f in fig. 1.
In order to define the direction of curve £ we take in accordance
with (9):
@A =14+24+2=0 and 2 (Ae)==« + 2,2, = 0.
With the values of 2, and 2, which follow from this we find for (11):
dP\ ,(H—H)—« (H,—H,)
(ﬁ)xzw. (V,=V)—=(V,= V)

(40)
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so that the direction of curve F' is defined.

Also it is apparent from (39) that £ must be situated betwpen
the curves (F) and (L).

Finally we shall assume that the new substance divides itself over
the three phases, we call its concentration in F L and G zx, and
z,. We now have according to (29) and (32):

Sy =—a + Ae, + A2, and 2 (A)g =2 — p,2, + e,
wherein 2, +2,=1 and u, =1 -+ u,, so that (d7T"), and (dP), are
known. -

We now put:

2(Ax)y =rand 2 Ax)pg=s . . . . . (4])

As we are able to satisfy (40), independent on the values of
r and s, by positive values of x x, and «,, it follows that curve £
may go in every direction starting from point ¢. It may be situated,
therefore, not only in one of the regions F and (, but also, like
f.i. curve g, in the region L. Of course its situation is dependent
on the partition of the new substance between the three phases.

The same considerations as for fig 1 are also valid for fig 2, for
this we have to examine however more in detail the occurrence ot
curve ic.

" Instead of (25) we have for fig 2:
H>H >Hand V,>V, >V . . . . (42

As A, is negative now, in accordance with (30) the isovolumetrical
reaction passes into:

F4+23,@20L . . . . . . . (43
wherein:
A I_V
i = V.V, and 1, = I_f,—Vl
so that

3 ((AH)=2H, — H—1,G
is generally positive; reaction (43) is proceeding therefore, on addi-
tion of heat from left to right.

When we now aid a new substance, which occurs in liquid and
vapour, then we have: = (Az)y—= 4,2,—2,2,. In order that (dT),
is positive, =(Az)y must be negative, consequently :

.’U_’>ﬁ or ﬁ Z’_V .
z, 7 2, z,” V,—V

As in general V,—V is some thousand times larger than V,—V
curve ic therefore can, occur only in the very special case that the
concentration of the new substance is some thousand times larger
in the vapour than in the liquid.

(44)
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We may summarize some of the previous deductions in the
following way.

When we add a new substance to an invariant unary equlibrium
E@w=0)=F+ L+ G, then an equilibviom EL=F+4 L+ G
arises that is represented in the /’,7-diagram by a curve E; this
curve begins in the invariant point ¢ of the equilibrium E(x = 0).

When the new substance occurs in the liquid only, then curve &
coincides with curve (L) = /'+ G of the system F(xz=0).

When the new substance is occurring in liquid and vapour then
curve £ is situated in the region /7; its direction is defined by the
partition of the new substance between vapour and liquid. A curve,
like ic in fig. 2 may, however, occur only in very special
circumstances.

When the new substance is occurring in liquid and solid phase
(consequently with formation of mixed crystals) then curve Z is
situated in the region (; its direction is defined by the partition of
the new substance between mixed crystals and liquid.

When the new substance occurs in the three phases, then curve
E may be situated in each of the three regions; its direction is
defined by the partition of the new substance between the three
phases.

(To be continued).

Leiden, Lab. of Inorganic Chemistry.





