Hydrodynamics. — “On the resistance experienced by a fluid in
turbulent motion”. By J. M. Burekrs. (Communicated by
Prof. P. EHRENFEST).

(Communicated at the meeting of May 26, 1923).

§ 1. Introductory remarks.

The problem which is discussed in the following lines is to search
for a method to calculate the resistance experienced by a fluid in
turbulent motion. A definite solution has not been arrived at; a
first attempt only is given.

As is generally known, in most cases the motion of a fluid through
a straight cylindrical tube or channel is not in parallel lines with
a constant velocity along each line. On the contrary it is usually
very irregular: the velocity of a particle changes its value and its
direction continually, and particles situated very near to each other
have very different velocities, whereas there seems to be no definite
law governing these deviations. This type of motion is called sinuous
or turbulent, as distinguished from the streamline or laminar motion,
which occurs at low velocities only. In studying turbulent flow the
conception of the mean motion or principal motion has been introduced
by various authors. This mean motion is obtained if in every point
of the space occupied by the fluid the mean value of the true
velocity with respect to time is determined, and then the steady
motion is imagined the velocities of which are equal to these mean
values. The true motion may be described as the resultant of the
mean motion and of a fluctuating relative motion. The mean velocity
of the latter is zero').

A turbulent flow usually experiences a high resistance, which is
approximately proportional to the second power of the velocity of
the mean motion. If the law of resistance is written:

V!
loss of pressure per unit of length J= ng—,

) In connection with the distinction between mean motion and relative motion
the reader is referred to: H. A. Lorentz, Turbulente Fliissigkeitsbewegung und
Strémung durch Réhren, Abhandl. iiber theoretische Physik [ (1907), p. 58—60.
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in which formula V represents the mean velocity (i.e. the volume
of fluid which in unit of time flows through a section of the tube,
divided by the area of that section), d the diameter of the tube,
and ¢ the density of the fluid, then C is called the coefficient of
the resistance, and appears to be a function of the characteristic
Vdo
[
viscosity of the fluid). The value of C for different cases is given
in textbooks; as an example may be mentioned:

a. for rough walled tubes (' is approximately independent of R;
however, it is a function of the roughness;

b. for very smooth tubes of circular diameter:

C=0,1582 R~ %,

The greater part of the theoretical investigations on the turbulent
motion treat the problem: how does it originate?*) An explanation
of the increase of resistance which accompanies the appearance of
the turbulent state of flow has been given by REyNoLDs and LoRENTZ ?).
More than once it has been remarked that this problem is one of
statistical nature *). The resistance experienced by the fluid and
indicated by our measuring apparatus is a mean value. It is possible
that such a mean value may be calculated sufficiently approximate
without an exact knowledge of the fluctuating and never exactly
returning relative motions.

In the following lines a preliminary attempt is made to determine
the value of the resistance and to explain the quadratic law. In the
first part (paragraphs 2 and 3) two equations given by REyNoLDs
and LorenTz are discussed and put into such a form that immediately
appears what quantities are wanted in order to calculate the resistance.
In the second part (paragraphs 4 and 5) a simple idealized “model”
of the turbulent flow is constructed which allows these quantities
to be determined.

Instead of the flow through a tube or channel a more simple

number introduced by Revnorlps: R = (v is the coefficient of

1) Comp. fi. R. von Mises, Elemente der technischen Hydromechanik [ (1914)
p. 57 and H. Burasws, Mitt. liber Forschungsarbeiten, herausgeg. vom V. D. I,
Heft 131 (1913).

3) Cf. F. NoetHer, Z3. fir angew. Math. u. Mechanik 1, p. 125, 1921.

%) 0. Revnoubs, Scientific Papers I, p. 576—577;

H. A. LorENTZ, l.c. p. 66—71.

4 Among others by TH. voN KARMAN at a lecture at the “Versammlung der
Mathematiker und Physiker” in Jena 1921; comp. a remark in the ZS. fiir angew,
Math. u. Mechanik 1, p. 250, 1921.
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type has been chosen: the motion of a fluid between two parallel
walls, one of which has a translational motion in its own plane with
the velocity V° with respect to the other, while the distance between
the two walls has the constant value [/ (comp. fig. 1). To ensure
this motion forces of magnitude S per unit of area must be applied

Fig. 1.

to the walls in opposite directions. The tangential force between
any two adjacent layers of the fluid has the same value S. The
law of resistance will be written:

S=CoV*'. . . . . . ...
The coefficient C is a function of REYNoLDS’ number:
Vi
rR=—2 .. .. ... ..0@

u
For small values of R the motion is laminar, and the value of
C is easily seen to be:
1
C —_— T e . . . . . . . . .
% ®)

If the value of R is high, the motion becomes turbulent, and C
decreases much slower. There do not exist any direct measure-
ments for this case of motion; however, the arrangement of the
experiments made by CoUETTE comes very near to it'). According
to this author we may expect a formula of the following type:

C=c¢,+e¢,R1. . . . . . . . (40

Investigations by voN KARMAN on the law of decrease of the
mean motion in the neighbourhood of a smooth wall *) point to:

C=0008R—". . . . . . . . (4%)

1) M. CouETTE, Ann. de Chim. et de Phys. (6) 21, p. 457, 1890.
) TH. VON K.;RMA'N, ZS. fiir angew. Math. u. Mechanik, l.c.
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In order to simplify the mathematical treatment it has been
assumed that the motion is confined to a plane.

Finally in paragraph 7 some results are given for the flow between
two fixed parallel walls.

§ 2. The principal equation.

In the following lines the mean or principal motion of the fluid
will be denoted by U. It is a function of the variable y only; at
the wall y =0 it is equal to O, at the wall y =/ it takes the
value V. The components of the velocity of the relative motion are
written » and v; the vorticity of the relative motion is written:

ov Ou

g:_-a;—-d—y(5)

These latter quantities are functions of the variables 2, y and ¢.
The velocities © and v are subjected to the boundary conditions:

u=0,v=0 for y=0 and fory=1. . . . (6)

and to the equation of continuity :
Ou n 0o " .
Sty=0 -0

Now both RevynoLps and Lorentz have shown that the peculiar
character of turbulent motion is caused by the action of an apparent
frictional force, influencing the principal motion, and due to the
existence of the relative motions. This is expressed by the formula:

aUu
p— —ouww=2=8 . . . . . . . . (8
dy
The bar over uv indicates that the mean value of this quantity is
meant, taken at a certain point during a certain lapse of time, or
taken at a certain moment along a line parallel to the axis of 2. This
mean value is a function of the variable y only (the same remark
applies to & in formula (9)). The quantity uv is negative, and
dU
S>p— e
The relative motions, however, are not independent of the mean
motion. In order that the relative motions may always retain the
same energy, it is necessary that the following equation is fulfilled:

l i
‘d _dU—'fd ] 9
——J y()uv:i-;_ yus . . . . . . (9
0 0
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The equations (8) and (9) are substantially the same as the
formulae (36) and (46) from Lorentz’ paper l.c. above, only simpli-
fied according to the conditions of the problem before us.

dU
Now firstly = will be eliminated from eq. (9) by the aid of (8):
Y

! l
—Sfdyoz?::fdy{o’@)’ﬁLu’QT:. ... (10)
0 0
Secondly by integrating (8):
!
uV==8+ |dyour . . . . . . . (11)
0

This equation allows the elimination of S from (10):
! !

— — 1 —\?
f dy | e* (w)* 4 u* & —7(fdy 0 uv)

uV o 0
5= .. 12

!
—fdygz;t_)
0

In order to simplify the equations we may introduce undimen-
sioned variables by means of the formulae:

|4
e=layy=1ly';u=Vu,v= Vv';C:TQ’ .. (13)
If now in the following equations the accents are omitted again,
we obtain :
1 1 1
— —_ ? —_— i
fdy(uv)'—(fdyuv) IS [
1 o 0 I o
— e )
7= 3 53 —) . (14)
—de uv ——fdy E)\
0 0
and by the same substitutions, from (11):
1
S S wm b
OV.:—deuv+E. B € §:))

The equations take a very simple form if the following abbre-
viations are used:
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1

—fdyl;yzd

0
1

fdy(%)*:(l + 1) 0

0

~

(16)

1

fdy [

0

[t will be easily recognized that the three quantities 4, * and x
are all of them essentially positive.
The equations (14) and (15) now reduce to:

G * -—1 17
T + R’-—E o - . . . . . . ( )
and :
S 1
:C__.— —_ ” & « . . . .
o - (18)

Formula (17) will be denoted as the principal equation.

§ 3. Duscussion of the principal equation.

Equation (17) shows first of all that an increase of the veloecity
V of the mean motion cannot be accompanied by a proportional
change of the relative motion: in this case 6, r and x would remain
constants, whereas R increases, which would violate equation (17).

If the value of R is given, (17) gives a condition to be fulfilled
by the relative motion. If a certain type of relative motion, fulfilling
this condition, accompanies the mean motion, the latter will experience
a resistance determined by the value of C, calculated from (18).
Now the problem arises: can we find admissible values of the
quantities * and %, withont an exact knowledge of the true relative
motion? If r and % are known, (17) gives ¢ (i.e. in some measure
the relative intensity of the relative motions), and (18) gives the
resistance coefficient. If we look at the application of statistical
methods in the dynamical theory of gases, we should expect that
for high values of R (which mean a fully developed state of tur-
bulence), it may be possible to calculate * and x in the following
manner: firstly we determine all kinds of relative motions which
fulfil eqq. (6) and (7); secondly we admit that all these motions may
be present independently of each other, their weights being governed
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by some law of probability, or by a maximum- or minimum-con-
dition. Then the mean values are calculated for this assembly.

Prof. voN KArRMAN from Aix-la-Chapelle pointed out to me that before
trying to find a condition governing the weight of the different types
of motions, it would be advisable at first to search for the mazimum
value of S, or of 6. In this way a higher limit for the resistance
of turbulent flow would be found.

That a maximum value exists may be shown thus:

From (17) it is deduced that 6 may become great (i.e. especially :

1
great as compared to I_f) only if x< R and if T becomes small.

The value of v is determined by the distribution of the values of
uv over the interval 0 <y < 1. Only if uv assumes a constant
value throughout this interval, * can attain its minimam value O.
However, uv cannot be a constant everywhere, as u and v decrease
to 0 in the neighbourhood of the walls. Hence we will obtain the
smallest possible value of t if uv has a constant value throughout
the whole region with the exception of two very thin layers along

the walls, in which layers |uv| decreases to zero. If the thickness
of these ‘‘boundary” layers is represented by & t will be of the
same order of magnitude as & hence with a numerical constantc,:

FEEHE 5, » » 2 o« » = + & [(19)
0
In the boundary layers bﬁ and § will be of the order of magnitude
.4
¢=1, and so & will be proportional to 2. Hence if this intensive
vorticity occurs in the boundary layers only:
x=c,e=l. . . . . . . . . (20
Now equation (17) gives:
1 o,
c, e R o c, & R

0=

This expression attains a maximum value if:

2¢,
= s & % 5 « @# 5 » » (3}

The thickness of the boundary layer appears to be inversely
proportional to R. The value of 6 becomes:
1

4o, c,

Y 1))

Onax =—

It appears that o takes a value which is independent of R;
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according to (18) C approximates to the same constant value, and
thus according to (1) the quadratic law of resistance is obtained.

This reasoning is in many respects vague, and it does not admit
of a determination of the values of ¢, and c,. It only shows that
the particles of fluid with high values of the vorticity |§| must be
concentrated along the walls. To get a more definite result it is
necessary to develop a picture of the structure of the turbulent
motion. Two ways may be followed: we may try to analyze the
possible motions into a sum of elementary functions (goniometrical
or others) in a manner analogous to a series of FOURIER; or we may
imagine the motion to be built up from an assembly of individual
vortices (vortex filaments with their axes perpendicular to the plane
of x-y), distributed in some way or other throughout the fluid. In
the calculation of the critical value of R (i.e. the value at which
the turbulence occurs for the first time) analogous methods have
been used: REevynoLps, Orr and other writers have directed their
attention to disturbances which are propagated in a periodic way
through the whole fluid; LorEnTz at the other hand has studied the
disturbance caused by a single vortex').

The statistical treatment of such an assembly of elementary motions
is very difficult on account of the circumstance that every elementary
motion is damped by the action of the viscosity. At the other side
the mutual actions between the elementary motions (brought forth
by the quadratic terms in the equations of hydrodynamics) and the
influence of the mean motion continually generate new motions.
From the formula given by Lorentz it follows that types of motion

for which\fv dz dy uv is negative, are intensified by the action of

the mean motion. Hence a mean stationary state can exist, in which
every elementary motion changes continually its intensity and its
phase (or its position, if it is an individual vortex), but in which
every one of these motions has a constant mean intensity. It is
obvious that for the greater part, if not exclusive, these will be

types of motion for whichjfda: dy uwv < 0.

The statistical problem will not be attacked here. On the contrary
a simple type of turbulent motion will be studied in the following
paragraphs, built up from an assembly of elliptic vortices, all of
them having the same configuration, but having different dimensions.

1) 0. REy~oLDs, l.c. p. 570;
W. Mc. F. Org, Proc. Roy. Irish Acad. 27, p. 124— 128, 1907;
H. A. Logrextz, lc. p. 48.
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If they are distributed over the fluid in a certain way, with an
appropriate distribution of intensities, it will appear that it is possible
to make t very small, without making the value of x surpass that
of R. It further appears that in the choice of the dimensions of the
vortices an element remains arbitrarious, which element may be
adjusted in such a way that ¢ takes a maximum value.

§ 4. Lorentz’ elliptic vortex.
It has been shown by Lorkntz that we can obtain a simple type
of motion which obeys the conditions (6) and (7), and for which

f dz dy uv < 0, by considering a vortex in which the particles of

the fluid describe elliptic paths'). Geometrically this motion can be

deduced from that in a circular vortex by a lateral compression.

In the circular vortex the fluid moves in concentric orbits with the

angular velocity , which is a function of the radius r of the

orbit. At the outer boundary of the vortex o has the value zero,
dw

whereas in its centre » and e have finite values. LorenTz takes
»

for ® a Bessern function of »; in order to obtain simpler formulae

in this paper an algebraic function will be taken.
The construction of the elliptic vortex is shown in figure 2. The

1) H. A. LorenTz, l.c. p. 48—52.
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axes of the ellipse have the lengths 26 and 2eb, in which expression
¢ has the value '/, ' 15—V/6)=0,475; the smaller one makes the

1 . Lo .
angle arctg — = a with the direction of the mean motion. The con-
&

jugated diameters 4 B and C D correspond to the diameters of the
circle 4, B, and C, D,, which make angles of 45° with the direc-
tions of the axes of the ellipse. Besides the system of coordinates
x,y, used by Lorentz, the system = y, along M, B, and M, C,
will be introduced.

From the formulae given by Lorkntz at page 49 we deduce the
following expression for the value of uv in a point of the vortex,
corresponding to the point z, y, of the circle:

1
M, = — uw = E(z,’ — &%,") w? sin 2a + &x,y, w* cos 2a = /
© o (23)
=TT a o'tz (1-—&) + v, y, (1 4+ &)} \

For the determination of the mean value of wv along a line
parallel to the axis of @, it is necessary to calculate the integral of
M, along a line P R which is parallel to the same axis. This line
corresponds to the line £, R, of the circle; the lengths of these
lines are in the constant proportion:

4B 1 l/l + &
AB, V2sina 2

Hence this integral takes the value:

7, e
&m?
AMI—:. dxx‘/z(—]——_+5{wl’(l —&') +x oy (1+e)]. . (24)
Vi o

As has been mentioned already above, « is a function of
ry =V a, + ' = Va,' 4 y,*; this function will be taken to be:

©=c(b'—r)h=c(b—a =y, YY) . . . . (25)

The second term of the integral vanishes on account of the sym-
melry of w; the first term gives:

Vg

Vee(l—g
IMl — _._E(_ £ )c’f([-’ﬂl wll (b’ ‘”1'“3/1')‘/’
V1t e
0

1) In the formulae below everywhere ¢? occurs; the sign of ¢ is of no im-
portance.
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or, using the substitution:
z, = Vb -y siny,

_ /s
M, =Vf/—“_—) & (B —y,)" f dy siny, cos'y = /
1-e - . (26)
57 V2 & (1—¢
=g V"
) 1+¢ '

Formula (25) was chosen with a view of obtaining this latter
result for M,, which facilitates the further calculations. If a new
variable 7 is introduced, determined by the formula:

v, +b
2b

3=

(it appears from this formula that % has the value O on the tangent
al the ellipse at the point D, and takes the value 1 on the tangent
at C), then equation (26) can be written:

M =A(1—)' =Ad¢Mn) . . . . . . (27)

Here A is a factor independent of the variable 7.

If we imagine a great number of these vortices to be present,
all of them having the same dimensions and lying between the
same tangents parallel to the axis of z, (comp. fig. 3), the amount
contributed by them to the value of uv will be proportional to the
function represented by (27)').

Fig. 3.

The integral of the quantity M, taken over the entire area of
the vortex amounts to:
__27r£’(1;—£’)c’ .

_— 9
7763 1 4 ¢ (28)

) Other types of motion may lead to the same form of the function determin-
ing M,; for instance we may take the motion defined by the current function
Y = n* (1—9*) (el cos ax — e” sin azx)
for values of » between O and I, so that the components of the velocity have

the values:
u= — 0¥/0z, v=10%/0y.
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The integral of the square of the vorticity N, :ffdxdygs

extended over the same area becomes according to the formula
given by LorenTz:

-(3+ 2s’+38‘)fdrr( ) 5"3+28+3f_c . (29)

&

From (28) and (29) we deduce:
N, 153+ 2 + 8e)(1+e) 1

. M, 4 e (1—¢) b’
or, introducing the ‘thickness” ) of the vortex (cf. fig. 2), so that.
Ve .
b___Dﬁi_),
4¢
we get:
N 3 4 263 1 294
d L Sl . L S (30)
M, s(l1—¢) D D

This fraction surpasses only by a small amount its minimum
value, calculated by LorenTz:
2(3 + 26"+ 3% 1 288"

14,68 — =
e(l—¢) D* D?

§ 5. Distribution of the vortices over the fluid.

It has already been remarked in § 1 and 3 that our object in
this paragraph is not to analyse the true distribution of the vorticity
of the fluid, but that we will construct an ideal case only, a “model”,
which affords us an admissible image of the behaviour of the
quantities uv and &*. This model is obtained by distributing a number
of elliptic vortices, of the type studied in the foregoing paragraph,
over the mean current U (y). In doing this we do not want to pay
any attention to the abscissae of the centra of the vortices, if only
their mean distribution along lines parallel to the axis of z be
uniform. Positively and negatively rotating vortices are distributed
uniformly through each other. If two or more vortices may happen
to overlap, they may as well strengthen as enfeeble their respective
fields; hence in calculating the mean values uv and & it is un-
necessary to take account of these overlappings, and the contribu-
tions of the different vortices may be simply summed.

If for a moment we direct our attention to a special class of

) Comp. a remark made by Lorentz, lc. p. 54/65. The function defined by
eq. (26) above fulfils the condition: dw/ds =0 for 8 =1 (s = 7y/b).
39

Proceedings Royal Acad. Amsterdam. Vol. XXVI.
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vortices, the thickness D of which lies between the limits D and
D 4+ dD, and the lower tangents of which (i.e. the tangent at the
point D in fig. 2) are enclosed between the limits y =& and
y=2£§+4 d§, then we may say that all of them are lying between
the same lines parallel to the axis of #, and by what has been
remarked above all of them will give proportional contributions to

the field of wuv-values. As the integral —fd.z' wv extended over a

section PR of a single vortex has been calculated in (26) and
(27), we may write the contribution of the whole class:
b(D, &) v* (1—n)*dD d& = b (y) dD ds. .

‘In this expression: = (y—E&)/D, and the factor b (D,£)dD d§
represents the product of the number of these vortices contained in
a strip of unit length parallel to the axis of «, their mean intensity
(i.e. the mean of ¢?), and the other factors which are contained in
the letter A of formula (27). If the function b (D, §) is given, the
distribution of uwv can be calculated.

It is not necessary to know the value of the quantity & atevery
point of the current, its integral only over the whole breadth being
wanted, which integral can be found as the sum of the integrals
of & over all vortices contained in a strip of the full breadth, and
of unit length. With the aid of formula (30) we find as the
contribution of the considered class of vortices:

294
ffdxdyg’— ﬂdwdyuv:

294 294bdDd
_—bdDdEfdyrp(y g):m—ﬁj

(81)

A simplification further arises from the fact that the second and
third equations (16) which determine r and » are homogeneous as
regards to the intensity of the vortices. In using these equations it
is allowed to multiply & with an arbitrary factor. The true value
of o is found from the principal equation (17). It would be possible
to calculate the true value of & afterwards, but this is of no use.

The problem put in paragraph 3: to make ¢ as great as possible,
obliges us to search for a function 6 (D, §) which gives a value of
—uv as nearly constant as possible. Two rather simple types of
functions will be discussed.

[. We will begin with an investigation of what can be reached
if all vortices have the same thickness . In that case in order to
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obtain a constant value of — wuw, it is necessary to make b independent
of § in other words to distribute the vortices uniformly over the
breadth of the current. However, itis obvious that the vortices cannot
pass through the walls of the channel; hence we must take:

b = constans, if0 < §1— D

b=0 , if§<0or§>1—0D

Consequently the quantity —uw will have a constant value in the

region defined by: D<y<1— D only; in the two remaining
strips it decreases to zero.

With the omission of a constant factor, the following expressions
for —uv are found:

a) if y< D:

far()oof:

— v = dgrp(y————)z.[) dy o (n) =

, D
D I Yy ¥ i 7 y []
6302 ZG(D) — 420( ) + 540(1)) —315( ) +70(D) ‘

(32

33
i D<y<1—D e
d =D f d D
—uw = |d§ ¢ e () =g
¢) if _1/> 1 — D: in the expression given under a) y has to

be replaced by 1 —y.

By means of these formulae we find:

fdy uy — h—%(lm

D
fdy (uv)’ — (630) (1-1,172 D).
0

t=0828D 4 .... . . . . . . . (39

All vortices being of the same dimensions, equation (30) gives
immediately :

hence:

294
®x — i (35)
Inserting these values into equation (17):
1 294 36
~ 0,828 DR 0,828D'R* (39)

39*
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(if the terms of the highest order only are written down). This
formula gives a maximum value for o if the thickness D of the
vortices is determined by :

29,7
_D e . . i . . . . . 37
7E (37)
which gives:
o 0027 39)
=VE e

The coefficient C of the resistance formula (1) now becomes,
according to (18):

S 0,027 1
=——+ terms of the order B (39)

C = _—
oV’ V'R

1 5
C diminishes proportionally to —; hence we do not obtain the

V'R
quadratic law of resistance, but the resistance appears to be propor-
tional to the 14-power of the velocity. This does not conform to
the result of paragraph 3. In the latter paragraph, however, it was
assumed that the most intensive vorticity was concentrated in the
neighbourhood of the walls only, whereas in the model considered
above it is distributed uniformly over the whole breadth. If all
vortices have the same dimensions, it is not possible to distribute
them otherwise, without disturbing the field of uv-values. Hence we
must try to obtain a better result by using vortices of different
dimensions.

II. If we take vortices of different dimensions, say with thick-
nesses ranging from D=1 to a lower limit D, (to be determined
later on), the thickness of the boundary layers in the most favourable
case will be of the same order of magnitude as D,. The same
applies to the quantity v. If now the contribution of the vortices of

thickness D to the integral f'g_' dy becomes asymptotically propor-

)
tional to f]—)—,g for small values of D, the value of this integral will

1
become of the order of magnitude of e In this case we shall be
0
in the circumstances considered in the deduction of equations (19)
and (20). Paying attention to equation (31), it is necessary that

: 1
B:deg shall be proportional to D for small values of D.

Now it appears that a distribution of vortices fulfilling these
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conditions can be found, if all vortices are put against the walls.
If this be done, it is of course unnecessary to use the variable §
introduced in the beginning of this paragraph, as the positions of
all vortices are fixed. Only a determination of the function B(D)
is wanted. The following form of this function gives the right
distribution of ww-values:

1. the class of vortices whose thicknesses lie between the limits
dD
D’
these vortices are divided into two equal groups, each of them
sitnated along one of the walls;

2. besides the vortices mentioned under 1), there is a number of
vortices of thickness 1) =1, which have the total intensity '/, (in
same unit as used above).

With this determination of B(D), the value of —uv appears to
be, if D, <y<1—D,:

o1 1
- ‘dD dD 1— 1
— uv :‘ f(p(%)—{— Fq»(—b—y)—{-z(/)(y)z
1_

D and D+ dD have a total intensity proportional to Bd D=2

v Y ’
1dn 1dn 1 (40)
——‘f—f/}(n) +f—’l’('1) + -y =
Ui 3 4
Yy 1—y

1
T 280

The first term represents the contribution of the vortices lying
along the wall y = 0; of these vortices only those are of importance
for which D >y. The second term represents the contribution of
the vortices situated at the other side; here only those for which
D >1—y are of importance. The third term represents the contri-
bution of the group of vortices whose thickness D is equal to 17).

) If we should take the quantity B proportional to D—7, with n <1, the
integral /Z_g dy would take a smaller value, but now the first term of equation

(40) which gives the contribution of the vortices situated against the wall y =0,
would become:

1 1
‘dD y l al .
Dn ¥ (ﬁ)zyl ‘J dyy*tr (1 —m)* (for y > D)
Y Y
If y becomes small, this expression approaches to zero. Only if n=1 it ap-
proaches to a value independent of y, which is necessary in order that a constant

value of —uv at all points outside of the boundary layer may be obtained.
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In the boundary layer defined by 0<y < D, the value of
—up is found to be:

—ur = —rp(p) ( )+pr(y)—
_ (o, y)_ qa
—280 J D p(p =

=gl 7o) () o) () o2

Using the formulae (40) and (41) we find:

- 1
—fdy Uy = 556(1 — 0,889 D,)

1
- 1
fdy (wv)* = (280) (1 — 1,068 D,)
0

and by means of the latter there results:
t=0,710D, —..... N 7T
The value of % can be calculated in the followmg way: The
vortices having thicknesses between the limits D and D <4 dD

contribute to the integral —fdya) the amount:

D [~ D

y d
2— | d = |=—;
D ”"’(D) 315
0

hence, according to (30), to the integral fdy?‘:
294 dD
315 D*
To this must be added the contribution of the vortices with
thickness 1, amounting to:

n ‘f : 2520

— 294
i dy ' : ——.
hence in f Y G T

Adding all parts together, we get:

_ 204 294 204 /1 7)
@ ¢’ 315(1) T o530 3i5\D, 8/
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Finally the value of » becomes:

X=— 4 ..... N (1))

The values given by (42) and (43) are inserted into the principal
equation (17); retaining the terms of the highest order only, we find:
_ 1 261
T 0,710D, R 0.710 D] R*

o attains its maximum value if the lower limit D, of the thickness
of the vortices is determined by :

_ 522

Do=—72 . . . . ... (4

This is much below the value of D given by equation (37).
Using (45) we find:

o (44)

6=20001354 ..... . . . . . . (46)

and the coefficient of the resistance formula becomes:

S 1
C=—=0,00135 4 terms of the order — . . (47)
oV R

So this arrangement of the vortices leads to the quadratic law of
resistance.

§ 6. Discussion.

In paragraph 511 we have found the value 0,00135, as a higher
limit of the coefficient C of the resistance formula using an
idealized model of the distribution of the vorticity in a turbulent
current.

If it is possible to calculate C' without the use of this special
model, using equations (17) and (18) and conditions (6) and (7) only,
a still higher limit will probably be found. At the other side if
we compare the value of (' obtained here to the value given by
formula (4b), it appears that in the region which is of importance:
R = 10000 to 1000000, the value of C is too high.")

Hence we may assert that the true resistance is not the highest
possible resistance. In order to determine the true state of affairs,
a further condition will be necessary. A

From the result that the value of C appears to be too high, we
may deduce that the distribution of the value of — uw over the
carrent is too uniform. Paying attention to the results of measure-
ments of the distribution of the velocity over the breadth of the

1) According to CoUETTE’s experiments turbulence sets in at R = ca. 1900.
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current, we may expect that —wwv has nof a constant value between
the boundary layers, but that it is slightly “rounded off”. This
might be ascribed to slight irregular displacements of the vortices
caused by the irregularly distributed velocities which they impart
to each other. This “Brownian’ movement might give a distribution
of the smaller vortices resembling the one determined by the law
of Bourzmann-MaxweLl for a gas under the influence of gravity,
which possibility has been pointed out by vox KARMAN in the lecture
mentioned above.

The true distribution of vorticity in the turbulent motion will
take some mean position between the two extremes of paragraph 5
(uniform distribution over the whole breadth with C proportional to

10*

—

I
10°
L iC \
qg K
£ \
) .
10* \\ |
\
2 N % >

o e
o B=

Fig. 4. Logarithmic-scale diagram of the dependence of C on R.

1
Curve L: laminar region, C = E (form. 3).

Curve C: results of COUETTE's experiments (the value of
R has been calculated using « = 0,01096, comp.
CoUETTE, l. c. p. 460).

Curve K: C= 0,008 R—s (form. 4b), deduced from the
investigations by voN K4RM4N on the behaviour
of U(y).

Curve I: formula (89), deduced from the supposition that
all vortices have the same dimensions, and are
uniformly distributed over the section.

Curve II: formula (47), deduced from the supposition that
the vortices have different dimensions, and are
lying against the walls.
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1
——=, or the best ordered arrangement with all vortices along the

VR
walls and C equal to a (high) constant value).

For the sake of comparison the formulae (39), (47) and (4b) have
been represented together in fig. 4 at a logarithmic scale.

§ 7. Motion of a flurd between two fived parallel walls.

The motion of a fluid between two fixed parallel walls may be
treated according to the same scheme as has been used for the
motion between a fixed and a moving wall. As the former case
has somewhat more resemblance to the types of motion occurring
usually in practical cases, the principal features of the calculation
will be mentioned here.

The distance of the walls will be taken equal to 4; the mean
velocity of the current is denoted by V; the pressure gradient
— dp/dz will be denoted by J.— RrynoLps’ characteristic number
becomes: R = Vho/u; the coefficient of the resistance formula is
written C = Jh/o V*. Equation (8) of paragraph 2 has to be replaced
by the following equation governing the principal motion :

el o J 48
pdy’ @(puv)_—- e e ... (48)
A first integration of this formula gives:
aUu = h
u———guv:J(,— -y) S 340
dy 2

The constant of the integration is determined by observing that
on account of the symmetry of the arrangement both quantities
dU/dy and wv vanish for y = /2. On integrating a second and a
third time, and observing that U — 0 at both walls, we get:

h

1 A
yVh:i—th'—fdygyuv. N (1)
0

This equation replaces formula (11). Condition (9) which expresses
the dependance of the relative motion on the principal motion,
retains its form. Now firstly, using (49), we eliminate dU/dy from
(9); then using (50), we eliminate J/ and we obtain:

h
e i 1 Y —\?
12 dy j0* (wv)® | u'&! — h—,(] dy oy uv
uVv. o 0
== - .. (5
1 _
G | @

0
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After the introduction of undimensioned variables, we make use

of the abbreviations:
1

[dyy;;:o

0
1

1 _
— | dy(uv) = (147)0* e e e e (52)

12
0
1
1 d C1 —
1—2 ys — %0
° )
The equations (50) and (51) now reduce to:
o * _1 53
T + E —_— E . . » . . & . . ( )
1 Ja C 1

— == —s . e s ow s o= (54
Zev 12- " TR (54)

Distribution of the vortices over the fluid.

As appears from equation (49) the value of p %g will be small
Y

h .
compared to that of J(g—y) (as is the case for the real motion)

— /i
only if — ouv becomes approximately equal to J(é —y). Or,

using the undimensioned variables introduced above, we may say
that — uv aught to be proportional to 1 —u.

Hence the quantity up must take a negative value in the neigh-
bourhood of the wall y =0, and it must take a positive value at
the other wall. This can be obtained if we use two groups of
vortices whose positions are symmetrica! with respect to each other.
In the first place a group of elliptic vortices having the same
position as those described in paragraphs 4 and 5 (i.e. with the
long axis extended from the second to the fourth quadrant) is put
in against the wall y —=0. The contribution of these vortices to the
field of values of uv will be denoted by

— (o)1 =¥ (y).
Then a second group is put in, situated symmetrically against
the other wall: the contribution of the latter to uv will be:

— (uo)i = — P (1—y).
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The contributions of both groups to the integral fdyé_’ are of

course equal and of equal signs.
If we now take vortices having thicknesses ranging from 1 to a
minimum value D,, and we take their intensities proportional to:
BdD . aD (55)
D=|5—17 P

(this expression has a positive value for all values of D), then we
obtain for values of y lying between D, and 1 — D), the following
expression of ¥ (y) (with the omission of a constant factor):

1
1 3 Y
vo - fer(p-3)+ ()=
y
- l——1/+7y‘--14=y° + 101/’—531'
14012 : 2

from which follows:
1 1
== [ Ip== —_— | = . . &
W) — w1y 140(2 y) )

Hence between the boundary layers the values of uw are correctly
distributed.

Within each boundary layer |uv| decreases from 1/280 to zero.

The full expression of the value of w having been worked out, we
obtain the integrals:

1
1
—— (1—2667D, ...
fd”'“’ 1680( o F )
0
1

1 — 1 \?
1_2 dy (uv) = (m) (1— 3'204 .D° + i e .)

0
from which :

t=2,129 D, — terms of theorder D,* ... . . . (57)
1

The value of the integral [dy&® becomes:

0

1
2fd1)2941 18\ _204¢1 38 1
630 D 5—7)—ﬁ p,” 47D, )

This gives:
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_181¢ 8D, 1 e e B3 58
x_D. -4 9170-}- erms of the order D,...|. . (58)

The results of (57) and (58) are substituted into equation (53),
and the maximum value of ¢is determined. This maximum occurs if:

262 98 R
Wit [ :

R R 7262
Finally equation (54) gives:
2,11 1
C=0,0108 + N lg R + terms of the order B D IR (14|
Discussion.

In this case too the quadratic law of resistance is asymptotically
arrived at (for values of R surpassing 100000 the logarithmic term
is little more than 2°/, of the constant term). Just like what occurred
in the more simple case the value of the coefficient C is too high.
For channels with smooth walls voN Mises gives that (' ranges from
0,006 to 0,0024 if R ranges from 10000 to the greatest values
obtained ; the formula derived by voN Karman’s theory gives:

C=ca. 0,07 R

For channels with rough walls the dependance of the coefficient
C on the value of R is usually very small, so that a quadratic
resistance formula can be used, the value of C depending, however,
on the dimensions of the irregularities of the walls as compared to
the diameter of the channel. The value of C is much higher than
in the case of smooth walls; it may even surpass that given by
(59). So GiBson mentions values ranging to 0,015 for old cast iron
tubes or channels, lightly tuberculated *).

Laboratorium voor Aero- en Hydrodynamica der T. H.
Delft, May 1923.

1) The constant term of C in this formula has a value of 8 times that of
formula (47). An elementary but superficial comparison of the magnitude of the
frictional forces exerted on the walls in both cases leads to the same result.

%) R. voN Misgs, lc. p. 63, in connection with the definition of 7, given at
p- 83/84. In the case of a channel of infinite depth as the one treated here, r is
equal to .

A. H. GiBson, Hydraulics and its applications (1919), p. 209 (in the formula
mentioned at p. 206 is m is ¥ time the quantity r introduced by voN MisEs;
comp. GIBsON, l.c. p. 194).

Comp. also L. ScHILLER, ZS. fur angew. Math. u. Mechanik, 8, p. 2, 1923.
and others.





