Mathematics. — ““A theorem concerning power-series in an infinite
number of variables, with an application to DIRICHLET’s ')
series.” By H. D. KroosTerMaN. (Communicated by Prof.
J. C. KLuyvEer.)

(Communicated at the meeting of March 24, 1923).

§ 1. An important relation between the theory of DiricHLET’S
series and the theory of power-series in an infinite number of variables
(for abbreviation we shall write: power-series in an i. n. of v.) has
been discovered by H. Bour?®). Let
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where p,, pn,, ... pu, are the different primes which divide n.

Then the series (1) can formally be written as a power-series in an

i.n. of v., thus:
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This relation has been applied by Bour to the so-called absolute-con-
vergence-problem for DiricHLET’S series, that is to say the determ-
ination of the abscissa of absolute convergence of (1) (the lower
bound of all numbers 3, such that the series (1) converges for
0 > 8, in terms of (preferably as simple as possible) analytic
properties of the function represented by (1). Let B be the abscissa
of absolute convergence of (1), and D the lower limit of all numbers
a, such that f(s) is reqular and bounded for ¢ > «. The absolute-
convergence-problem will be solved, if the difference B— D is
known. Bour proves that B—=— D for any DIrICHLET’s series that
can be formally represented in one of the following forms:

1) A more detailed proof of the theorem will be published elsewhere.
%) Gottinger Nachrichten, 1918.
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or, what comes to the same thing, for any DIRICHLET’S series for
which the connected power-series in an i.n. of v. has one of the
forms
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where Q,(x,)(n=1,2,....) is a power-series in @, without a con-
stant term. The equality 3= D is a consequence of the theorem :

If: a. The series is bounded') for |z,| < G.(n=1,2,....), then

b. it is absolutely convergent for ]:c,,|g¢9G,,, where @ is an
arbitrary positive number in the interval 0 <6 < 17).

Now, if we consider the power-series (2) and (3), we see that
the variables a, occur to some extent separated from one another.
This led Borr to the conjecture, that the equality B = D would
hold for any DiricHLET’s series, for which the variables in the con-
nected power-series in an i.n. of v. do not occur too much mixed up.
Confirmation of this conjecture is the purpose of the present com-

1) According to HinBerT (Wesen und Ziele einer Analysis der unendlich vielen
unabhiingigen Variabeln, Palermo Rendiconti, vol. 27, p. 67) a power-series in an
i. n. of v. is defined to he hounded if:

19. The power-series P (2,, Xy, . .. Tw) (AbSchnitte), that may be obtained from
the power-series in an i.n. of v. by putting Tm+41 = @m42 =...=0, are, for all
values of m, absolutely convergent in the region |z,|< Gy, |22] < Gy, .... |Zm| < Gn.

20, There exists a number K, independent of m, such that, for every m, the
inequality

| Pu(®y, @y ... 2m) | < K

holds in the region |z;| < Gy, |7y < Gy, .... |Tm| < Gm.

Y It is well known, that b follows from a for any power-series in a finite
number of variables. Originally HILBERT had assumed this also, as being self-evident,
for an i. n. of v. But BoHR showed that this could not be true by constructing an
example to the contrary.
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munication. In fact it can be proved that B — D holds for any
DiricHLET’s series that can formally be written in the form

f(a) =@ =z

where ¢ is an arbitrary (non-constant)') integral function. As a
consequence of the relation, already mentioned above several times,
the following theorem concerning power-series in an i. n. of v. is
equivalent to this statement.

Theorem. 1If ¢ is an integral function and Q.(z,) (n=1,2,...) a
Jormal®) power-series in &, without a constant term, and if the
power-series in an i. n.ofv. P(x,,2,,....&m,.... )= ¢ (Q,(x,) + Q,(z,)
+.... + Qu(z,) +....) is bounded for |z,| L G.(n=1,2,...),
then it is absolutely convergent for |a,] < G, if0Lo<1.

[n the following pages an outline of the proof of this theorem
will be given.

§ 2. For the sake of simplicity we take ¢, = @, =....=G, =
= G>1, but 9 G 1.

Because the given power-series in an i.n. of v. is bounded, there
exists a number A, not depending on m, such that

‘ q’(Ql (wl) + Qa (.1-',) + vz =k Qm (-'vm)) | < K. A . . (4)
The ftirst part of the proof of the theorem of § 1 discusses the
power-series (Q, (x,) m=1,2,....). It is proved that it follows from

(4) that all these power-series possess a certain region of conver-
gence. Further research shows that two cases may occur:

1*. The functions Q. (x,) are all regular for |x,|< G. This is the
general case.

' y
2°. If the integral function ¢(y) has the form V(eM) (where V
is again an integral function), then it is only possible to conclude
that the functions @, (x,) are logarithms of functions regular for
|za|< G, namely that they have the form Q, (x,) = log (1 4+ R, (x4)),
where R, (z,) is regular for |z,|< G, and R, (0)=0%).

) If ¢ is a constant, the theorem is trivial.

%) That is to say, the existence of a region of convergence is not assumed, but
will appear to be a consequence of the other assumptions.

8) It is interesting to observe, that obviously the series (2), with p(y) =1y,
falls under the first case, and the series (3), with o(y) = ¢Y, V(2) = 2, under the
second case.
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For shortness’ sake we confine ourselves to the first case. (The
proof in the second case is not essentially different, though in details
more intricate). Then the functions @, (x,) are, because G'>1, all
regular in their resp. circles |«,[<1.

For any function f(z), regular for |z/<1, and for which £(0)=0,
we now define a number » as follows: r is the radius of the largest
circle, of which all points represent numbers assumed by f'(z) in
the circle *z|< 1. Let »,(n =1, 2,...) be the corresponding quantity

o0
for @, (x,). Then we first prove, that the series = 7, converges.

=1
For this purpose we consider (4), valid for all sets of values of
&y, &y .. . Ty, Satisfying |.v,,| < G(n=1,2,....m),and,a fortiori, for

all satisfying |.'v,,{<1. Because ¢ (y) is an integral function, it is
possible to choose a number [ so large, that the maximum value of
lp ()|, on the circle |y|= L, is > K. Now suppose that, for some

value of m, »,+»,+.... 4 7, > L. Then the maximum value of
@ (y)| on the circle |yj=», +r,4....+7u would be > K.
Now if we let the variables a, (n =1, 2, ....m) describe their resp.

circles |,| < 1, then Q, (x,) assumes all values satisfying | Q, (a,)| = .

Hence y = @, @) + Q, (¢,) + . ... + Qu(x,) assumes all values
satisfying |y| =», + », + . ... 4 . Therefore it would be possible
to find a set of values &'\, 2,,....a", such that

¥= Ql v(x'l) t Qa (‘”':) + oo+ Qu@n) = (rit+r+. .+ )ei\b'
where (r, + r, + .... 4 1,) ¢ represents (hat point of the circle
lyl=r, 47,4+ ... 4+ rn where |¢(y)| assumes its maximum value.
Therefore we should have

L (Q (') + Q, (') + ... F Qu(a'n)) | > K,

contradictory to (4). Therefore the supposition r 4,4 ... 4, >L
can not be true. Since /[ is independent of m, this proves the

@

convergence of = r,.

n=1

We now apply the following theorem of BoHr'):

Let the function f(2) = 2 a, 2" (f(0) = 0) be regular for |z | 1.
n=1

Let M (o) be the maximum value of | f(z)| on the circle |z|=0¢

(0<{o<1). Then, if » is the quantity defined above, we have

7'>AfM(()), where £ is a number which depends on ¢ only (£ is

1) Not yet published.
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therefore the same for all functions satisfying the assumptions of
the theorem).

Hence, if M, (o) is the maximum value of |Q, (x,)| on the circle
|2, | =90 (n=1,2,...), we have r, - k M, (¢). Since we have

proved that > ry is convergent, it now follows that the series = M, (o)

n=—1 n=1
converges also (for ¢ <1). From this fact the theorem of §1 can
be easily deduced.

For let Q, (z,) = 3 ag') Am=1,2,... ). Then

p=1
My) (n=1,2,...
) | & ———3 1).
<0 )<
If ©=6 G (where @ is the constant of § 1), then it follows
146
that, if @ <o <1, (we take for example o = _{2_ ),

2 0 M,(o)
1—6

S | am| Or<
=t F
Hence the series
®
3 || 6r,
n=1 p=1 p
is also convergent. This proves a fortior: the convergence of the
given power-series in an i. n. of v. for ]ar,,ggﬁ):ﬂ(}(n_—_],l..),
It cannot be denied that the assumption, that ¢ is an integral function,
is somewhat unaesthetic. However, the author has not succeeded
in dealing with the more general problem, where ¢ is an arbitrary
(purely formal) power-series. In any case the method described does
not give the required result in the more general case.

Copenhagen, November 1922.





