Mathematics. — "Determination of the Bilinear System of ∞ " Line Elements of Space". By Dr. G. SCHAAKE. (Communicated by Prof. HENDRIK DE VRIES).

(Communicated at the meeting of November 24, 1923.)

§ 1. A system S_s of ∞^s line elements (P, l) of space each consisting of a straight line l and a point P on it, has three characteristic numbers φ , ψ and χ . φ is the order of the complex of the lines l of S_s , ψ the number of line elements of S_s for which P lies in a definite point and χ the order of the curve of the points P of the line elements of S_s the lines l of which lie in a given plane.

For a bilinear system S_s the numbers φ and ψ are both one. In this case the lines l of S_s form a linear complex C. Any plane α contains, therefore, a plane pencil (A, α) of lines l of S_s , which has the point A of α as vertex. Also the straight line l for which P lies in A, belongs to this plane pencil, which contains at the same time all the straight lines of S_s through A. If l describes the plane pencil (A, α) , P describes a curve which has one point outside A in common with each generatrix of (A, α) but which passes at the same time through A and touches there the line l corresponding to A; hence this curve is a conic k^2 through A. The third characteristic number of S_s is consequently two.

On the supposition that a system S_s (1, 1, 2) exists, we shall now derive its properties, and then indicate how by the aid of the found properties any such a system may be constructed.

§ 2. If P moves on an arbitrary straight line r, the line l describes a scroll of which r is a single directrix. As the line elements of S_s in a plane through r have a conic of points P, there lie in this plane two elements of S_s of which the points P belong to r, and such a plane contains besides r two generatrices of the scroll corresponding to r, which is, therefore, of the third order. This surface ϱ^3 has the straight line r' associated to r relative to C, as a double directrix.

To a straight line of points P there corresponds in S_{i} a cubic surface of straight lines l.

The line elements of S_i the points of which lie in a plane V, have a congruence Φ of lines l. As the elements of S_i of which the lines l pass through a given point, have a conic of points P, there are two among these line elements that have their points Pin V, and the order of Φ is *two*. For the class of Φ the same number is found.

To a plane of points P there corresponds accordingly in S_{1} a congruence (2, 2) of straight lines l.

The common lines of two congruences Φ_1 and Φ_2 , of straight lines l corresponding resp. to the planes V_1 and V_2 , form a scroll (Φ_1, Φ_2) of the eighth order. For the lines of Φ_1 and Φ_2 cutting an arbitrary straight line r, form resp. two surfaces of the fourth order φ_1^4 and φ_2^4 for which the lines r and r' are double directrices and which have eight generatrices in common, as r and r' count each four times in the intersection. (Φ_1, Φ_2) consists of the scroll φ^4 associated to the straight line (V_1, V_2) , and of a scroll of the fifth order φ^4 consisting of singular straight lines of S_4 , as two different points P, hence an infinite number of points P, correspond to a generatrix l of φ^4 .

The singular straight lines l of S_3 form a scroll of the fifth order ϱ^5 . Each of these straight lines, together with any of its points, gives a line element of S_4 .

As an arbitrary plane has a point in common with each singular straight line, all congruences Φ pass through ϱ^{s} .

To the five points P in which an arbitrary straight line r cuts the surface ϱ^{s} , there correspond as straight lines l the five generatrices of ϱ^{s} through these points. Hence:

Each surface ϱ° has five generatrices in common with ϱ° .

We can also arrive at this conclusion in the following way. An arbitrary scroll of the third order φ^{*} consisting of straight lines of C, has six straight lines in common with a congruence Φ . For the straight line r splits off twice and the line r' four times from the intersection of φ^{*} with the surface φ^{*} consisting of all straight lines of Φ that cut the directrices r and r' of φ^{*} . The points P associated to an arbitrary scroll φ^{*} consisting of straight lines of C, form therefore a curve of the sixth order. Accordingly a surface φ^{*} associated to a straight line r, must contain five singular lines of S_{*} .

In the same way the fact that an arbitrary congruence (2, 2) of straight lines of C has six lines in common with a ρ^3 , causes each congruence Φ to pass through ρ^5 .

§ 3. The rays l of C which cut two arbitrary lines r_1 and r_2 ,

form a scroll λ^2 . To this scroll there corresponds a curve of points P which cuts each generatrix of λ^2 once, namely in the point associated to it. The three lines l of the surface ϱ_1^2 corresponding to r_1 which cut r_2 , are the generatrices of λ^2 the points P of which lie on r_1 . The curve associated to λ^2 has, therefore, four points in common with an arbitrary plane through r_1 .

To a scroll of straight lines l of C there corresponds in S_{i} a rational curve of the fourth order k^{i} of points P.

To the straight lines l which cut an arbitrary line r and which form accordingly a bilinear congruence with directrices r and r', the points P of a surface are associated. This surface passes through r, because each point of r is the point P of a line l, and also through r', because the line l corresponding to a point of r', always cuts r. Besides this surface cuts each line l resting on r, hence also on r', outside r and r' in the points P associated to l, so that it is of the third order.

To a bilinear congruence of C there corresponds accordingly a cubic surface $\Omega^{\mathfrak{s}}$.

To the scroll which two bilinear congruences of C have in common, a k^4 is associated lying on both the surfaces Ω^3 corresponding to the congruences mentioned. These surfaces have one more curve k^5 in common, consisting of points that are singular for S_3 . The lines l corresponding to a point of k^5 , form the plane pencil of straight lines of C passing through this point.

There is a quantic k° of points that are singular for S_{s} . To each of the points of k° corresponds a plane pencil of straight lines l. The lines l associated to these singular points, form a congruence K(5,5).

As a straight line of any bilinear congruence of C passes through each point of k^{s} , k^{s} lies on all surfaces Ω^{s} .

A singular line l, i. e. a generatrix of ϱ^s , cannot intersect a surface Ω^s in a point that is not singular for S_s , as the line in S_s associated to this point, i. e. l, does not cut the line r corresponding to Ω^s . Consequently each singular straight line has three points in common with k^s . This ensues also from the fact that according to \S 2 the straight lines l associated to points P of a singular straight line, form a cubic scroll ϱ^s which must consist of three plane pencils, so that each singular line contains three singular points.

Inversely any straight line t cutting k^{5} three times, must be a singular line l for S_{3} . For the surface ϱ^{3} corresponding to this line, is formed by the three plane pencils that correspond to the points of intersection with k^{5} , so that to the other points of t a constant ray is associated which must coincide with t.

The scroll φ^{\bullet} of the singular straight lines consists accordingly of the trisecants of the curve k^{\bullet} .

The trisecants of k^5 passing through an arbitrary point A of this curve, lie in the plane pencil (A, α) of the lines l of C through this point. When A is chosen arbitrarily, the generatrices of (A, α) have a conic of points P; in this case however the point A is associated to any generatrix of (A, α) , so that the generatrices of (A, α) contain two straight lines that are singular for S_1 , and belong to the generatrices of ϱ^5 . Through any point of k^5 there pass therefore always two of its trisecants.

The curve k' is a double curve of the surface of its trisecants.

Two trisecants of k^{s} cannot intersect each other outside k^{s} , as in this case the plane through these two lines would contain six points of k^{s} . A plane section of e^{s} has consequently five double points.

The surface ϱ^* is therefore of the genus one.

The straight lines l associated to the points P of a chord k of k^5 , form a plane pencil w_k as the two plane pencils of straight lines l corresponding to the points of intersection of k and k^5 , split off from the surface ϱ° corresponding to an arbitrary straight line. As outside this curve k cuts one trisecant of k^5 , w_k contains one trisecant of k^5 .

Inversely to a plane pencil of lines l containing one trisecant of k^{5} , there corresponds a straight line of points P cutting k^{5} twice. For in this case a straight line which cuts k^{5} three times, splits off from the conic associated to an arbitrary plane pencil of C which intersects k^{5} five times. Hence the number of bisecants of k^{5} through a point P is equal to the number of plane pencils through a line l which contain at the same time a generatrix of ϱ^{5} , that is five.

The number of apparent double points of k^{\bullet} is five and the genus of this curve is consequently one.

The curve k^{s} cuts resp. five and ten generatrices of a plane pencil and of a scroll of lines l. Hence:

The conic k^* associated to a plane pencil of C, and the curve k^* corresponding to a scroll of straight lines l, have resp. five and ten points in common with k^* .

We remark also that the point P associated to a line l, may be determined by constructing in a plane α through l the conic k^* which cuts k^* five times. Besides in the vertex A of the plane pencil of C in α , this conic must cut l in the point P corresponding to l. Hence:

The conics k^{*} cutting k^{*} five times and intersecting a straight line of C twice, all pass through the point P associated to this line. § 4. Starting from a twisted curve of the fifth order and the genus one, k^{s} , we shall now construct a system S_{s} which has the properties of the system that we until now supposed to exist and of which k^{s} is the locus of the singular points.

In the same way as every twisted quintic, k^{s} lies on a cubic surface Ω_{1}^{s} . We shall make use of the simplest representation of Ω_{1}^{s} on a plane V, which has in V six singular points F_{1}, \ldots, F_{s} , to which resp. six crossing straight lines f_{1}, \ldots, f_{s} of Ω_{1}^{s} are associated. If e.g. we assume in V a curve k'^{s} of the fifth order that has double points in F_{1}, \ldots, F_{s} , there corresponds to it on Ω_{1}^{s} a curve of the fifth order and the genus one. For the curve assumed in V has five points that are not singular for the representation, in common with the image of a plane section of Ω_{1}^{s} , i.e. a cubic through F_{1}, \ldots, F_{s} .

The image in V of the intersection k° of an arbitrary cubic surface Ω_{s}° with Ω_{1}° is a curve k'° of the ninth order which has triple points in $F_{1}, \ldots, F_{\epsilon}$. The curve k'° is therefore completed into a k'° by a rational quartic k'^{ϵ} that has a triple point in F_{ϵ} and single points in $F_{1}, \ldots, F_{\epsilon}$. As consequently a given curve k'^{ϵ} together with any individual of a linear system of ∞° curves k'^{ϵ} , is the image of the base curve of a pencil of surfaces Ω° all passing through k° which contains Ω_{1}° , the surfaces of the third order through k° form a linear system Σ_{4} of ∞^{4} individuals.

A curve $k^{\prime 4}$ has in common with $k^{\prime 5}$ ten points that are not singular for the representation of Ω_1^{*} on V. Two surfaces Ω^{*} of Σ_4 have therefore besides k^{5} another rational curve of intersection of the fourth order k^{4} , resting on k^{5} in ten points.

 k^{5} is a double curve of the surface of its trisecants. For the projection of k^{5} out of one of its points on an arbitrary plane, a curve of the order four and the genus one, has two double points and through such a point there pass accordingly two trisecants of k^{5} . Further this surface has in common with Ω_{1}^{5} five straight lines that are represented on the five straight lines of V which join F_{6} and the other five points F; hence the intersection of the surfaces is of the order fifteen, so that the surface of the trisecants is a surface of the fifth order ϱ^{5} .

 Σ_4 contains one surface Ω^{\bullet} to which belongs an arbitrary given straight line r. This surface is the locus of the ∞^1 individuals of the ∞^{\bullet} conics k^2 intersecting k^{\bullet} five times and cutting r twice. For seven points of intersection of such a conic k^2 and Ω^3 may at once be indicated, so that any conic k^2 of which the plane passes through r, lies on the surface Ω^3 which contains r. The conics k^* which cut r twice, define therefore on this straight line an involution I, so that there are two conics k^* touching r(in the double points of I).

 Σ_4 further contains one monoid that has its vertex in an arbitrary given point *P*. This surface Ω^{s_P} is the locus of the conics k^{s} through *P*. It contains the five bisecants of k^{s} through *P*, as each of these, together with one trisecant of k^{s} , forms a conic k^{s} through *P*. Besides these five straight lines there lies on Ω^{s_P} one more straight line *l* through *P* which does not cut k^{s} . For the quadratic cone of the tangents of Ω^{s_P} in *P* has in common with this surface six straight lines through *P* and the ten points of intersection of the cone with k^{s} lie on the five bisecants.

The planes of the conics k^2 through P have in common with $\Omega^{2}P$ one more straight line through P which does not intersect k^{4} , and pass therefore through l. Inversely each conic k^{2} that intersects l twice, must lie on $\Omega^{2}P$ and passes therefore through P. For a straight line l corresponding to a point P the involution I is accordingly parabolic. The two conics k^{2} touching l, coincide in a conic through P.

Besides the complex of the lines l there is also a linecomplex of the fifth order for which the involution l is parabolic. Let us consider a straight line a which cuts k^{5} once. A conic k^{2} cutting atwice, must pass through the point of intersection of a and k^{5} , because else the plane of k^{2} would have six points of intersection with k^{5} . Through each point P of a there passes one such a conic k^{2} , which is the intersection of $52^{9}P$ and the plane that passes through a and the straight line l corresponding to P. Also for a line a we have, therefore, only one point where it is touched by a conic k^{3} .

With a view to determining the order of the complex of the lines l, we take a plane pencil (P, φ) of lines r and investigate the locus of the points where conics k^2 touch these straight lines r. This is a curve which cuts each straight line of (P, φ) twice besides in P and which has a double point in P. The tangents at this double point are at the same time the tangents of Ω^{\bullet}_{P} in P which lie in φ . To this curve, which is accordingly of the fourth order, out of its double point P six tangents can be drawn and these are the straight lines for which the involution I is parabolic. As the plane pencil (P, φ) contains five lines l is linear.

C contains the surface ϱ^s of the trisecants *t* of k^s . For if we choose *P* on a straight line *t*, $\Omega^s P$ becomes the surface of the bisecants of k^s which cut *t* and which, together with *t*, form there-

fore conics k^2 through P. For the surface of the bisecants of k^4 intersecting an arbitrary straight line, is of the fifteenth order, as it has the directrix as a five-fold line, and has ten generatrices in a plane through the directrix. If we take a trisecant t of k^4 as directrix, three cones of the fourth order through t are split off from this surface, so that there remains a cubical surface with t as a double line. The planes of the conics k^2 containing P all pass through the line t, which is therefore associated to P as a line l.

Consequently if $k^{\mathfrak{s}}$ is not degenerate, *C* is a general linear complex. For if *C* were special, the axis of *C* would be a directrix of $\varrho^{\mathfrak{s}}$ and even a multiple directrix, as $\varrho^{\mathfrak{s}}$ is not rational. But outside $k^{\mathfrak{s}}$ two trisecants of this curve cannot cut each other.

We remark also that a trisecant t corresponds to each of its points P as a line l.

To a point P of k^{5} an infinite number of straight lines is associated. These form the plane pencil of C that has P for vertex and that is defined by the two trisecants of k^{5} through P. For any of the lines of this plane pencil the associated point P must lie in the point of intersection with k^{5} . If we choose P outside k^{5} and if this point approaches k^{5} , $\Omega^{5}P$ is transformed into the surface formed by the conics k^{2} passing through a given point of k^{5} and touching at this point a plane through the tangent to k^{5} . Hence there correspond indeed to a point P of $k^{5} \infty^{1}$ monoids $\Omega^{5}P$ that have their vertices in P, and the straight lines l of these monoids form the plane pencil of the straight lines of C through P.

The line elements (P, l) of this § form indeed a bilinear system of ∞^3 individuals for which k^5 is the locus of the singular points P and ϱ^5 the scroll of the singular lines l.

A bilinear system of ∞° line elements (P, l) may always be derived from a twisted curve k° of the genus one by associating to each point P the line l through P which does not cut k° , of the monoid of the third order that passes through k° and has its vertex in P, or, what amounts to the same, by associating the centre of the parabolic involution that is defined on lines l which do not cut k° , by the conics intersecting k° five times, to these lines l. Inversely in the way indicated a bilinear system of ∞° line elements may be derived from any curve k° of the genus one.

From the representations of a cubic surface on a plane used in the beginning of this §, there ensues that ∞^5 twisted quintics of the genus one lie on any given cubic surface. As there lie ∞^{19} cubic surfaces in space, and through any k^5 of the genus one there pass ∞^4 cubic surfaces, there lie in space ∞^{3^4} curves k^5 of the genus one.

There are, accordingly, $\infty^{*\circ}$ bilinear systems of ∞^{*} line elements.

§ 5. There are ∞^{15} bilinear systems S_s of ∞^5 line elements for which the complex of the lines l coincides with a given linear complex C. This may be proved by the aid of the representation of NÖTHER¹) of the rays l of C on the points Q of space. For this representation there is one cardinal ray l_1 in C to which all the points Q of a plane V are associated and there is one conic k'^2 of singular points Q in V, to each of which a plane pencil of Ccontaining l_1 corresponds.

To a scroll in C of the order v which has a v-fold line in l_1 , a curve corresponds of the order v-v which cuts k'' in v-2v points. Inversely a curve of the n^{th} order of points Q, intersecting k'' in s points, is associated to a scroll in C of the order 2n-s which has in l_1 an (n-s)-fold line.

A congruence (μ, μ) with a ϱ -fold line in l_1 is represented on a surface of the order $2\mu - \varrho$ of which k'^{*} is a $(\mu - \varrho)$ -fold conic, and to a surface of the m^{th} order of points Q containing k'^{*} as an m_1 -fold conic, a congruence of rays $(m - m_1, m - m_1)$ is associated that has an $(m - 2m_1)$ -fold line in l_1 ,

Now let us assume a curve k'^{5} of the genus one, formed by points Q, which cuts k'^{2} five times. This curve is the image of a scroll e^{5} of the order five and the genus one the generatrices of which belong to C.

Let us now consider the surface formed by the bisecants of k'^{5} which intersect k'^{5} . This surface has k'^{2} as a five-fold and k'^{5} as a three-fold curve and is a surface of the tenth order ϱ'^{10} . For k'^{2} cuts ten times outside k'^{5} the surface of the fifteenth order of the bisecants of k'^{5} that cut a given straight line, which surface has k'^{5} as a quadruple curve.

To ϱ'^{10} there corresponds a congruence K (5, 5) formed by the plane pencils of C that contain two lines of ϱ^5 . The vertices of these plane pencils form accordingly the double curve of ϱ^5 , which is of the fifth order; for in a plane there lie five generatrices of the congruence corresponding to ϱ'^{10} , hence also five vertices of plane pencils of this congruence. As a point of k'^5 carries three generatrices of ϱ'^{10} , the straight lines of ϱ^6 are trisecants of k^5 . Inversely each trisecant t of k^5 lies on ϱ^6 , because six points of intersection of

^{1) &}quot;Zur Theorie algebraischer Functionen", Gött. Nachrichten 1869.

t and φ^{s} may be indicated, and φ^{s} is consequently the surface of the trisecants of k^{s} . As a point of k^{s} carries two trisecants, this curve is of the genus one. As a rule it is not degenerate. For if k^{s} consisted of a biquadratic curve of the first kind and a line of intersection of this curve, C would be a special linear complex, and for any other degeneration of $k^{s} \varphi^{s}$, and accordingly k'^{s} , would be degenerate.

Of the bilinear system S_1 of ∞^{\bullet} line elements which according to § 5 may be derived from k^{\bullet} , C is the complex of the lines l. Else the surface ϱ^{\bullet} would be common to two linear complexes, and as in this case it would belong to a bilinear congruence, it would have two straight directrices, which cannot be the case, even if two straight lines belonged to k^{\bullet} . For if e.g. k^{\bullet} degenerated into a twisted cubic with an intersecting line and a bisecant, also the bisecants of the cubic which meet the intersecting line, would belong to ϱ^{\bullet} .

§ 6. If we associate to each point P corresponding in S_1 to a line l, the point Q which is conjugated to the same straight line by a representation of NÖTHER, we get ∞^3 pairs of points (P, Q)which define a birational transformation in space. The point P of the line l_1 , which we shall call P_1 , is a cardinal point for this transformation. The corresponding points Q form the plane V. Further k^5 is a curve of singular points P. To each point of k^5 there corresponds a straight line of points Q which cuts k'^2 . The straight lines associated to the points of k^5 , form the surface ϱ'^{10} .

There are two curves of singular points Q, namely k'^2 and k'^5 . To a point of k'^2 the points P of a plane pencil of C containing l_1 are associated which form a conic k^2 through P_1 . The conics k^2 corresponding to the points Q of k'^2 , form the monoid $\Omega^3 P_1$ that has its vertex in P_1 . To the points Q of k'^4 are associated straight lines of points P that form the surface ϱ^4 .

If P moves on a straight line, l describes a cubic scroll which contains five generatrices of ϱ^{5} and Q accordingly describes a cubic which cuts k'^{*} three times and k'^{*} five times. To a plane of points P there corresponds a congruence (2, 2) of lines l containing ϱ^{*} , hence a biquadratic surface of points Q of which k'^{*} is a double curve and which contains k'^{*} .

If Q moves on a straight line, l describes a scroll containing l_1 and P therefore a rational quartic that passes through P_1 and intersects k^* in ten points. To a plane of points Q a bilinear congruence of lines l is associated containing l_1 , hence a cubic surface of points P through P_1 containing k^* . The pairs of points (P, Q) accordingly define a birational transtormation $(\mathbf{3}, \mathbf{4})^{1}$.

§ 7. A curve of the n^{th} order which cuts k^{s} m times, intersects a surface Ω^{s} in 3n-m points that are not singular for S_{s} and meets 5n-2m generatrices of ϱ^{s} outside k^{s} . Hence:

The lines l associated in S_3 to the points P of a curve of the n^{th} order that cuts k^s m times, form a scroll of the order 3n-m which has 5n-2m generatrices in common with ϱ^s .

If inversely we consider a scroll of the order v that has μ generatrices in common with ϱ^s , we get by making v and μ resp. equal to 3n-m and 5n-2m and by solving n and m out of these equations:

The points P corresponding in S_s to the lines l forming a surface of the order v which has μ generatrices in common with ϱ^s , form a curve of the order $2v-\mu$ which cuts k^s in $5v-3\mu$ points.

A surface of the order p containing k^{t} as a q-fold curve, is cut by a conic k^{s} and a generatrix of ϱ^{t} resp. in 2p-5q and p-3qpoints that are not singular for S_{s} .

To the points P of a surface of the order p with k^{s} as a q-fold curve, there correspond accordingly in S, the lines l of a congruence (2p-5q, 2p-5q), of which the generatrices of ϱ^{s} are (p-3q)-fold lines.

Inversely it is easily seen that

To a congruence (π, π) of lines l containing the generatrices of ϱ^s as \varkappa -fold lines, a surface of points P is associated which is of the order 3π — $5\varkappa$ and has k^s as a $(\pi$ — $2\varkappa$)-fold curve.

Several applications can be made of the representation defined by S_{\bullet} of the rays of C on the points of space. Let us for instance try to find the number of the conics which cut k^{\bullet} five times and which meet besides three given straight lines r. These conics are the representations of the plane pencils of C which contain one straight line of each of the three surfaces ϱ^{\bullet} corresponding to the lines r and which have accordingly their vertices in the 27 points of intersection of these three surfaces.

There are 27 conics intersecting five times a twisted quintic of the genus one and cutting besides three given straight lines.

§ 8. Finally we determine the scrolls belonging to C that are associated to the straight lines of a cubic surface Ω^{\bullet} which is the locus of the points P of the lines l intersecting an arbitrary straight line r, hence also the line r' associated to r relative to C.

¹⁾ STURM: "Geometrische Verwandtschaften", IV p. 371.

The straight lines r and r', which both lie on Ω^{*} , are the images of the surfaces ϱ^{*} and ϱ'^{*} corresponding resp. to these lines.

Further the five lines t of ϱ^s that are singular for S_s which cut r, belong to \mathcal{Q}^s as to each of these lines all its points are associated as points P. Besides r these lines also cut r', and they are trisecants of k^s .

As the line t belonging to the plane pencil of C which has the point of intersection of r with a line t as vertex and of which the plane passes therefore through r', splits off from the associated conic, this plane pencil contains a straight line of points P cutting k^5 twice and cutting r'. Accordingly five bisecants of k^5 intersecting r', lie on Ω^3 . In the same way we find on Ω^3 five bisecants of k^5 which cut r and which are associated to the plane pencils of C that have the points of intersection of r' and ρ^5 as vertices.

Finally for a scroll with r and r' as directrices containing three generatrices of ϱ^5 , and belonging therefore to C, three trisecants of k^5 split off from the associated quartic. Such a scroll is represented on a straight line which cuts k^5 once, but has no point in common with r and r'. On Ω^3 there lie ten lines of this kind.

In this way the images of the 27 straight lines of Ω^* are found.

If the straight line r belongs to C and is accordingly a line l, we have to do with a monoid $\Omega^{\bullet}P$ that has the point P of l as vertex. In this case r and r' coincide with l. Also the straight lines that were associated to the ten plane pencils of C which had their vertices in the points of intersection of r and r' with ϱ^{\bullet} , coincide in pairs in five lines through P, as all these plane pencils contain l. These five lines are the bisecants of k^{\bullet} through P. Further there lie on $\Omega^{\bullet}P$ the five trisecants of k^{\bullet} cutting l, and the ten straight lines belonging to scrolls of C which cut k^{\bullet} once and which have no point in common with l.