Physics. — “On WHITTAKER'S Quantum mechanism in the atom’.
By Prof. H. A. Lorentz.

(Communicated at the meeting of October 28, 1922).

§ 1. Some months ago WHITTAKER ') has proposed an interesting
model by means of which the quantum properties of the atom can
be accounted for to a certain extent, the model showing in the first
place how it may be that, in the collision of an electron against
an atom, the former loses either no energy at all, or just a definite
amount of it. In what follows 1 shall offer some remarks about the
action between an atom and an electron, as it would be according
to WHITTAKER'S views.

WHITTAKER supposes that, when an electron approaches an atom,
a ‘“‘magnetic current” is set up in this particle, comparable with the
electric current that is excited in a diamagnetic particle by the
approach of a magnetic pole. In this latter case the induced current
makes the particle repel the pole (Lenz’s law) and similarly in the
former case the magnetic current gives rise to a force tending to
stop the motion of the electron.

The theory takes the simplest form when it is assumed that there
are not only ‘‘electric charges”, but also ‘“‘magnetic”’ ones, accumu-
lations of positive or negative magnetism. By the introduction of
these into the fundamental equations, the parallelism between the
electric and the magnetic quantities can be clearly brought out.

§ 2. Let o be the density of the electric charge, v the velocity of
one of its points, and similarly u the density of magnetic charge,
w its velocity; further d the electric force or the dielectric displace-
ment in the aether, and h the magnetic force or magnetic induction.
Then we have the fundamental equations

dvd=9, . . . . . . . . . (1)
dvh=g, . . . . . . . . . (2
roth::l—(d'—{—gv), T )
1 .
rotd=—;—(h+uw) N )]

) E. T. WHITTAKER, On the quantum mechanism in the atom, Proc. Royal
Society Edinburgh 42 (1922), p. 129.
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The force with which the field acts on unit of electric charge is
given by

1

f=d+—c—[v.h] s % 5 % ® & & v [B)
and there is a corresponding force
1

g=h—7[w.d]. ‘ S ()]

acting on unit of magnetic charge.

Remarks on the fundamental equations.

1. In order to simplify the mathematical treatment all quantities
occurring in the equations are considered as continuous functions
of the coordinates.

2. We shall suppose that, while points of an element of volume
move with the velocity v varying from point to point, the electric
charge of the element remains constant, so that the density o changes
in the inverse ratio as the size of the element. We shall make a
similar assumption concerning the magnetic charge. By these assump-
tions the distributions, both of the electric current d+ oV and of
the magnetic current h + uw are made to be solenoidal, as they
must be if equations (3) and (4) shall be true.

3. For the sake of generality we have introduced different symbols
v and w for the velocities of the electric and the magnetic charges.
These charges may be imagined as penetrating each other and
having independent motions.

§ 3. The fundamental equations form a consistent system and
are in good agreement with ideas and theorems which physicists
would be very unwilling to give up.

The force acting on the electric and the magnetic charges con-
tained in an element of volume, taken per unit of volume, is
given by

1 1
of +ug=9d+uh +lev.h] — —[uw.d]

and for the z-component of this force one finds after some trans-
formations
et i ne= o T T

where
27
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X;=4(d:" —d/ —d:*) + § (he' — hy' — h.'),
Xy = dx dy + hz hyy Xz = d:c dz + hx hz' etc.,

G=i[d.hj.
¢

This shows that the ponderomotive forces can still be expressed
by means of Maxwer1’s stresses and of the electromagnetic momen-
tum G. It should be noticed that this is possible because we have
the positive sign in (5) and the negative sign in (6).

The well known expressions for the electric and the magnetic
energy and for the flow of energy likewise remain unchanged.
Indeed, starting from the fundamental equations, one finds for the
work, per unit of time and unit of volume, of the forces exerted
by the field

0E )
ef-v)+(wg-w)=— - —dvS,
E=4{d +h’) S=c[d.h]
§ 4. If the distribution and the motion of the charges are known,

the field can be calculated by means of two scalar potentials ¢, x
and two vector potenlials @, b. These functions are given by the

formulae
1
(p:L MdnS, x:rfﬂds,

4w r r 1 r
1 1
- f vl p= Tewl o
4me r 4me r

in which the integrations have to be extended over all space. The
distance from the point for which one wants to determine the poten-
tials for the time ¢ is denoted by » and the meaning of the square
brackets is that the quantities ¢, etc. have to be taken such as they

. r
are at the time ¢ — —.
c

In terms of the potentials we have for the field

1.
d=— —a—gradp—roth,
¢

T «
h=—7b-—gradx+rota.

§ 5. We shall now suppose, following WHITTAKER, that in the
atom there is a circular ring R, over which magnetism is uniformly
distributed. We shall consider it as very thin, so that we may speak
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of a “line”, and we shall denote by a the radius and by £ the
amount of magnetism per unit of length. Let the centre O be taken
as origin of coordinates, the axes O ¥ and O Z being in the plane
of the circle, and let s be the distance from a fixed point, measured
along the circle. The positive direction of s will be determined by
the rotation O 7 — O Z, and will therefore correspond, as we
shall say, to the direction of ) X. We shall finally suppose the
ring to be a rigid body that can only rotate about O X, and we
shall in the first place calculate the couple acting on it when an
electron with charge ¢ moves in the neighbourhood. '

The force on an element ds is kgds and its moment with
respect to O X akgsds=akhsds. Thus the resultant couple is

alcj hyds, where the value of the integral may be deduced from

(3). For this purpose we imagine some stationary surface ¢ having
the circle R for its boundary and the normal n to which is drawn
in a direction corresponding to the positive direction of s. Then, if
this surface does not intersect the electron,

heds= [ dvis="2 (d,do 7
j s -S_*c—f n(o—-jztfn 0 . . . . . ()

We shall suppose the motion of the eleciron to be so slow and
to change so slowly that it may be said, in any of its positions P,
to be surrounded by the electric field that would exist if the electron
were at rest in that position. Then the last integral in (7) has the value
e . . .
= if o is the solid angle subtended at P by the ring R, the
1 4
sign of ® depending on the direction, towards the positive or the
negative side, in which straight lines drawn from P pass through
the surface. Hence, the equation of motion of the ring will be (¥
angular velocity, Q moment of inertia)

dd ake do
Q_.

dt 4dmxc dt (8)

If this equation is to hold for a certain lapse of time, the surface
o must be chosen in such a way as not to be traversed by the
electron during that interval.

Now, two cases must be distinguished, the electron passing or
not passing across the circular plane within the ring, or, as we
shall say, through the ring. In the latter case, 6 may be made to
coincide with the circular plane and we shall have, both before
and after the encounter, if the electron is at a great distance,

27*
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w=0. In the former case this will not be true. Let us suppose
that the electron goes through the ring once, in the positive direction,
and let A and B be two positions, before and after the encounter,
both far away from the ring. Then, whatever be these positions,
provided only that they do not coincide, we can choose the surface
6 in such a way that it is not infersected by the path of the
particle from A4 to B, and that o =0 at the point A4. It is easily
seen that then the final value will be w = 4ax.
Bij integration of (8) one finds

3:8,+Ec—éw, P CIE PR S (9)

if 9, is the angular velocity which the ring may have had before
the encounter.

§ 6. We have next to consider the motion of the electron. The
rotation of the ring constitutes a magnetic current

iz=ak® . . . . . . . . . (10)

giving rise to an electric field that is easily determined if we sup-
pose it not to differ appreciably from the field that would exist if
¢ were constant. The calculation, exactly similar to that of the
magnetic field due to an electric current (the vector potential b is

first determined and then d = — rotb) leads to the result
4. — i 0w 4, — i Ow _ { 0w T
FE T meds YT T imeyy T iz 0D

from which, combined with (10) and (9), we can deduce that the
force ed acting on the electron depends on a potential
ake a*k? e

= — o . . . . . (12
A dme *” 32.7r’c’Qw (23)

If we wanted exactly to determine the motion we should also
have to take into account the force with which, owing to its velo-
city, the electron is acted on by the magnetic field that is due to
the ring and to stationary magnetic charges eventually existing in
the atom, and so the problem would become very difficult. Since,
however, the latter force does no work, we can write down the
equation of energy

tmo*=4mo}—, . . . . . . . (13)

(v, the initial velocity at a point where w — 0) and this is sufficient:
for some interesting conclusions.
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Indeed, if the electron has not passed through the ring, we shall
have finally @ =0, ¥ = 0, so that at the end of the encounter the
angular velocity of the ring and the velocity of the electron will
again have their initial values ¥, v,. This will also be the case if
the electron goes twice through the ring, first in the positive and
then in the negative direction.

If, however, it goes through the ring no more than once, the
final value of w will be 4x and according to (12) and (13) the
electron will have lost an amount of energy

ake a’k’ e
_c_8° + 2¢Q°

The ring will have gained just as much. This follows directly
from (9) and also from the remark that, as may be seen by (9)
and (13),

fmo* + 4 Q9
remains constant during the motion.

In the case %, =0 the energy that is imparted to the ring by
an “effective’’ encounter is given by

a'k’e
2¢*Q

This agrees with WHITTAKER’S result. In his calculations he has
confined himself to a motion of the electron along the axis of the
ring, but the preceding considerations show that the theory can
easily be generalized. However, it is also seen that, if in an effect-
ive encounter the ring is to receive the amount of energy repre-
sented by (14), the rotation which may have been imparted to it
by a previons encounter, must first have disappeared in one way
or another.

(14)

§ 7. If, in the case &, = 0, the electron is to pass through the
ring for good and all, it must initially have at least the amount of
energy (14). If it has less, it can by no means get beyond a point,
where

Y=4mov, , o= .Vm_Q N ¢ 1))

Such a point is really reached, the electron returning after having
got to it, when the motion is along the axis. In general, however,
the problem is less simple. The locus of the points which satisfy
the condition (15) is a surface limited by the circle B and having,
for a somewhat high value of v,, the shape of a wide bag lying
on the positive side of the circle, which forms its opening. An
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electron that flies into this bag can never leave it across the surface
which it will perhaps not reach at all. Indeed, it may be that,
before the velocity is exhausted, its direction comes to be tangential
to a surface w — const., characterized by a value of w smaller than
the one given by (15). It seems probable that in such a case the
electron, after having moved in the bag for a certain length of time,
will leave it through the opening, but it is difficult to make sure
of this. !)

§ 8. In WHiTTAKER’s model the ring R is made up of the poles,
of equal signs, of a number of magnets arranged along radii of the
circle and having their opposite poles at or near the centre. It might
seem at first sight that in a structure of this kind the magnets can
be replaced by perfectly conducting solenoids carrying pre-existent
electric currents, so that we can do without magnetic charges.

In reality, however, no satisfactory model can be obtained in this
way. This is seen most easily when the electron is supposed to
move along the axis O X. In the magnetic field due to this motion
the lines of force are circles around the axis, and therefore the force
acting on an element of current at a point P, is directed along a
line lying in the plane P> O X. For such a force the moment with
respect to O X is zero; consequently, neither a solenoid nor a system
of solenoids can be acted on by a couple tending to produce a
rotation about O X.

Thus it would seem that the hypothesis of ‘“‘magnetism’ existing
independently of electric currents is quile essential in WHITTAKER'S
model. I need not speak at length of the reasons for which such an
assumption is not to be readily admitted. Let it be remarked only
that the equations (1)—(6), though forming a consistent system, do
not allow us to establish variation theorems of the kind of HamirToN’s
principle. In this principle we are concerned with the difference
between the potential and the kinetic energy, so that, in the equations,
the two energies do not occur in the same way. Now, if there are
only electric charges, we can, as is well known, arrive at an equation
of the Hamiltonian form, in which 4d* takes the place of the
potential and sh® that of the kinetic energy. If there are only magnetic
charges, there is a similar formula, in which, however, the electric

) An interesting discussion of this question has been given (Phil. Mag. 44, 1922,
p- 777) by Mr. B. B. Baker, wo has considered the case of an electron not moving
along the axis of the ring, without, however, taking into account the forces that
may arise from the existence of a magnetic field.
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and the magnetic energy have changed their parts. It is clear that
it must be difficult to combine the two theorems into one.

I must not omit to say that WHiTTAKER does not want to attach
too great importance to the special form of his model. He aptly
remarks that, after having obtained a satisfactory system of equations,
we may discard the model hy which we have been led toit. What
is especially interesting in WHITTAKER'S idea seems to me to be this,
that it shows the possibility of a sharp criterion by means of which
it can be decided whether an encounter is effective or otherwise.
Such a criterion there must certainly be.

§ 9. Generalization of the model. Suppose that there is in the
atom a definite closed circuit s, in which a magnetic current ¢ may
circulate, the energy being 4 L:*. Then we have the differential

equation
di
L— = | h,ds,
dt f h. ds

or, if an electron moves near the atom,
dr e dw
Jd_t__—;j;t_(;.d;'
Take this instead of (8), and combine it with (11). The amount
of energy that is (ransmitted in an effective encounter (initially

t=20) is now found to be
e!
2¢'L
In order to obtain a ‘“vibrator”') we can link the circuit s with
another circuit s, in which an electric current can circulate (no
resistance, energy 3 L':*); indeed, we have
& 1, L 1,
—=—1 . L — = .
dt ¢ dt ¢
The frequency is given by

(16)

— 1

1
Y= 2adVILL
If now an electron passes through the circuit s in a time that is
short in comparison with the period, the vibrator receives the
amount of energy (16) and this amount will subsequently be radiated.
It will be equal to Av if
e’ 7
e —i=h.

1) Cf. WHITTAKER, l.c. § b, p. 139.
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One can also try to illustrate other phenomena by means of the
model. In its passage from one stationary state of motion to another
an electron may be imagined to go through the circuit s of a
vibrator, so that the energy which it loses is first imparted to the
vibrator and then radiated by it. Conversely, after having taken in
some way from a beam of incident light the energy /v, the vibrator
could give this energy to an electron that passes through it at the
right moment. But in all this we are confronted with very
serious difficulties.





