
Hydrodynamic8. - "On the Tesistance e,cperienced by a fluid in 
tw'hu/ent motion". By J. M. BURGERS. (Communicated by 
Prof. P. EHRKNFEST) . 

(Communicated at the meeting of May 26, 1923). 

; j. JntToductory 1'emm'ks. 

The problem which is discussed in the following lines is to seareh 
for a method to calclliate the resistance experienced by a fluid in 
turbulent motion. A definite soilltion !tas not been al'rived at; a 
thst attempt only is given . 

As is generally known, in most cases the motion of a fluid Ihrollgh 
a straight cylindrical tube Ol' channel is not in parallel lines with 
a constant velocity along each line. On the contrary it is usually 
vel'y irregular: the veloeity of a parlicle changes its value and its 
direction continl1ally, and particles situated very near to each other 
have very different velocities, whereas there seemS to be no definite 
law governing these deviations . This type of motion is called sinuous 
Ol' turbulent, as distinguished from tlle .~treamline or laminar motion. 
which occurs at low veloeities only. In stlldying turbulent flow the 
conception of the mean motiun Ol' PTincipal motion has been introduced 
by various al1thol'S, This mean motion is obtained if in every point 
of the spaee occupied by the fluid the mean value of the true 
velocity with respect to lime is determined, and then the steady 
motion is imagined the veloeities of which are equal to these mean 
values. The true motion may be descl'ibed a,s the resl1ltant of the 
mean motion and of a fluctuating 1'elative motioll. The mean veloeity 
of the latter is zero I). 

A turbulent flow usually experienees a high resistanee, which is 
approximately pl'oportional to the second power of the velocity of 
the mean motion . If tbe law of resistance is wl'iUen: 

(>V' 
loss of pl'essure pel' unit of length J = Cd' 

I) In cOllnection with the distinction bet ween mean motion and relative motion 
the reader is l'eferred to : H. A. LOIIENTZ, Turbulente Flüssigkeitsbewegung und 
Strömullg dUl' <;h Röhl'en, AbhandI. liber theoretische Physik r (1907), p. 68-60, 
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111 which formnla V represents tlle mean velocity (i.e. the volume 
of fluid which in unit of time flows thl"ollgh a section of thetube, 

divided by the area of thai section), d Ihe diametel" of the lube, 

and Q the density of Ihe flnid, then C is callod the coefficient of 
the resistance, and appears to be a function of the characlerislic 

b . d d h R R V dQ I ffi . num er Intro IIce J EYNOLDS : = -- (t-t is tie coe Clent of 
t-t 

viscosity of Ihe fluid) . 'rhe valIIe of C for different cases is given 

in textbooks ; as an example may be mentioned: 

a. for rongh walled tIlbes C is approximately independent of R; 
however, it is n. fllllction of the rOllghness ; 

b. for "er)' smoolh tubes of circular diamelel' : 

C = 0,1582 R- ti). 

'rhe greater part of the theoretical investigations on the lurbulent 

motion treat the problem: how does it ol"iginate? ") A n explanation 

of the increase of resistance which accompanies the appearanee of 

the tUl'buient state of flow has been givell by REYNOI,DS and LORENTZ I). 

More than on ce it has been remarked that I his problem is one of 

statistical nature 4) . The resistance expel'Îeneed by t he fl u id and 

indicated by our measuring apparalus is a mean valIIe, lt is possible 
that sneh a mean vaille may be ealculated sllfficiently approxilllate 
without all exact knowledge of Ihe fluctuat.ing and nevel' exactly 

remrning relative motion8. 
In Ihe following lines a pl'eliminary attempt is made to determine 

t.he valne of the resistance and to explain the quadratie law. In the 
first part (pal'ag..aphs 2 and 3) two eqllatiolls given by REYNOLDS 

and LORENTZ are discussed and put into sueh a form that immediately 

appears what quantities are wanted in order 10 calculate the I'esistance. 

In the second part (paragraphs 4 and 5) a simple idealized "model" 
of the turbulent flow is constl'Ucted which allows these qllanlities 

to be determined . 

Inslead of the flow t.hrough a tnbe or channel a more simpie 

I) Comp. f i. R. VON MISES, Elemente der techniscben Hydromechanik I (1914.) 
p. 57 and H. BLASIUS, Milt. über f"orschungsarbeiten , herausgeg. vom V. D. L, 
Heft l3l (I !H3). 

'j Cf. F. NOETHER, ZS. für angew, Math. u. Mechanik 1, p. Hl5, 1921. 

S) O. RZYNOLDS, Scienlific Papers II, p. 575- 577; 
H. A. LORENTZ, I.c. p. 66-71. 

') Among' others by TH, VON K~RM~N al a lecture at tbe ·Versammlung der 
Mathematiker und Physiker" in Jena 1!-)21; comp. a rem ark in the ZS, für angew, 
Math . u. Mecllanik 1, p. 2bO, 1 ~ 12 1. 
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type has been chosen: the 1lI0tion of a fluid between two parallel 
walls, one of which has a tJ'anslational motion in its own plane with 
the \'elocity V with respect to the othel', while Ihe distance between 
Ihe two walls has Ihe constant value I (comp, fig, 1), To ensure 
th is molion forces of magnitude S pel' unit of al'ea must be applied 

l i ~ 

Fig, 1. 

to the walls in opposile directions. The tangential force between 
any two adjacent layers of Ihe fluid has the same value S; The 
law of resistance will be written: 

s=.c(> VI 

The coèfficient C is a function of REYNOLDS' number: 

R= VZ(> 
t-' 

(1) 

. (2) 

For small val lies of R the mol ion is laminar, alld the "alue of 
C is easily seen to be : 

. (8) 

lf the value of R is high, the motion becomes turbulent, and C 
decreases mllch slower, There do not exist any direct measure­
menls for this case of motion ; however, the Rl'l'angement of the 
expel'iments made by COUl<:TTE comes very near to it 1), According 
to Ihis author we may expect a fOl'mula of Ihe following type: 

C = Cl + Cl R-l. . (4a) 

Investigations by VON KÁRMAN on the law of decreas8 of the 
mean motion in the neighbourhood of a smooth wall I) point 10: 

C = 0.008 R_l/4 . • (4b) 

1) M, COUETTE, Ann, de Chim. et de Phys. (6) 21, p, 467, 1890, 

2) TH, VON K~RM~N, ZS. Cür angew, Math, u, Mechanik, I.c, 
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In order to siruplify the mathematical treatment it has been 
assnrned that the motion is eonfined to aplane. 

Finally .in paragraph 7 some results are given for the flow between 
t wo fixed pal'allel walls. 

~ 2. The principal equation. 

In the following linea the mean or principal motion of the fluid 
will be denoted by U. It is a fnTletion of the variabie y only; at 
Ihe wall y = 0 it is equal to 0, at the wal! y = I it takes the 
value V. The eomponents of the veloeity of the relative motion are 
wl'itten u and v; the vorticity of the relative motion is written: 

av au 
ç = a.~ -- dy . (5) 

These latter quantities are fnnetions of the var'iahles x, y and t. 
The velocities 11, and vare subjected 10 the boundal'Y conditions : 

u = 0, IJ = 0 for y = 0 and for y = l . . (6) 

and to the equation of continuity : 

au av 
az + ay = o. (7) 

Now both RUNOLDS and LORENTZ have shown that the peculiar 
ebal'acter of turbulent motion is eaused by the aetion of an apparent 
fl'ictional force, influeneing the pl'incipal motion, and dlle to the 
existenee of the relative motions. This is expl'essed by Ihe formula: 

dU -
11- -QUV =S . 

dy 
(8) 

The bal' over uv indieates that the mean value of this quantity is 
meant, taken at a eel'tain point during a certain lapse of time, or 
taken at a eertain moment along a lille parallel to the axis of x. This 
mean value is a function of the val'iable y only (the same remark 
applies to ;' In fOl'mula (9)). The quantity uv is negative, and 

dU 
8>11 dy' 

The r'elative motions, however, are not independent of the mean 
motion. In ol'der that the relative motions may always retain the 
same energy, it is necessary that the following equation is fulfilled: 

I I 

J' -dU f -
- dy Q uv dy = dy 11 ç' (9) 

o 0 
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The equations (8) and (9) are substantially the same as the 
fOl'lOulae (36) and (46) fl'om LOREt-:TZ' paper l.c. above, only simpli­
fied according to the conditions of the problem before us. 

Now firstly dd
V 

will be eliminated from eq. (9) bv the aid of(8): y • 

I I 

- sj dy Q uv J dy I QI (UV)I + (-LI VI . 
o 0 

Secondly by integrating (8): 

l 

(-L V = St + JdY (l uv 

o 

This equation allows the elimination of S from (10): 

(-LV 

1 

l l 

J dy l QI (UV)I + (AI ;0: - ~ (J dy Q uv) I 

o 0 

I 

- JdYQUV 
o 

· (10) 

· (11) 

· (12) 

Jn order to simplify the equations we may introdllce nndimen­

sioned variables by means of the formulae: 

V 
oe = 1 ~'. Y = ly' ; u = Vu', v = Vv'; ; = 1 ;' · (13) 

If now ill Ihe following equations the accents are oOlitted Ilgain, 
we obtaill: 

1 1 1 

1 

Jdy(UV)1 - (JdY uv} JdyÇI I 0 0 0 
- + RI > (14) 
R 1 

- jdYUV\ -.{dY uv 
0 0 

and by Ihe same substitutions, fl'om (11) : 

1 

S J' - I 
(l V' = - dy uv + ir · (15) 

o 

The equations take a very simple form if Ihe following abbre­

viations are nsed : 
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1 -J dy UV = a 

o 
1 

.f dy (uv)' = (1 + T) (j' 

o 
1 J dy ;' = )((j 

o 

I 
\ 

(16) 

It will be easily recognized that the th ree quantities iJ, Tand x 
are all of them essentially {Jositive. 

The eqnations (14) and (15) now l'educe to: 

and: 

x 1 (JT + -=- . 
R' R 

S 1 
--=C=d + 
(> V' R 

Formnla (17) will be derlOted as the principal eqUiltion. 

~ 3. Discussion of t/ze principal equation. 

(17) 

(18) 

Equatioll (17) shows first of all that an increase of the velocity 
V of the mean motion cannot. be aecompanied by a propmtional 
r.hange of t he relati ve motion : in t his case (j, Tand x wou Id remain 
constallts, whereas R inrreases, w hico would violate equation (17). 

If the vallIe of R is given, (17) gives acondition to he fultiUed 
by the relative motion. If a certain type of relative motion, fulfilling 
this condition, accompanies the mean molion, the latte.· will experience 
a resistallce determined bl the vallIe of C, ealculated from (18). 
Now the problem al"Ïses : ean we find admissible values of the 
qualltities Tand x, withont an exact knowledge of t.he true relative 
motion ? If Tand x are known, (17) ~ives (j (i .e. in some measure 
Ihe relative irrtensity of the relative mOlions), and (18) gives the 
resistance coefficien t. If we look at the application of statistical 
methods in the dynamical theorJ of gases, we should expect that 
fol' high values of R (which mean a fnlly developed state of tur­
bIllence), it may be possible to calculate Tand x in t.he following 
manner: firstly we determine all kinds of relative motions which 
fulfil eqq. (6) and (7); serondl)' we admit that all these motions lIJay 
be present independently of each ot her, their weights being governed 
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by some law of pl'ohability, or by a maximum- Ol' minimum-con­
dition. Then the mean vallles al'e calculated fol' this assembly . 

Prof. VON KÁRMÁN from Aix-Ia-Ohapelle pointed out to me fhat befOJ'e 
tl'ying to find a condition go\'el'ning the weight of the different types 
of motions, it would be advisabie at first to search for themaximum 
value of S, or of (J. In th is wa)' a higher limit for the r'esisfance 
of turbulent flow would be found. 

That a maximum valIIe exists may be shown thus: 
From (17) it is deduced that (J may become great (i.e. especially: 

great as compared to ~) only if x < Rand if T becomes smal\. 

The value of T is detel'mined by the distribution of the values of 

uv over lhe interval 0 < y < 1. Only if uv assumes a constant 
vallIe throughout this intel'val, T can attain its minimum valIIe O. 

Howevel', uv cannot be a constant evel'ywhere, as u and v decrease 
to 0 in the neighboul'hood of the walls. Hence we will obtain the 

smallest possible value of T if uv has a constant value throughout 
the whole region with the exception of two ver'y thin layers along 

the walls, in which layers luvl decreases to zero. If the thickness 
of these "bollndal'y" layers is represented by E, T will be of the 
same order of magnitude as E, hence with a numerical constant Cl: 

(19) 

In the boundary layers :; and ç will be of the order of magnitude 

E-t, and so çt will be proportional to E-2. Hence if this intensive 
vorticity occurs in tbe boundary layers only: 

Now equation (17) gives: 

1 Ot 
(J=------

0l ER Cl Et Rt 

This expression aUains a maximum value if: 

2ct E=-
R 

(20) 

(21) 

The tbickness of lhe boundary layer appears to be inversely 
pI'oportional to R. The value of (J becomes : 

1 
. (22) 

lt appears that (J takes a vaille w hich is independent of R; 
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according to (18) C appl'oximates to the same constant value, and 
thus according to (1) the quadratic law of resistance is obtained, 

This reasoning is in Inany respects vague, and it does not admit 
of a determina tion of the values of Cl and Ct. lt only shows th at 
tlle partides of fluid wilh high values of the vorlicity 1;1 must be 
concenlrated along the walls. To get a more definite result it is 
necessary to de\'elop a piclul'e of the structure of the turbulent 
mol ion. Two ways may be followed : we may try 10 analyze the 
possible motions into a sum of elementary funclions (goniometrical 
Ol' otlJel's) in a manner analogous 10 a series of FOURIEH ; or we may 
imagine tlJe motion to be built up from an assembly of individual 
vortices (,·ol'lex filamenls with their axes perpendicular to the plane 
of x-y), distributed in some way or othel' throughout the fluid. In 
Ihe calclllation of the cl'ilical value of R (i.e. the value at which 
Ihe lurbulence occurs for Ihe first time) analogous melhods have 
been used : REYNOLOS, ORR and other wl·ilers have directed tlJeir 
altenlion 10 distllrbaJlces which are propagaled in a pel'Ïodic waJ 
Ihrough t.he who Ie flllid; LORENTZ at the other hand has .stlldied the 
distul'bance caused by a single vol'tex I). 

The slalistical treatmeJlt of such all assembly of elementaJ'y motions 
is very difficlllt on account of the circumstance that evel'y elemenlary 
1lI0lion is damped by Ihe action of Ihe viscosity. At the othel' side 
the mutual actÎ0I1S bel weell the elementaJ')' morions (bl'ought fOl'th 
by th e qlladratic lerms iJl tlle eqllalioJls of hydrodynamics) and Ihe 
illflueJlce of Ihe mean motioJl cOJltinually genemie new motions. 
FrolIl tll e formula given by LORENTZ it follows thai types of lIIotion 

for which JJ dx dy uv is lIegative, are intensified by the action of 

Ihe mean motion. Rence a mean stalional'y state can exist, in which 
every elementary motion changes continually its intensity and its 
phase (or its position, if it is an individual vol'tex), but in which 
every one of these motions has a constant mean intensity. It is 
obvious thaI for the greater part, if not exclusive, these will be 

types of motion for which IJ dx dy uv < O. 

The statistical problem will not be attacked here. On the contrary 
a simple type of turbulent lIIotion will be slu.died in the following 
paragmphs, built lip frolll an a~sembly of elliplic vOl'tices, all of 
them having Ihe same cOllfiguratioll, bilt having different dimensions. 

1) O. REYNOLDS, l.c. p. 570; 
W. Me. ~~ . ORR, Proc, Roy. lrish Acad. 27, p. 124-128, 1907; 
H, A. LORENTZ, l.c. p. 48, 
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If they arE' distribllted over the fluid In a cel'tain way, with an 
appI'opriate distributioll of intensities, it will appeal' that it is possible 
to make T vel'y smalI, wilhout makilIg the value of x surpass that 
of R. ft fUl'lIler appears that in Ihe ehoice of the dimensiolls of the 
vOl'tices an element I'ernains al'bitl'al'ious, which elelllent may be 
adjusted in sneh a. way that û takes a maximum value. 

~ 4. LORENTZ' elliptic 1Jortex. 

It, has been shown by LORRNTZ that we can obtain a simple type 
of motion whieh obeys the eonditions (6) and (7), alld for which 

ffdx dy uv < 0, by eOllsidel'illg a vOI·tex in whieh the partieles of 

the fluid describe elliptic paths 1). Geometl'ically this motiOIl can oe 
deduced from that in a cÏr'culal' VOI·tex by a latel'al compression. 

In the cil'cnlal' vOI'lex the fluid moves ill concentl"Ïc ol'bits wilh the 
angular velocity w , which is a function of the mdius r of the 
Ol·bit. At the outer bOlllldary of Ihe vortex w has the valne zero, 

dw 
whereas in its centre wand -d have finite valLles. LOHKNTZ takes 

l' 

fOl' w a BESSEL fllllction of r; in ol·der to obtain simpier formulae 
in this paper an algebraic functioJl will be taken. 

The construction of the elliptic \'Ol'tex is shown in tigul'e 2. The 

, , 

, , , , , 

, 
" , 

I) H. A. LORENTZ, l.c. p. 4.8-62. 

Fig. 2. 
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of Ihe ellipse have Ihe lellglhs 2b and 21;b, in which expression 

the vall1e 1/. (VJ 5-V6) = 0,475 j the smaller one makes the 
1 

al'ctg - = a with the dil'ection of Ihe mean molion, The con­
I; 

j I1galed diàmetel's AB and C D cOl'l'espond 10 tbe diametel's of the 
cil'cle Ao B. and Co D., which make angles of 45° with the direc­
tions of Ihe axes of the ellipse, Besides the system of cool'dinates 
X O Y. used b.r LOHI!!NTZ, the system Xl YI along J1. B. and M. C. 
will oe illlroduced, 

Fl'om the fOl'mulae given by LORKN1'Z at page 49 we dedure the 
following expl'ession fol' the value of uv in a point of Ihe vorlex, 
cOI'l'espondillg 10 the point x . Y. of Ihe circle: 

1 
M. = - uv = 2 (o'C O" - I;"y,s) w" sin 2a + l;o'C,y. w" COB 2a = t 

= 1 ~ 1;" w" : o'C I "(I --I;") + 'VI YI (1 + e") I \ 
(23) 

Fol' Ihe delermination of the meall vall1e of uvalong a line 
IJal'allel 10 lhe axis of ;c, il is necessal'y 10 calculate the inlegl'al of 
Mo along a line P R w hich is pal'allel to the same axis, This line 
corresponds to the hlle p. Ro of the cil'cle; Ihe lengths of these 
lilles are in Ihe constant pl'opol'tion: 

AB 1 VI +r;" 
A,B. = V2 nn a = ~-

Hence th is integl'al takes the value: 

+v, -Yl" 

(24) 

- V i .111" 

As has been mentioned alt'eady above, (}) is a function of 

'/'0 = V x: + ,1/: = V XI" + Yl"; this functioll will be taken 10 be : 

{25) 

The second tel'm of the integl'al vallishes on account of the sym­
mell'J of UI ; the fh'sl lerm gives: 

Vb'-Yl' 

V21;(1 - 1;1) J 
IvI = C" d3J X I (b" 

I VI + r;" 1 1 

o 

I) In the formulae below everywhel'e c' occurs; the sign of c is of no im­
pOl'tance. 
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or, using the substitution : 

ZI = Vb l
- YI I sin X. 

"'/1 
V2/i(1-/i I

) J I 
M I = Vl+/il cl (b l - YII)4 dxsin'xcos'X=r 

o > (26) 

5.1r Vi E (I-EI) ~ 
= 25() VI +EI Cl (b"-Yllt , 

Formula (25) was chosen wilh a view of oblaining Ihis latter 
result for MI, which facilitates Ihe fUl'lher calculalions, lf a new 
variabie 1) is introduced, determined by the formula: 

Yl -+- b 
11 = 2 b 

(it appeal's fl'om this formula Ihat 1) has the vallIe 0 on the tangent 
at tlle ellipse at the point D, and takes ttre value 1 on t.he tangent 
at C), then equatioll (26) can be wl'ittell: 

MI = A1)4 (1-1)' = A'I' (l) , (27) 

Here A is a factor independent of tha variabie 11, 
If we imagine a gl'eat numbel' of these vortices to be present, 

all of them lIaving the same dimensions and lying between Ihe 
same tangents parallel to Ihe axis of .v, (comp, fig , 3), Ihe amount 

contl'ibuted by them tOJhe valne of uv wiJl be, proportional to Ihe 
funclion repl'esented by (27) I), 

'.---._._._._. -_._,_._._. -_._._._ .. _._ ,~I>._--S2S--S;S---=" 
.---- --____ _1f 

9 ' · 

Fig,3, 

1'he integral of the quanlity Mo taken over the entire area of 
tha vOl'tex amounts to: 

27TE'(1~E") 
M =- Cl b'. 

I 63 1 + EI 
(28) 

1) Other types of motioll may lead to the same form of the function determin­
iog MI; for instance we may take the motion de6ned by the currenl fuoctioo 

1J" = 1)' (1-111) (e1--Yl co. aa: - e~ ,in az) 

for values of 11 between 0 aod 1, so that the components of tbe velocity have 
the values: 

u = - a 1]' joz. v = 0 lJIjoy. 



The integral of the sqllal'e of the vOI'.ticity NI = IJ dxdy ç~ 
extended over the same area beeomes aeeol'dillg to tlle formllia 
given by · LORENTZ : 

b 

NI = - (3 + 2,,' + 3,,4) dro ro 8 - = - ' c' b7 n' 1 (dW)" 5.11' 3 + 2,,' + 3,,4 
4t; dro 42 t; 

(~9) 

o 
Fl'om (28) and (29) we dedllce: 

N, 15 (3 -+- 2E' + 3,,4)(1 +E') 1 

jl, 4 ,,'(I - E') b" 

Ol', inll'oducing Ihe "thicluless" ]) of the vOl'tex (cf. fig . 2), so thar: 

D 
V2 (1 +t;I) 

IJ = 4E' 

we get: 
N 3 + 2,,' +- 3t;4 1 294 
- '=30-----
M, t; (l-f') D' D' 

. (30) 

This fraetion sUl'passes only by a small amollnt its rlllfllmUHI 
"alue, calculated by LORENTZ: 

2(3 + 2,,' + 3,,4) 1 288 I) 
1468 - = -

• " (I - ,,") D' D" 

~ 5. Distribution of the vortices over the jluid. 
lt has already been remarked ill ~ 1 alld 3 Ihat our object in 

this paragl'aph is not 10 analyse Ihe tl'lle distl'ibutioll of the vOl'ticity 
of rhe fluid, but thai we will constl'uct all ideal case only, a "model", 
whieh affords us an admissible image of Ihe behaviolll' of Ihe 
ql1antities uv and ç', This model ig oblailled by disll'ibllling a numbel' 
of elliplie vortices, of Ihe type studied in Ihe fOl'egoing plll'agl'aph, 
over Ihe mean eUl'l'ent U (y). In doing Ihis we do not want 10 pay 
any atlention 10 the abseissae of Ihe eeJl!t'a of Ihe vOl'tiees, if oJlly . 
theil' mean distl'ibution alolIg Iilles J.lal'allel to Ihe axis of x be 
uniform. Positively and negali\'ely rOlaling vOl'tices al'e distribuled . 
unifonnly lhrollgh each othel'. If two or I1IOl'e vOI,tiees may happen 
to ovel'lap, Ihey may as weil stt'engthen as enfeeble their respeclive 
fields; hence in calrulating the mean vallles uv and ~ II IS un­
necessary to take accouJlt of these ovel'lappiJlgs, and the contl'ibu­
tions of Ihe different vortiees may be simply sl1mmed . 

If for a moment we dil'ect our altention to a special c1ass of 

I) Comp, a remark made by LORENTZ, l.c. p, fl4-j55. The function defined by 
eq. (25) above rulfils the condition : du.. jd8 = 0 for 8 = 1 (8 = ro/b). 

39 
Proceedin~s Royal Acad. Amsterdam. Vol. XXVI. 
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vOl'tices, the thickness D of whiclJ lies between the Iimits D and 
D + dD, and the lowel' tangents of whiclJ (i,e, the tangent al the 
point D ilJ fig , 2) al'e enclosed bet ween the limits y = ~ and 
y = ~ + d~, tiJen we may eay Ihal all of them al'e Iying between 
the same Iines pal'allel t.o the axis of ,'I:, and by what has been 
remarked above all of them will give pl'oportional contt'ibulions to 

the tield of uv-values, As the integral - J d.x uv extended ovel' a 

section PRof a single vortex has been calculated in (26) and 
(27), we may wl'ile the contribution of the whole class: 

b (D,~) 1)4 (1-1))4 dD d~ = brp(1j) dD dg . 

. In this expression : 'tj = (y-~)/ D, and the factor b (D,g) dD d§ 
repl'esents the product of the rllimber of these vortices contained in 
a strip of unit length parallel to the axis of :c, theit' mean intensily 
(i ,e. the mean of CS), and the othel' factors which are contained in 
the letter A of formula (27). If Ihe function b (D, s) is given, Ihe 
disft'ibution of uv can be ca.lculaled. 

It is IIOt necessary to know the value of the quantity ;. at every 
poinl of the cunent, ils integral onl)' over the whole bl'eadth being 
wanted, which integral call be fOllnd as the slim of the integl'als 
of ;s over all vOl'tices cOlllained in a strip of the full breaoth, and 
of unil length. With the aid of fOl'mula (30) we tind as the 
contributiol1 of the considered class of vortires: 

JJ d:cdy;S = - 2;:JJdtc dy uv = 

f+D 
294 J (y-g) 294 b dD dg 

= DS bdlJd~ dyrp D = 630-j) 

. (31) 

f 

A simplitication furthel' al'ises from Ihe fact th at the second and 
thil'd equations (16) which determine Tand x are homogeneous as 
regards 10 lhe inlensity of the vortices. In using these equalions it 
is allowed to multiply b with an arbitrary fador. The tl'ue valIIe 
of (f is found trom the principal equation (17). It would be possible 
to calcl1late the ft'ue vaille of b afterwal'ds, but this is of no use. 

The problem pilt in paragraph 3 : to make (J as great as possible, 
obliges liS to search for a fllnction b (D,~) which gives a vRlue of 
- uv as neady constant as possible, Two rat hel' simple types of 
functions will be discllssed , 

I. We will begin wilh an investigation of what can be reached 
if all vortices have the same thickness D. In that case in order to 
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obtain ft. constant valU8 of -uv, it is necessal'y t.o make b independent 
of 6, in other wOl'ds to disll'ibute the vortices unifol'mly ovel' the 
bl'eadlh of the cUl'l'en!. However, it is obviolls that Ihe vOl'tices call1lot 
pass thl'ough the walls of the chanllel; hence we must take: 

b = constans, if 0 < g < 1 - D I 
b = 0 , if g < 0 Ol' ; > 1 _ D \ . (32) 

Consequently the quantit.y -uv will have a constant vfilue in the 
I'egion defined by: D < y < 1 - D only; in Ihe two I'emaining 
stl'ips it decreases to zel'O, 

With the omission of a constant factol', the following expl'essiolls 
for - uv al'e found: 

a) if y < D: 
y y/l) 

- uv = J dg (p (Y D~) = DJ d7) (P (7) = 
o 0 

= 6~0 ~ t26(;)' - 420(;)' + 540(1 Y ~315(1)" +70(~)' t 
b) if D<y< l-D: 

- uv Jd. ",(Y D !i) = D J~~ 'I' ('I) = 6~O 
y-l) 0 

c) if y> 1 - D: in the expl'essioll given undel' a) !I has to 
be l'eplaced by 1 - y. 

By mean8 of these fOl'lnulae we find: 
1 

J - D 
- dy uv = 630 (I - D) 

o 
1 J dy (uv)' = (6~0)' (1 -- ) ,172 D). 

o 
hence: 

T=0,828D + ..... . 

(33) 

(34) 

All vOl'tices being of the same dimensions, eql1ation (30) gives 
immediately : 

~94 
x =-

D' 
. (35) 

Inserting these values into equation (17): 

1 294 
0= 0,828 DR - u,828 D' R~ - .... (36) 

39* 
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(if the terms of the highest order only are wriUen down), This 
fOl'mllla gives a maximum vaille for (J if Ihe Ihickness D of the. 
vOl'lices is detel'mined by: 

which gives: 

29,7 
D=VR' 

0,027 
(J--­

- VR 

(37) 

(38) 

rhe coefficient C of the I'esistance fOl'mllJa (1) now becomes, 
aecol'd ing 10 (18): 

S 0,027 1 
C - - - --+ terms of Ihe ordel' (39) 

- QV' - VR R 

1 
C .diminishes pl'oportionally 10 v-; henee we do nol obtain the 

R . 
quadl'atic law of I'esistance, bilt the resistance appeal's to bepl'opor­
tional to the 1 !-power of the velocity . This does not conform to 
Ihe resllJt of ptl.ragl'aph 3. In the lattel' pal'agl'aph, ho wever, it was 
assllrned that the most intensive vorticity was concentl'ated in the 
neigh houl'hood of tlle walls on Iy, whel'eas in the model considered 
above it is distl'ibllted IInifol'lnly over the whole breadth, IC all 
vOl,tices have the same dimensions, itis not possible todistl'ibute 
them olherwise, without. disllll'bing tlle field of uv-vailles, Hence we 
mllst tI'y to obtain a bettel' result by Ilsing vortices ot different 
dimensions, 

11. If we take vOl'tices of diffei'ent dirnensions, say with thick­
nesses I'angillg fl'om D = 1 10 a lowel' limit Do (to be determined 
later on), the thickness of the boundal'Y layers in the most favolll'abie 
case wil! be of the same order of magnitude as D., rhe same 
applies 10 tlle qnantily T. If now the conll'ibution of the \'ol'lices of 

thickness D 10 the integl'al J;' dy becomes asymptotically pl'OpOI'-

dD 
tional to D' fol' small values of D, the value of this integl'al will 

1 
bocome of the order of magnitude of D ' In this case we shall be 

o 

in the cil'cumstanees considel'ed in t.he deductioll of equations (19) 
and (20). Paying altentio/l to equation (31), it is necessary that 

J' 1 
B = bdg shal! ba pl'opol'tional 10 D fol' small values of D, 

Now it appears that a distributioll of vorticfls fulfilling these 
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conditions can be found, if all \'ortices al'e pilt against the walls. 
If this be done, iL is of (~OUl'se IInnecessal'y to use the variabie g 
intl'oduced in the beginning of this paragraph, as the positions of 
all vOl'tices al'e fixed. Onl) a detel'lnination of the f'lIndion B(D) 
is wanted. The following 1'01'm of Ihis fnnction gives Ihe I'ight 
distl'Ïbulion of uv-vailles: 

1. the class of vOl'tices whose thieknesses lie between the limits 

D and D + dD have a tol al intensity p,'oporlional to B dD = 2 dJ;; 

these vort.ices at'e di\'ided into two equnJ gl'OllpS, each of them 
sitllated along one of the walls; 

2. besides the vOl'lices mentioned nnder 1), thertl is a number of 
vortices of thickness D = 1, which have the tolal intensit.y t,'4 (in 
same unit as used abo.ve). 

Wilh this determination of B(D), the vaille of -uv appears to 

be, if D. < y < l-D.: 
1 1 

- uv - J'~ Cf (~) + Jd% (pC DY) + ~(p(y) = 
., l-Y 

1 1 

Jd11 jd11 1 = - 'I' (11) + - rp (1/) + - (P (y) = 
1) 1/ 4 

Y l - Y 
1 

280 

t (40) 

\ 
The fh'st tem) l'epI'esen ts the con tri bil tion of the vortices Iying 

along the wall y = 0; of these \'ortices only those al'e of importance 
for which D> y. The .second lel'OI l'epl'esents the conlribution of · 
the vOI'tices sit.lIated at Ihe olher side; here only those for which 
D> l-y are of importllnce. The third term represents Ihe contri­
bution of the group of vortices whose thickness D is equal to 1 I). 

1) Ir we should take tbe quantity B proportional to D-n, with n < 1. the 

integral .r ~9 dy would take a smaller value, but now the first term of equation 

(40) which gives the contribution of the vortices situated against the wall y = 0, 
would become : 

1 1 

j'~ cp (~) = yl- "J'd1) 1)2+" (I _ 1'/)4 (for y > D.) 

,'I Y 
IC Y becomes smal!' this expression approaches to zero. Only if n = 1 it ap­

proaches to a value independent of y, which is necessary in order that a constant 
value of - Uv at all points olliside of the boundary layer may be obtained, 
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In Ihe boundftry l!tyer defined hy 0 < y < Do, the vallle of 
-- uv is found to be : 

1 1 , 

- uv -Jd~ (p (~) + J~ fp C DY) + ~(P (y) = 
D. 

280 D D 

= _1 \ 70(~): -224(~)' + 280(~)e _ 160(~)7 +s5(~)'l 
2801 D. D. D. D, D. ~ 

Using the formtilae (40) and (41) we find: 
1 

J - 1 
- dy uv = 280 (1 - 0,889 D,) 

o 
1 

J dy (;;;')' = (2~0)' (1 - 1,068 D,) 
o 

and by means of the latt~r there reslllts: 

(41) 

T=O,710D.-_ .......... (42) 

The vaIlle of x can be calculated in the following way: The 
vortices having thicknesses between t.he limits D and D + dD 

contl'ibute to tile integral - JdY uv the amount: 

D 

2~JdY~(~)=:~; 
o 

hence, according to (30), to the integral J dy Çl: 

294 dD 

315 .D' 
To this must be added the contribution of the vortices with 

thickness 1, amounling to : 

-JdY;;; 1 
in 2520 ; 

JdY " 
294 

hence in 
2520 

Adding all parts together, we get: 

J. - 294 ( 1 ) 294 294 ( 1 7 ) dY ;'=SI5 D, -1 + 2520= SI5 D. -8 . 
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Finally Ihe value of x becomes: 

261 
x=- +"'" (43) Do 

The values given by (42) and (43) al'e inserted into Ihe principal 
equation (17); I'etuining the terms of the highest order onIy, we find: 

1 261 
(J = ""0,--=7:-1-:0--:D=-. R 0,71 0 D.' R' (44) 

(J atlains its maximum valIIe if the Iower limit Do of the thickness 
of the vort.ices is detel'mi ned by: 

522 
D·=R (45) 

This is much below rhe value of D given by equation (37), 
Using (45) we find: 

(J = 0,00135 + " " , (46) 

and the coefficient of the resistance fOl'mula beromes: 

S 1 
C = - = 0,00135 + terms of the order - (47) 

QV' . R 
So this arrangement of the vOl'lÏces leads to Ihe quadmtic law of 

resistance. 

~ 6. Discussion. 
In paragraph 5 II we have found the vRlue 0,00135, as a higher 

limit of the coefficient C of the l'esistRnce formula Ilsing an 
idealized model of the distriblltiOIl of the vOl,ticity in a turbulent 
current. 

If it is possible 10 calcrilate C without the use of this special 
model, using eq nations (17) Rnd (18) and conditiolIs (6) and (7) only, 
a still higher limit wil I pl'Obably be found. At the othel' side if 
we compare the value of C obtained hel'e to the vaIlle given by 
formula (46), it appears that in the region which is of importance: 
R = 10000 10 1000000, the value of C is too high. 1) 

Hence we may assert thRt Ihe Irlle resistance is not rhe highest 
possible resistance. In order to delermine the r!'Ue stale of atfairs, 
a furthel' condition will be necessary. 

From the resuit thai the value of C appears to be too high, we 
may dedllce that Ihe ciistribntion of the value of - uv over the 
CUlTent is too uniform. Pa,ring attenlion to Ihe resuIts of measure­
menls of tbe distl'iblllion of the velocity o\'el' Ihe hreadth of rhe 

I) According to COUETTE'S experiments turbulence sets in at R = ca. 1900, 
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curl'ent, we may expect that -- uv has not a constant value between 
the boundal'y layers. but Ihat it is slightly "l'ounded off''' . This 
might be asr-l'ibed to slight ilTegulal' displacements of tbe vortices 
caused by the irreglllarly di stl'ibuted veloeities which they impal't 
to eaeh other. This " BrowJliall" movement might g ive a distl'ibution 
of the smallel' vorlices resernbling the one determined by the law 
of BOLTzMANN- l\hxWELI. for a gas IlJlder the inflilence of gravity, 
whicb possibilily has beell pointed out by VON KÁRMÁN in the lectul'e 
mentioned above. 

The Ime distl'ibution of vOl'ticity in the lurbulellt motion will 
take some mea ll posilion between Ihe two extremes of paragraph 5 
(uniform distl'Ïblltion over the whole breadth witb C proportiollallo 

Fig. 

,Ö· ~--------~--------.-________ -. ________ ~ 

-. 10 r_--------~~~~~~--------~--------~ 

10~r_--------+--+------~------~~--------_4 

b ~ 

l\--ru 
JA . 

4. Logarithmic-scale diagram of the depelldence of C on R. 

1 
Curve L: laminar region, C = - (form. 3). 

R I 

Curve C: results of COUETTE'S experiments (the Talue of 
R has been calculated using p. = 0,01096, comp. 
COUETTE, I. c. p. 460). 

Curve K: C = 0,008 R-'/. (form. 4b), deduced from the 
investigations by VON KáRMáN on the behaviour 
of U(y). 

Curve I: formula (39) , deduced from the supposition that 
all vortices have the same dimensions, and are 
uniformly distributed over the section. 

Curve IJ: formula (47), deduced from the supposition that 
the vortices have different dimensions, and are 
Iying against the wa11!; . 
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1 
VR' Ol' the best ol'dered al'l'angement with all vortices along the 

walls and C equal to a (high) constant vallle). 
FOI' the Rake of comparison the formulae (39), (47) and (46) have 

been represented together in fig. 4 at a logal'ithmic scale. 

~ 7. Motion of a jluid between two ,fixed pamllel walls. 
The molion of a fluid between two fixed pal'allel wal Is may be 

tl'eated a ccording to the same sclleme as has been nsed for the 
morion betweell a fixed and a moving wal!. As the fo I'UI el' case 
has somewlrat more resemhlance to the types of mol ion occul'l'ing 
usually ill practical cases, the prillcipal features of the calclliation 
will be melltioned here. 

The distance of the walls wiJl be taken equal to ft; Ihe mean 
velocity of the CUlTen I. is denoled by V ; Ihe pl'essul'e gradiellt 
- dp/dx will be dellOled by J: - RJ<:YNOJ,DS' charactel'istic number 
beeomes: R = Vh~/(l; Ihe coefticient of the resistance formula is 
written C= Jh/Q VI. Equalion (8) of paragraplr 2 has 10 be replaced 
by the following eql1ation governillg the principal mol ion : 

dlU d -
(l - - - (Q uv) = - J . 

dyl dy 
(48) 

A first integration of this formula gives: 

(l - - Q u v = J - - '!I dU - (h ) 
dy 2 . 

(49) 

The constant of the integl'al.ion is detel'lnined by observing that 
on account of the symmetr'y of the arrangement both quantities 
d U/dy and uv vanislr fol' y = h/2 . On inlegratillg a second and a 
third lime, and observing that U = 0 at both walls, we get: 

h 

1 f -(lVh=12Jh'-, dYQYuv . (50) 

o 
This equalion l'eplaces fOl'Ulula (11 ). Condilion (9) which expresses 
the dependanee of the I'elalive motioll on Ihe pl'incipal molion, 
I'etains its form . Now fil'slly, IlSillg (49), we eliminale dU/dy from 
(9); then using (50), we eliminate J and we obtain: 

h h 

1 J - - I (J _)1 12 dy ~Q' (uv)' -+- (ll;'! - hl ' dy QY uv 

IJ V 0 0 
h h - ------- (51 ) 

Ij -h dy ~y Ut' 

o 
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After the int/'odllclion of nndimensioned '-al'iables, we make use 
of tlle abbrevialions: 

1 Ij -- dy (uv)' = (1 +T) a' 
12 

o 

1 

1 J -- dy~' = xtJ 
12 

o 

The equalions (50) and (5J) now redllce to: 

x 1 
tJT+-=- , 

R' R 
1 Jh C 1 

12 Q V' = 12 = t1 + R' 

Distribution ' of the vorÛces over the fluid. 

. (52) 

(58) 

(54) 

As appeal's from equation (49) Ihe value of fl ~ U wiJl be smaIl 
y 

compared to thai of J (~- y) (as is the case tOl' the real motion) 

only if - QUv becomes approximately equal to J (~ - y ). Or, 

using the undimensioned variables introdnced above, we may say 
that - uv aught to be proportional 10 ! - y. 

Rence Ihe quantity uv must take a negalive value in the neigh­
bourtlOod of Ihe wall y = 0, and it must take a positi ve ,-alue at 
the ot hel' wal!. This can be obtained if we use two grOllps of 
vortices whose positions are symmetrical with respect to each ot her. 
In the fit'st place a gl'oup of elliptic vortices having t.he same 
position as those descl'ibed in pal'agraphs 4 and 5 (i.e. with Ihe 
long axis extended from Ihe second to the fOlll,th quadrant) is put 
in against the wall y = O. The contl'ibution of these vortices to Ihe 
field of values of uv will be denoted by 

- (uvh = '" (y). 

Then a second group is put in, situated symmell'Ïcal1y against 
the other wall: Ihe cOlltribution of Ihe latter to uv will be : 

- (uv)1l = - '" (l-y). 
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The contributions of both gl'oups to the integl'll.'.f dy "V are of 

course equal and of equal signs, 
If we now take vortices having thickllesses ranging from 1 10 a 

minimum value Do, and we take their intensities proportional to: 

BdD= (~- ~)dD, 
. D 4 

, (55) 

(Ihis expression has a posilive vaille for all values of D), t.hen we 
obtaill fol' values of y Iyillg betweQn Do and 1 - D. the following 
expression of liJ (y) (with the omissioll of a constant factor): 

1 

'" (Y) = J dD (~ - ~) cp (~) = 
y 

fl'om which follows: 

liJ (y) - liJ (1 -- y) = _1_ (~_ Y) . 
140 2 

. (56) 

Hence between the boundary layers tlle vallles of uv are correctly 
distribllted . 

Within each bOllndal'Y layer luvl decreases [rom 1/2BO 10 zero. 

The full expression of Ihe value of uv having been wOl'ked ont, we 
obtain the integrals: 

from which : 

1 

JdYYUV = 16
1
80(1 - 2,667 D, + ... ) 

o 
1 

1 J - (1)' 12 dy(uv)'= 1680 (1-3,204Do + "') 
o 

T = 2,129 Do - terms of the order Do" ... 
1 

The value of the integral JdY ~. becomes: 

o 
1 

2fdD 294 ~ (~ __ ~ ') = 294 (~ _ ~ 19 ~ _ ) 
630 D D 4 315 D, 4 D, .... 

Do 

This gives: 

(57) 
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X 
__ 181 (1 _ 3Do 1 ) tg - + terms of the order Do. .. . 

Do 4 Do 
(58) 

The results of (57) and (58) are sllbstituled into equalion (53); 
alld the maximum value of (j is determined. This maximum occurs if: 

Do = 2~2 (1 - ~ 19 2:2"') 

Finally equation (54) gives: 

2,11 1 
C = 0,0108 + R Ig R + terms of tlle order R I) . (59) 

Discussion . 
In Ihis case too the quad,'atic law of I'esistance is asymptotically 

al'l'ived at (fOl' valllf.>s of R slJl'passing 100000 the logarithmic term 
is little more than 2°/u of Ihe constant term). Just like what oC~\JI"'f'!d 
in the more simple case the value of the coefficient C is too high. 
For channels with smoot.h walls VON MISES gives that C ranges from 
0,006 to 0,0024 if R mnges fl'om 10000 to the greatest values 
ohtained j Ihe formula del'ived by VON KáRMáN'S theory gives : 

C = ca. 0,07 R- 1
/ . 

For channels with rOllgh walls the dependance of Ule coefficient 
C on the value of R is Ilsually very smalI, so that a qlladratic 
resistance formula can be used, Ihe value of edepending, however, 
on the dimensions of the irregularities of the . walls as compared to 
the diametel' of the channel. The value of C is much higher than 
in the case of smooth walls j it may even surpass thai given by 
(59). So GIBSON mentions vallles I'anging to 0,015 for old cast iron 
tubes or channels, lightly tubel'clliated I). 

Labo'ratorium VOO!' Ael'o- en Hydrodynamica der T. H. 
Delft, May 1923. 

1) The constant term of C in this formula has a value of 8 times that of 
formula (:'7) An elementary but superficial comparison of the magnitude of. the 
frictional forces exerted on the walls in both cases leads to the same result. 

S) R. VON MISES, J.c. p. 63, in connection with the definition of r, given at 
p. 83/84,. In the case of a channel of infinite depth as the ODe treated here, r is 
equal 10 h. 

A. H. GIBSON, Hydraulics and its applications (1919), p. 209 (in the formula 
mentioned at p. 206 is m is ! time the quantity r introduced by VON MJSES; 
comp. GIBSON, l.c. p. 194). 

Comp. also L. SCHILL~~R, ZS. für angew. Math. u. Mechanik, S, p. 2, 1923. 
and others. 




