Chemistry. -— “/n-, mono- and divariant equilibria.” XXII1. By
Prof. F. A. H. SCHREINEMAKERS.

(Communicated at the meeting of March 24, 1923).
Fquilibria of n components in n + 1 phases, when the quantity
of one of the components approaches to zero. The influence

of « new substance on an mvariant equilibrivm. (Continuation).

We write the isovolumetrical reaction of an equilibrium £ (@ =0):

LF A E, .. =0 H)y >0 SaV)=0. . (1)
and the isentropical reaction:
w, Fo+p, Fy b o =03 (uH) =02 (nV)g>0. . (2)

Consequently in reaction (1) are formed on addition of heat and
in reaction (2) on increase of volume those phases, which have a
negative reaction-coefficient. We have, therefore:

S@Me)yy=—2 &, —A e, — en X (ur)g=—p, &, —u, &, —

When we subtract both reaction-equations (1) and (2) from one
another, after having multiplied the first one with u, and the
second one with 2,, then we find the reaction:

(g — A ) Py + (0 2y — 2 ) i+ ... =0 . . (3)
wherein the change of entropy is u, = (A H)y
and the change of volume is — A, = (uVp).

As (3) represents the reaction, which may occur in the equilibrium
(F)=F,+ F,+ ..., we have
(d_[,) — M Z Ay (4)
ar), W E@ne T

1
[

aPyN . . L , - . .
Herein (Tj,\) indicates the direction of curve (/7)) in the invariant
(¢ 1

point. In the same way we find:
(dP) e ,2,(“,1)"; (‘”3) — = GH)y etc. (5, 6)
ar), 2, 2@WV)u \JT), 3, 2wV
As we are able to deduce from (1) and (2) also the direction of
temperature and pressure of the different monovariant curves, the
P, T-diagram is, therefore, quantitatively defined.
Now we add to the equilibrium a new substance X, which occurs

19
Proceedings Royal Acad. Amsterdam. Vol. XXVL



284

in the phases F, F,... with the concentrations z, z, ... In accor-
dance with (13) and (15) (XXII) we now have:
> (AH
—%’,(dT)zzl, o+ e, +.... =—Z@A)y. . (7)
2V
—(—;ﬂ‘]_'lq.(dp)'r:_“lxl WUy ... =2 (o). . (8)

With the aid of (4) etc. we may also write for this:

= (uV arT dT
—(—M_E'(d]‘)l':_wll‘l(ﬁ),_w!”!(ﬁ)’_ L (9)

RT
= (AH)y P ar
W‘_ . (dP),: &, )'l ((ﬁ)l -+ Ty A: (d—P), + L (10)
It follows from (8) and (9):

(d_T) S (‘ﬁ) - '"’“’—.(d—T) — ..oy

dP), 2 (ux)g \dP), =2 (ux)g \dP),
from (7) and (10) it follows:

(Q) — __w‘z’ (@) _LXL (f . (12)

T ). > @a)y \d7),” = () \d7), '

and from (7) and (8):
2 @V)a (apP R + uy 2, + ..
WW ﬁ)r— N A’l"vl _+'_AQ‘T: + ...

From (7) we see that we are able to express (d7"), with the aid
of the isovolumetrical reaction (1); it is apparent from (9) that,
however, we cannot express (d7'), with the aid of the isentropical
reaction (2) only, but that we must know also the directions of the
monovariant curves (/) (F,)... of the equilibrium £ (x = 0).

It appears from (8) that we are able to express (dP), with the
aid of the isentropical reaction (2); we see, however, from (10) that
we cannot define (dP), with the aid of the isovolumetrical reaction
only but that we must know for this also again the directions of
the curves () (F),)...

The direction of the monovariant curve E can be defined, as is
apparent from (13), with the aid of the isovolumetrical and isen-
tropical reaction; it follows from (11) and (12) that it can also be
defined with the aid of the directions of the curves (/) (F,)....
and one of both reactions.

(13)

When we add a new substance X which occurs in one of the
phases only, f.i. in /', than we must put in (7)—(13) 2,=0 x,=0...
As now X (Ax)y= —4, x,, it follows from (12):

dP _ dP 1
D=
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which follows of course immediately from (11). Consequently curve
E and (F)) have the same tangent in the invariant point. It follows
from (7) and (8) that they go also in the same direction of tempe-
rature and pressure, starting from (his point. When viz. 2, is
positive, then it follows from reaction (1) that curve (F)) goes
towards higher temperatures, starting from the invariant point. As
it follows, however, from (7) that (d7"), is then positive also, con-
sequently curve E goes also towards higher 7. When 2, is negative,
then the cuarves (F,) and £ go both towards lower 7' It follows
from (2) and (8) that both curves have also the same direction of
pressure. X

In accordance with previous papers (Communication XXII) we,
therefore, find: when the new substance occurs in the phase F,
only, then curve E coincides with curve (I7).

When the new substance occurs in the phases F, and F, only,
then (12) passes into:

dP\ 3 dP K), (dP s
d_T)x_)L,JrK—l, ar), T i 1 Ky, dT),' - @

wherein K:E’—. Hence it follows:

‘2'1

J(PY A dP a7 6
(). = ().~ () Jox - 0o

' dP >
For fixing the ideas we assume that (d_T) is greater than ((i—;,)
2 ( !

Now we distinguish two cases.
1. 2, and 2, have the same sign. The following is apparent from

dpP
(15) and (16). When K changes from O tot oo then (ﬁ') increases

from d—P to (L{) without becoming maximum, minimum or
om \ar) ° \a7), = : :

discontinuous.
2. 2, and 2, have opposite sign. When K changes from O to o, then

dP . . : i ;
A decreases without becoming maximum or minimum from
¢ x

P .
((ﬁ—) till — oo, then it proceeds discontinuously towards -+ oo and
¢ 1

l
afterwards it decreases to (:11;)
2
When 4, and 2, are both positive, then, in accordance with
reaction (1) both curves (#)) and (F,) go towards higher tempera-
19*
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tures starting from the invariant point; when 2, and 2, are both
negative, then both curves go towards lower 7’; when 4, and 2, have
opposite sign, then both curves go, starting from the invariant point
in opposite direction of temperature.

It follows from all this that the tangent to curve £ is situated
within the angle, which is formed by the curves (F,) and (£,). [Of
course we mean that angle wich is smaller than 180°]. As in the
case of K =0 (consequently x, = 0) curve / coincides with (F)
and in the case of K — o (consequently », = 0) curve ¥ coincides
with (F,) consequently the property follows, which we have deduced
already in the previous communication also, viz:

Curve F is situated between the curves (F,) and (F,) or in other
words: in the region (I, I)).

Yet also we find, however:

Curve I is situated nearer curve (/7)) in proportion as the con-
centration of the new substance in the phase /| is larger with
respect to that in /,; curve [ is situated nearer to curve (F)) in
proportion as the concentration of the new substance in the phase
F, is greater with respect to that in F,.

When the new substance occurs only in the phases F, F, and
F,, then we find, in accordance with previous papers that curve K
is situated in the region (¥, F, F,).

When one of the curves, f.i. (F),)is between the other two (/) and
(F,) then curve [ is situated also between (/) and (F,). When,
however, none of the three curves is situated between the other
two, then curve I may go, starting from the invariant point in
every arbitrary direction.

Now we consider the binary equilibrium
" E@=0=F+ L +L,+ @G
we represent the composition, the entropy and the volume of
F byy 1—y H and V
L, , y, 1—y, H, and V,
L, , y,1—y, H, and V,
G, y, 1—y, H, and V,
When we add a new substance .\, then we call its concentration
in those phases xx, @, and u,.

In order to deduce the isovolumetrical and isentropical reaction
we take two arbitrary reactions; for this we choose:
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F4al, =0 { a)l, AHLAV . . . . A7)
L4+ L,Z2F+bG  LAH AV . . . (18)
Herein is:
AH=(1+4+aH — H—aHl, OA-H' =H+ bH, — (1 4+ b0)H,
AV=(4aV,—V—aV, AV =V4bV,—(1+ b7V,
In (17) and (18) 4 and b may be as well positive as negative.
It follows from (17) and (18) for the isovolumetrical reaction :
(AV+AV)F — (1 4+a)AV'L, + [abDV' — (1 L b)) AV L, +bAV.G=0
AHLAV —AH.LV o . . . . . @19
and for the isentropical reaction :
— (AH+LH')YF4(1 4a)AH'. Li—|aAH'—(1+-b)AH] L,— bAIT. G=0
0 AHAV' —AH'AV . . . . . . (20)
We now add to this equilibrium /£ (x=0) a new substance X,
which occurs i the two liquids L, and L, only. With the aid of
(19) and (20) it then follows from (7) and (8):

M.dT),= — A4+ AV . 2, + [aAV' — (1) AV ]2, . (2])
M.(dP),= — (14+a)LH . 2, + [aLH' — (140 AH] 2, . (22)
wherein :

M=LH.AV —LH.AV):RT
It follows from (21) and (22): when we add to the equilibrium
F(x=0) a new substance which occurs only in the two liquids,
then the temperature as well as the pressure may be increased or

decreased.
We now shall assume that the four phases are situated with

respect to one another, as on the line Y 7 in fig. 1. Then we have:

Y SYy Sy > Yy

It follows from (17) and (18) for the determination of a and b:

y+ay,=( + a)y, QA+ 8y, =y+ by,
S p=""" . (@29
Nhi—Y, Ya—Ys

so that @ and b are positive. Further we assume that Fand L, and
also that L, and L, are not situated very close to one another, so
that a is neither very small nor very large. When F and L, and
also L, and G are not situated very close to one another, then also
b is not very small and not very large.

As now A7 is positive and very large with respect to &V, M
is positive.

Further we may distinguish the following cases.



) AH>0 LAVZO
aLH — (14+b)AH>0
) AH>0 AVZO
aAH —(1+6LHZO
) AH>O AVZO
abH —(14+b6AHIO
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AH >0 AV'>0
abV — (1 £ bAV>0
AH >0 AV >0
abV — (1 +bAV>0
AH O AV'>0
abLV' —(1+ b)A V>0

(24)

(25)

(26)

In each of the three cases, mentioned above, is in (21) the coef-
ficient of », negative and of ., positive; consequently we have:

(1t +a)A V'
ar wle.
@7): 20 when 2 A V—(1+ bAoAV

As AV’ is very large with respect to AV it follows from this
approximately with the aid of (23):

(27)

Y=Y,
¥y—=un

In the case, mentioned sub & in (22) the coefficients of 2, and x,
are negative, so that (dP), is also negative; consequently the pressure
is lowered.

In order to examine more in detail the sign of (dP), we write
for (22)

dT): 20 when - z (28)

8{-

L H' 14a
M(dP); = |z, — T z |N . . (29)
s —-pp °
a
wherein :
N=alLH —(1+bALH
When we put herein the value of a from (23) then we may write
for (29):
A !
M@=~ 1H b " Nu 30
&y A Hl '+ AH .’/ U ¥y - * ( )
When we consider the three cases a, b and ¢ mentioned above,
then we may write for (30):
a) (dP): = [—— (1 + K) ——”’} B (1)
1 Y=
b) (dP), = — [”_’ 4 K‘—_'—’:' L. (32)
Z, Y=Y
; @, Y=Y
) @P),=| — 2+ (1—K) L (33)
&, Y=
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wherein /., K, 14+ K and 1 — K ave positive. In each of the three
formula’s L and K have different values.

In order to apply the above we take the figs. 1 and 2, wherein
XY is a side of the components-triangle XYZ. The points FL, L,
and G represent the four phases of the invariant binary equilibrium
E@w=0=F+ L, + L,+ (7. When we add a new substance
X then the ternary equilibrinm E= F -+ L, + L, + G arises. The
liquids L, and L, then proceed along the curves L,q,r, and
L,q,r,; as the new substance is not volatile, G follows a part of
the line XZ. When we add only a little of the new substance, then
the liquids are represented by the points ¢, and ¢, in the immediate

Y4

Fig. 1. Fig. 2.

vicinity of L, and L,; for the sake of clearness they have been
drawn in the figures on greater distance.

In fig. 1 is:
] or  ANYTho 8y
Y=Y Y=  , Y="
consequently in accordance with (28): (d7); >0 as is also indicated
in the figure. It follows from (31)—(33):

in case a is (dP), 20
’ " b ’y (dP).l’ < 0
” » Cc ’ (dl))x < O

as is also indicated in fig. 1.
In fig. 2 is:

&€ X

P g YT (88)
Y—UY,s Yy—u T, Yy

It follows from (28): (d7'). < 0. From (31)—(33) it follows:
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in case a is (dP), <0
" ') b ”» (dP)x < O
13 " c ((IP)I z 0

as is indicated also in fig. 2.

In fig. 1 the pressure may as well increase as- decrease in the
case a; it is apparent from (31) that (dP), shall be positieve for
large values of @, :x,. As L, (and consequently also q,)is the liquid
which contains the most of the solid substance F we shall call L,
(and consequently also ¢,) the concentrated and L, the diluted solution.

We, therefore, find the following:

when the threephases-triangle solid-liquid-liquid turns its concen-
trated solution towards the side of the components-triangle (fig. 1)
then the temperature increases and the pressure generally decreases;
only when the concentration of the new substance in the diluted
liquid (consequently x,) is much larger than in the concentrated
liquid consequently «,), then in the case a the pressure may incre-
ase also.

In fig. 2 in the case ¢ the pressure may as well increase as
decrease; it appears from (33) that (d/?), shall be positive for small
values of z,:u,.

Consequently we find the following:

when the threephases-triangle solid-liquid-liquid turns its concen-
trated solution away from the side of the components-triangle (fig. 2)
then the temperature decreases and generally the pressure also.

Only when the concentration of the new substance is much larger
in the concentrated solution (x,) than in the diluted solution (x,),
then in the case c¢ the pressure may also increase.

We may obtain the previous results also by using the P,7dia-
gram of the equilibrium /(@@ =0). We may deduce this in the
following way.

The direction of temperature of the equilibrium (¢) = F+ L, 4+ L,
is defined by the sign of the coefficient of the phase ' in the isovo-
lumetrical reaction (19). As 6 AV may be as well positive as negative,
curve (G) wmay go, starting from the invariant point ¢, as well
towards higher as towards lower temperatures.

The direction of pressure of the equilibrinm () is defined by
the sign of the coefficient of (7 in the isentropical reaction (20). As
—bAH is negative in each of the cases a, b and ¢, curve (G')
proceeds, starting from the invariant point i, towards higher pressures.

As further, in accordance with (17): \
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(dP _bLH
ar)y T AV

and AV is very small, curve ((7) is ascending, starting from point ¢
fast vertically. In figs 3 and 4 this curve is drawn vertically up-
wards; the double arrow indicates that starting from ¢, it may run
either towards the right or to the left.

As the coefficient — (1 4 a)A V'’ of the phase /., is negative in
each of the cases a, b and ¢, in accordance with (19) curve (L,) = F
+-L, 4+ G is going starting from point i towards lower pressures
(tigs 3 and 4).

In the cases a and b the coefticient (1 4+ @) & H’ of phase L, is
positive in equation (20) so that curve (/) is going, starting from
¢, towards lower pressures (fig. 3). In the case ¢ is{l + a) A H'
negative and curve (/) is going, therefore, starting from ¢, towards
higher pressures (tig. 4). This is in accordance also with that which

follows from (18) viz.
dP\ AH'
i), T a v

Consequently we have defined the direction of the curves ((+)and
(L,); fig. 3 is true for the cases a and b, fig. 4 for the case c.

With the aid of (19) and (20) we should be able to determine
also the position of the curves (/) and (L,) and then we could
prove that the four curves are sitnated with respect to one another
as in figs 3 and 4. [Compare f. i. Communication XIIT]. As we know,
however, the situation of the curves () and (/) we can find the
position of curves (/) and (L,) much more easily by using the rule
for the position of the four monovariant curves of a binary equili-
brinm [Compare Communication I fig. 2].

In accordance with this rule we must meet, when we go, starting

()
>
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from curve () in the direction of the hands of a clock towards
curve (L,) firstly curve (/) and afterwards curve (L,). As further
(G) and (F) must form a bundle and their prolongations must be
sitnated between (L,) and (L,) and as the angle between two suc-
ceeding curves, must be always smaller than 180°, hence follows
for the curves (/) and (L,) a situation as in the figures 3 and 4.
In fig: 3 curve (L,) is drawn horizonthlly; starting from 2 it
may run either upwards or downwards; this has been indicated
by the double little arrow. When it goes upwards, starting fromr ¢,
then its prolongation must yet always be situated above curve (L,).
It appears from the coefficient of the phase L, in reaction (20) that
curve (L,) must go in case a starting from ¢ upwards and in case
b, starting from ¢ downwards. This has also been indicated in fig. 3.
As we know the P, T-diagram of the equilibrium £z = 0) we
can easily determine the situation of curve K. It follows viz. from
our general considerations in the beginning of this communication,
that curve Z/ must be situated between the curves (L,) and (L,).
For a,:x, = o curve F coincides with (/,) for z,:x, = 0 with
curve (L,). When «,:x, changes from o towards O than curve F
moves in the direction of the hands of a clock from (L,) towards (L,).
Firstly we now take the case a, so that we must imagine in
fig. 3 curve (L,) to be drawn upwards starting from :. When we
do change now z,:2, from o to O, then it follows from the diffe-
rent positions which curve £ may obtain, that the following cases
may occur:
dT): >0 and (dP): >0
@dT).>0 and (dP),<0
@T), <0 and (dP), <0

In case b we must image in fig. 3 curve (L,) to be drawn down-
wards starting from . When we do change z,:x, from o to 0,
then it follows from the situation of curve K:

dT). >0 and (dP), <0
@dT), <0 and (dP), <0
In case ¢ fig. 4 is true. When 2, :x, changes again from o to
0, then it follows from the position of curve £:
@r)>0 and  (dP), <0
dr). <o and (dP), < 0
1), <0 and dP): >0
We see that those deductions are in accordance with the previous
ones and with the figs 1 and 2.
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Our previous considerations are all valid in the supposition that
the four phases /' L,L, and G are situated with respect to one
another as is indicated in the figs 1—4. When the four phases are
situated otherwise with respect to one another, the reader my deduce
all in similar way.

We now shall assume that the new substance is volatile, so that
it occurs in the phases L,L, and G with the concentrations
z,x, and wx,.

We find with the aid of (7) and (19):

M@AT), =—(1+a) AV'a, + [aAV, — (1 +b)AV] e, +bAV.2, (36)
and with the aid of (8) and (20):

M.(dP), = — (1+a) AH's, + [aAH' — (14+-b)AH)e,+ bAH-, (37)
wherein

M=QLH.AV —AH'.AV):RT
so that the direction of temperature and pressure of curve K are
defined by (36) and (37).
As AV is very small in comparison with A )V’ we may neglect
in (36) the terms with AV as long as a, is not ven) large, then
it follows with approximation:

(dT): 2 o SBETHL L,
(dT): 20 voor w1<y—y1 . (38)
Only for very great values of x, in comparison with x, and z,
the term bAV ., in (36) will be of great importance and will be
approximately

@7T), =

RT AV RT (dT
( ) ) (39)

aH. AV =av\ap)l
In (37) 4H is not small in comparison with AH’ and the .term
bA H.=x, will assert its influence already with values of x, which
are not too small.
Consequently, in general the influence of the new substance on
(T, and (dP), will be larger in proportion as the new substance

is more volatile and it will assert its influence sooner on (dP),
than on (d7),.

We may also deduce anything about the position of curve E
with the aid of the general considerations at the beginning of this
communication. Hence it follows viz that curve £ must be situated
either between the curves (L,) and (L,) or between (L,) and (G) or
between (L,) and (G). As in the tigs 3 and 4 the prolongation of
each of those curves is situated between both the other curves,
curve F may go, therefore, starting from point z in every direction.
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Consequently the temperature may as well increase as decrease,
and the pressure may increase or decrease as well at rising as at
falling temperature, dependent on the position of curve Z.

It follows from (12):

when @, is extremely small with respect to «x, and =, then curve
E is situated between () and (L,);

when ., is extremely small with respect to z, and x, then curve
E is situated between (() and (L,);

when x, is -extremely small with respect to 2, and x, then curve
I is situated between (L,) and (L,);

when ., is extremely large with respect to @, and @, then curve
F is situated in the vicinity of ,);

when 2, is exiremely large with respect to x, and «x, then curve
E is situated in the vicinity of (L,);

when «, is extremely large with respect to «;, and z, then curve
I/ is situated in the vicinity of (G).

In each of those cases we can see at once from the figs 3 and 4
which signs (d7). and (dP). may have.

When f.i. @, is very small with respect to x, and x, then curve
E is situated between (L,) and ((); when now fig. 4 is valid then
the pressure shall, therefore, always increase and the temperature
shall decrease. In the special case only, when «, is still also extremely
large with respect to ., and when at the same time AV > 0 [then
curve (() proceeds, starting from ¢, a little to the left] then the
temperature may fall a little.

T

By

When we add a new substance which is not volatile, but which
forms mixed crystals with the solid substance /), then we have in
figs. 3 and 4 the curves (/) (L,) and (L,). It appears from the
position of those curves with respect to one another that the previous
considerations are also valid in this case.

When we wish to calculate (d7"), then, as is apparent from (19)
we have to substitute in (36) bAV 2, by (AV 4+ AV’Y2. When we
neglect again the terms with AV then we find:

MdT), =z — (1+a)a, + ax,| A V'
or:
v RT ‘”(ylfya) - (y—_?/,) &, + (y'—.’/l)m:
(d])z—m. yT—.?/, .. (40)

In the figs 5 and 6 YZ represents a side of the components-
triangle, F L, ., and G the four phases of the invariant binary
equilibrium FE(xr =0). When we add a new substance then the
ternary equilibrium £ = F + L, + L, 4 G arises. The solid sub-
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stance F and the liquids 1, and L, then proceed along the curves
Fqr, L,q,r, and L,q,r,. When we add only little of the new
substance, then the 3 phases are represented by the points ¢ ¢, and
q. which we must imagine in the imwmediate vicinity of the side V2.

When we put ¢t =2 (y,—y,) —(y—uv,)¢, + (y—y,)r, and when we
consider @ and y as running coordinates, then ¢ =0 represents the
equation of the straight line which goes in tig. 5 and 6 through
q, and q,.

When the point ¢ is situated on the line ¢,q, then t=0; the
sign of (d7); is then determined by the terms which have been
neglected in (40).

When ¢ is sitnated at the right side of the line ¢,q, (viz. when
we go from ¢, towards ¢,) as in fig. 5, then ¢t > 0; when ¢ is
sitnated at the left side of the line ¢, q,, as in fig. 6, then ¢ <0.
Hence it follows, therefore, that in fig. 5 the temperature increases
-and in fig. 6 the temperature decreases, as is also indicated in both
figures.

Fig. 5. Fig. 6.

Consequently we find the following:

when we add to the invariant binary equilibrium Z (@ = 0) =
= F+4 L, + L,+ G a substance which is not volatile and which
forms mixed crystals with the solid substance £, then

the temperature rises, when the threephases-triangle solid-liquid
liquid turns its concentrated liquid towards the side of the com-
ponents-triangle (fig. 5)

the temperature falls when the threephases-triangle turns its con-
centrated solution away from this side (fig. 6).

Comparing fig. 1 with fig. 5 and fig. 2 with fig. 6, the reader
will see that for the change of temperature the same rules are true,
independent of the fact whether the new substance forms mixed
crystals with # or not.
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Finally we could still treat the general case that the new sub-
stance forms not only mixed crystals with 7 but that it is volatile also.

It follows from figs. 3 and 4, in connection with the theories
discussed in the beginning of this communication that curve £ can
go in all directions, starting from point 1.

In order to define (d7'), we must still include in (36) the term
(AV 4+ AV"),; then we get again (40) approximately unless z, is
extremely large.

Consequently in this case also the figs. 5 and 6 remain valid,
unless the threephases-triangle ¢ ¢, ¢, becomes very narrow and the
concentration of the new substance in the vapour is extremely

large.
(To be continued).

Leiden, [norg. Chem. Lab.





