Mathematics. - "Determination of the Bilinear System of ∞ " Line Elements of Space". By Dr. G. Sohaake. (Communicated by Prof. Hendrik de Vrifs).

(Communicated at the meeting of November 24, 1923.)
\oint 1. A system S_{2} of ∞^{2} line elements (P, l) of space each consisting of a straight line l and a point P on it, has three characteristic numbers φ, ψ and $\chi . \psi$ is the order of the complex of the lines l of S_{s}, ψ the number of line elements of S_{3} for which P lies in a definite point and χ the order of the curve of the points P of the line elements of S_{3} the lines l of which lie in a given plane.

For a bilinear system S_{3} the numbers if and ψ are both one. In this case the lines l of S_{s} form a linear complex C. Any plane \boldsymbol{a} contains, therefore, a plane pencil (A, a) of lines l of S_{3}, which has the point A of as vertex. Also the straight line l for which P lies in A, belongs to this plane pencil, which contains at the same time all the straight lines of $S_{\mathbf{z}}$ through A. If l describes the plane pencil $(A, a), \quad P$ describes a curve which has one point outside A in common with each generatrix of (A, α) but which passes at the same time through A and touches there the line l corresponding to A; hence this curve is a conic k^{2} through A. The third characteristic number of S_{3} is consequently two.

On the supposition that a system $S_{2}(1,1,2)$ exists, we shall now derive its properties, and then indicate how by the aid of the found properties any such a system may be constructed.
\$2. If P moves on an arbitrary straight line r, the line l describes a scroll of which r is a single directrix. As the line elements of S_{1} in a plane through r have a conic of points P, there lie in this plane two elements of S_{z} of which the points P belong to r, and such a plane contains besides r two generatrices of the scroll corresponding to r, which is, therefore, of the third order. This surface ρ^{3} has the straight line r^{\prime} associated to r relative to C, as a double directrix.

To a straight line of points P there corresponds in S_{2} a cubic surface of straight lines l.

The line elements of S_{3} the points of which lie in a plane V, have a congruence Φ of lines l. As the elements of S_{3} of which the lines l pass through a given point, have a conic of points P, there are two among these line elements that have their points P in V, and the order of Φ is two. For the class of Φ the same number is found.

To a plane of points P there corresponds accordingly in S_{1} a congruence $(2,2)$ of straight lines l.

The common lines of two congruences Φ_{1} and Φ_{2} of straight lines l corresponding resp. to the planes V_{1} and V_{2}, form a scroll ($\boldsymbol{\Phi}_{1}, \boldsymbol{\Phi}_{2}$) of the eighth order. For the lines of $\boldsymbol{\Phi}_{1}$ and $\boldsymbol{\Phi}_{2}$ cutting an arbitrary straight line r, form resp. two surfaces of the fourth order φ_{1}^{4} and ρ_{2}^{4} for which the lines r and r^{\prime} are double directrices and which have eight generatrices in common, as r and r^{\prime} count each four times in the intersection. (Φ_{1}, Φ_{3}) consists of the scroll ρ^{2} associated to the straight line $\left(V_{1}, V_{2}\right)$, and of a scroll of the fifth order ϱ^{5} consisting of singular straight lines of S_{8}, as two different points P, hence an infinite number of points P, correspond to a generatrix l of ρ^{5}.

The singular straight lines l of S_{3} form a scroll of the fifth order ϱ^{5}. Each of these straight lines, together with any of its points, gives a line element of S_{3}.

As an arbitrary plane has a point in common with each singular straight line, all congruences Φ pass through ρ^{6}.

To the five points P in which an arbitrary straight line r cuts the surface ϱ^{5}, there correspond as straight lines l the five generatrices of ρ^{5} through these points. Hence:

Each surface ϱ^{3} has five generatrices in common with ϱ^{5}.
We can also arrive at this conclusion in the following way. An arbitrary scroll of the third order p^{2} consisting of straight lines of C, has six straight lines in common with a congruence Φ. For the straight line r splits off twice and the line r^{\prime} four times from the intersection of φ^{3} with the surface φ^{4} consisting of all straight lines of Φ that cut the directrices r and r^{\prime} of φ^{3}. The points P associated to an arbitrary scroll φ^{3} consisting of straight lines of C, form therefore a curve of the sixth order. Accordingly a surface ρ^{3} associated to a straight line r, must contain five singular lines of S_{3}.

In the same way the fact that an arbitrary congruence $(2,2)$ of straight lines of C has six lines in common with a ρ^{3}, causes each congruence $\boldsymbol{\Phi}$ to pass through \boldsymbol{e}^{5}.
§3. The rays l of C which cut two arbitrary lines r_{1} and r_{2},
form a scroll λ^{2}. To this scroll there corresponds a curve of points P which cuts each generatrix of i^{2} once, namely in the point associated to $i t$. The three lines l of the surface $\rho_{1}{ }^{3}$ corresponding to r_{1} which cut r_{1}, are the generatrices of λ^{\prime} the points P of which lie on r_{1}. The curve associated to λ^{2} has, therefore, four points in common with an arbitrary plane through r_{1}.

To a scroll of straight lines l of C there corvesponds in S_{2} a rational curve of the fourth order $k k^{4}$ of points P.

To the straight lines l which cut an arbitrary line r and which form accordingly a bilinear congruence with directrices r and r^{\prime}, the points P of a surface are associated. This surface passes through r, because each point of r is the point P of a line l, and also through r^{\prime}, because the line l corresponding to a point of r^{\prime}, always cuts r. Besides this surface cuts each line l resting on r, hence also on r^{\prime}, outside r and r^{\prime} in the points P associated to l, so that it is of the third order.

To a bilinear congruence of C there corresponds accordingly a cubic surface Ω^{8}.

To the scroll which two bilinear congruences of C^{\prime} have in common, a k^{4} is associated lying on both the surfaces $\Omega^{\mathbf{3}}$ corresponding to the congruences mentioned. These surfaces have one more curve k^{6} in common, consisting of points that are singular for S_{3}. The lines l corresponding to a point of k^{5}, form the plane pencil of straight lines of C passing through this point.

There is a quintic k^{5} of points that are singular for S_{8}. To each of the points of k^{5} corresponds a plane pencil of straight lines l. The lines l associated to these singular points, form a congruence $K(5,5)$.

As a straight line of any bilinear congruence of C passes through each point of k^{5}, k^{5} lies on all surfaces Ω^{3}.

A singular line l, i. e. a generatrix of ρ^{5}, cannot intersect a surface $\Omega^{\mathbf{a}}$ in a point that is not singular for S_{3}, as the line in S_{3} associated to this point, i. e. l, does not cut the line r corresponding to $\Omega^{\mathbf{3}}$. Consequently each singular straight line has three points in common with k^{5}. This ensues also from the fact that according to $\$ 2$ the straight lines l associated to points P of a singular straight line, form a cubic scroll ϱ^{8} which must consist of three plane pencils, so that each singular line contains three singular points.

Inversely any straight line t cutting k^{6} three times, must be a singular line l for S_{2}. For the surface ρ^{2} corresponding to this line, is formed by the three plane pencils that correspond to the points of intersection with k^{6}, so that to the other points of t a constant ray is associated which must coincide with t.

The scroll ρ^{5} of the singular straight lines consists accordingly of the trisecants of the curve k^{5}.

The trisecants of k^{5} passing through an arbitrary point A of this curve, lie in the plane pencil (A, α) of the lines l of C through this point. When A is chosen arbitrarily, the generatrices of (A, \boldsymbol{a}) have a conic of points P; in this case however the point A is associated to any generatrix of (A, α), so that the generatrices of (A, α) contain two straight lines that are singular for S_{2}, and belong to the generatrices of ϱ^{5}. Through any point of k^{6} there pass therefore always two of its trisecants.

The curve k^{5} is a double curve of the surface of its trisecants.
Two trisecants of k^{5} cannot intersect each other outside k^{5}, as in this case the plane through these two lines would contain six points of k^{5}. A plane section of ρ^{6} has consequently five double points.

The surface ϱ° is therefore of the genus one.
The straight lines l associated to the points P of a chord k of $k^{\text {b }}$, form a plane pencil w_{k} as the two plane pencils of straight lines l corresponding to the points of intersection of k and k^{s}, split off from the surface ϱ^{\prime} corresponding to an arbitrary straight line. As outside this curve k cuts one trisecant of k^{6}, w_{k} contains one trisecant of k^{5}.

Inversely to a plane pencil of lines l containing one trisecant of k^{6}, there corresponds a straight line of points P cutting k^{6} twice. For in this case a straight line which cuts k^{6} three times, splits off from the conic associated to an arbitrary plane pencil of C which intersects k^{5} five times. Hence the number of bisecants of k^{5} through a point P is equal to the number of plane pencils through a line l which contain at the same time a generatrix of ϱ^{6}, that is five.

The number of apparent double points of k^{6} is five and the genus of this curve is consequently one.

The curve k^{5} cuts resp. five and ten generatrices of a plane pencil and of a scroll of lines l. Hence:

The conic k^{2} associated to a plane pencil of C, and the curve k^{4} corresponding to a scroll of straight lines l, have resp. five and ten points in common with k^{5}.

We remark also that the point P associated to a line l, may be determined by constructing in a plane a through l the conic k^{2} which cuts k^{6} five times. Besides in the vertex A of the plane pencil of C in μ, this conic must cut l in the point P corresponding to l. Hence:

The conics k^{3} cutting k^{5}.five times and intersecting a straight line of C twice, all pass through the point P associated 10 thes line.
\$4. Starting from a twisted curve of the fifth order and the genus one, k^{5}, we shall now construct a system S_{8} which has the properties of the system that we until now supposed to exist and of which k^{5} is the locus of the singular points.

In the same way as every twisted quintic, k^{6} lies on a cubic surface $\Omega_{1}{ }^{3}$. We shall make use of the simplest representation of $\Omega_{1}{ }^{2}$ on a plane V, which has in V six singular points F_{1}, \ldots, F_{0}, to which resp. six crossing straight lines f_{1}, \ldots, f_{0} of $\Omega_{1}{ }^{2}$ are associated. If e.g. we assume in V a curve $k^{\prime s}$ of the fifth order that has double points in F_{1}, \ldots, F_{g}, there corresponds to it on $\Omega_{1}{ }^{2}$ a curve of the fifth order and the genus one. For the curve assumed in V has five points that are not singular for the representation, in common with the image of a plane section of $\Omega_{1}{ }^{1}$, i.e. a cubic through F_{1}, \ldots, F_{0}.

The image in V of the intersection k^{9} of an arbitrary cubic surface $\Omega_{,}{ }^{2}$ with $\Omega_{1}{ }^{2}$ is a curve $k^{\prime \prime}$ of the ninth order which has triple points in $F_{1}, \ldots, F_{\mathrm{a}}$. The curve $k^{\prime s}$ is therefore completed into a $k^{\prime 9}$ by a rational quartic $k^{\prime 4}$ that has a triple point in F_{0} and single points in F_{1}, \ldots, F_{b}. As consequently a given curve $k^{\prime 6}$ together with any individual of a linear system of ∞^{2} curves $k^{\prime 4}$, is the image of the base curve of a pencil of surfaces Ω^{2} all passing through k^{5} which contains $\Omega \Omega_{1}{ }^{2}$, the surfaces of the third order through k^{5} form a linear system Σ, of ∞^{4} individuals.

A curve $k^{\prime 4}$ has in common with $k^{\prime 6}$ ten points that are not singular for the representation of $\Omega_{1}{ }^{8}$ on V. Two surfaces Ω^{8} of Σ_{4} have therefore besides k^{5} another rational curve of intersection of the fourth order k^{4}, resting on k^{6} in ten points.
k^{5} is a double curve of the surface of its trisecants. For the projection of k^{6} out of one of its points on an arbitrary plane, a curve of the order four and the genus one, has two double points and through such a point there pass accordingly two trisecants of k^{6}. Further this surface has in common with $\Omega_{1}{ }^{2}$ five straight lines that are represented on the five straight lines of V which join $F_{\text {。 }}$ and the other five points F; hence the intersection of the surfaces is of the order fifteen, so that the surface of the trisecants is a surface of the fifth order ϱ^{5}.
Σ_{4} contains one surface Ω^{\prime} to which belongs an arbitrary given straight line r. This surface is the locus of the ∞^{1} individuals of the ∞^{2} conics k^{2} intersecting k^{6} five times and cutting r twice. For seven points of intersection of such a conic k^{2} and $\Omega^{\mathbf{3}}$ may at once be indicated, so that any conic k^{3} of which the plane passes through r, lies on the surface $\Omega^{\mathbf{s}}$ which contains r.

The conics k^{2} which cut r twice, define therefore on this straight line an involution I, so that there are two conics k^{2} touching r (in the double points of l).
Σ_{4} further contains one monoid that has its vertex in an arbitrary given point P. This surface $\Omega^{2}{ }_{P}$ is the locus of the conics k^{2} through P. It contains the five bisecants of k^{5} through P, as each of these, together with one trisecant of k^{6}, forms a conic k^{2} through P. Besides these five straight lines there lies on $\Omega^{8} P$ one more straight line l through P which does not cut k^{6}. For the quadratic cone of the tangents of $\Omega^{1} P$ in P has in common with this surface six straight lines through P and the ten points of intersection of the cone with k^{6} lie on the five bisecants.

The planes of the conics k^{2} through P have in common with $\Omega^{3}{ }_{P}$ one more straight line through P which does not intersect $k^{\mathbf{s}}$, and pass therefore through l. Inversely each conic k^{2} that intersects l twice, must lie on $S_{\Omega^{3}} P$ and passes therefore through P. For a straight line l corresponding to a point P the involution I is accordingly parabolic. The two conics k^{2} touching l, coincide in a conic through P.

Besides the complex of the lines l there is also a linecomplex of the fifth order for which the involution $/$ is parabolic. Let us consider a straight line a which cuts k^{6} once. A conic k^{2} cutting a twice, must pass through the point of intersection of a and k^{d}, because else the plane of k^{2} would have six points of intersection with k^{\prime}. Through each point P of a there passes one such a conic k^{2}, which is the intersection of $\Omega_{2}^{2} P$ and the plane that passes through a and the straight line l corresponding to P. Also for a line a we have, therefore, only one point where it is touched by a conic k^{s}.

With a view to determining the order of the complex of the lines l, we take a plane pencil (P, r) of lines r and investigate the locus of the points where conics k^{2} touch these straight lines r. This is a curve which cuts each straight line of (P, φ) twice besides in P and which has a double point in P. The tangents at this double point are at the same time the tangents of Ω_{P}^{2} in P which lie in φ. To this curve, which is accordingly of the fourth order, out of its double point P six tangents can be drawn and these are the straight lines for which the involution I is parabolic. As the plane pencil (P, y) contains five lines a, one line l belongs to (P, φ), so that the complex C of the lines l is linear.
C contains the surface ρ^{5} of the trisecants t of k^{6}. For if we choose P on a straight line $t, \Omega^{2}{ }_{P}$ becomes the surface of the bisecants of k^{5} which cut t and which, together with t, form there-
fore conics k^{2} through P. For the surface of the bisecants of k^{6} intersecting an arbitrary straight line, is of the fifteenth order, as it has the directrix as a five-fold line, and has ten generatrices in a plane through the directrix. If we take a trisecant t of $k^{\text {b }}$ as directrix, three cones of the fourth order through t are split off from this surface, so that there remains a cubical surface with t as a donble line. The planes of the conics k^{2} containing P all pass through the line t, which is therefore associated to P as a line l.

Consequently if k^{6} is not degenerate, C is a general linear complex. For if C were special, the axis of C would be a directrix of ρ^{6} and even a multiple directrix, as ρ^{6} is not rational. But outside k^{6} two trisecants of this curve cannot cut each other.

We remark also that a trisecant t corresponds to each of its points P as a line l.

To a point P of k^{6} an infinite number of straight lines is associated. These form the plane pencil of C that has P for vertex and that is defined by the two trisecants of k^{6} through P. For any of the lines of this plane pencil the associated point P must lie in the point of intersection with k^{5}. If we choose P outside k^{5} and if this point approaches $k^{5}, S \Omega^{3} P$ is transformed into the surface formed by the conics k^{2} passing through a given point of k^{6} and touching at this point a plane through the tangent to k^{6}. Hence there correspond indeed to a point P of $k^{5} \infty^{1}$ monoids $\Omega^{3} P$ that have their vertices in P, and the straight lines l of these monoids form the plane pencil of the straight lines of C through P.

The line elements (P, l) of this \oint form indeed a bilinear system of ∞^{2} individuals for which k^{6} is the locus of the singular points P and ϱ^{6} the scroll of the singular lines l.

A bilinear system of ∞^{2} line elements (P, l) may always be derived from a twisted curve k^{6} of the genus one by associating to each point P the line l through P which does not cut k^{5}, of the monoid of the third order that passes through k^{5} and has its vertex in P, or, what amounts to the same, by associating the centre of the parabolic involution that is defined on lines l which do not cut k^{6}, by the conics intersecting k^{5}, five times, to these lines l. Inversely in the way inclicated a bilinear system of ∞^{\prime} line elements may be derived from any curve k^{b} of the genus one.

From the representations of a cubic surface on a plane used in the beginning of this \$, there ensues that ∞^{6} twisted quintics of the genus one lie on any given cubic surface. As there lie ∞^{19} cubic surfaces in space, and through any k^{5} of the genus one there
pass ∞^{4} cubic surfaces, there lie in space ∞^{20} curves k^{5} of the genus one.

There are, accordingly, ∞^{30} bilinear systems of ∞^{2} line elements.
\$5. There are ∞^{16} bilinear systems S_{8} of ∞^{8} line elements for which the complex of the lines l coincides with a given linear complex C. This may be proved by the aid of the representation of Nöther ${ }^{1}$) of the rays l of C on the points Q of space. For this representation there is one cardinal ray l_{1} in C to which all the points Q of a plane V are associated and there is one conic $k^{\prime 2}$ of singular points Q in V, to each of which a plane pencil of C containing l_{1} corresponds.

To a scroll in C of the order v which has a v-fold line in l_{1}, a curve corresponds of the order $v-v$ which cuts $k^{\prime 2}$ in $v-2 v$ points. Inversely a curve of the $n^{\text {th }}$ order of points Q, intersecting $k^{\prime 2}$ in s points, is associated to a scroll in C of the order $2 n-s$ which has in l_{1} an $(n-s)$ fold line.

A congruence (μ, μ) with a ρ-fold line in l_{1} is represented on a surface of the order 2μ - ρ of which $k^{\prime 2}$ is a ($\mu-\varrho$)-fold conic, and to a surface of the $m^{\text {th }}$ order of points Q containing $k^{\prime 2}$ as an m_{1} fold conic, a congruence of rays ($m-m_{1}, m-m_{1}$) is associated that has an ($m-2 m_{1}$)-fold line in l_{1},

Now let us assume a curve k^{16} of the genus one, formed by points Q, which cuts $k^{\prime 2}$ five times. This curve is the image of a scroll ρ^{6} of the order five and the genus one the generatrices of which belong to C.

Let us now consider the surface formed by the bisecants of k^{18} which intersect $k^{\prime 2}$. This surface has $k^{\prime 2}$ as a five-fold and $k^{\prime 8}$ as a three-fold curve and is a surface of the tenth order ρ^{110}. For $k^{\prime 2}$ cuts ten times outside $k^{\prime s}$ the surface of the fifteenth order of the bisecants of $k^{\prime 6}$ that cut a given straight line, which surface has $k^{\prime 6}$ as a quadruple curve.

To $\rho^{11 n}$ there corresponds a congruence $K(5,5)$ formed by the plane pencils of C that contain two lines of e^{6}. The vertices of these plane pencils form accordingly the double curve of ρ^{5}, which is of the fifth order; for in a plane there lie five generatrices of the congruence corresponding to $\rho^{\prime 10}$, hence also five vertices of plane pencils of this congruence. As a point of k^{15} carries three generatrices of $\rho^{\prime 20}$, the straight lines of ρ^{6} are trisecants of k^{6}. Inversely each trisecant t of k^{5} lies on ϱ^{5}, because six points of intersection of

[^0]t and ρ^{5} may be indicated, and ρ^{6} is consequently the surface of the trisecants of k^{6}. As a point of k^{6} carries two trisecants, this curve is of the genus one. As a rule it is not degenerate. For if k^{5} consisted of a biquadratic curve of the first kind and a line of intersection of this curve, C would be a special linear complex, and for any other degeneration of $k^{6} \rho^{5}$, and accordingly $k^{\prime 5}$, would be degenerate.

Of the bilinear system S_{2} of ∞^{\prime} line elements which according to $\$ 5$ may be derived from k^{6}, C is the complex of the lines l. Else the surface ϱ^{b} would be common to two linear complexes, and as in this case it would belong to a bilinear congruence, it would have two straight directrices, which cannot be the case, even if two straight lines belonged to k^{5}. For if e.g. k^{5} degenerated into a twisted cubic with an intersecting line and a bisecant, also the bisecants of the cubic which meet the intersecting line, would belong to ρ^{6}.
$\$$ 6. If we associate to each point P corresponding in S_{3} to a line l, the point Q which is conjugated to the same straight line by a representation of Nöther, we get ∞^{3} pairs of points (P, Q) which define a birational transformation in space. The point P of the line l_{1}, which we shall call P_{1}, is a cardinal point for this transformation. The corresponding points Q form the plane V. Further k^{5} is a curve of singular points P. To each point of k^{6} there corresponds a straight line of points Q which cuts $k^{\prime 2}$. The straight lines associated to the points of k^{6}, form the surface $\rho^{\prime 10}$.

There are two curves of singular points Q, namely $k^{\prime 2}$ and $k^{\prime 5}$. To a point of $k^{\prime 2}$ the points P of a plane pencil of C containing l_{1} are associated which form a conic $k^{\text {2 }}$ through P_{1}. The conics $k^{\text {a }}$ corresponding to the points Q of $k^{\prime 2}$, form the monoid $\Omega^{3} P_{1}$ that has its vertex in P_{1}. To the points Q of $k^{\prime 6}$ are associated straight lines of points P that form the surface ϱ^{6}.

If P moves on a straight line, l describes a cubic scroll which contains five generatrices of ρ^{5} and Q accordingly describes a cubic which cuts $k^{\prime 2}$ three times and $k^{\prime 6}$ five times. To a plane of points P there corresponds a congruence $(2,2)$ of lines l containing ϱ^{6}, hence a biquadratic surface of points Q of which $k^{\prime 3}$ is a double curve and which contains $k^{\prime \prime}$.

If Q moves on a straight line, l describes a scroll containing l_{1} and P therefore a rational quartic that passes through P_{1} and intersects k^{6} in ten points. To a plane of points Q a bilinear congruence of lines l is associated containing l_{1}, hence a cubic surface of points P through P_{1} containing k^{6}.

The pairs of points (P, Q) accordingly define a birational transformation (3, 4) ${ }^{1}$).
$\$ 7$. A curve of the $n^{\text {th }}$ order which cuts $k^{b} m$ times, intersects a surface Ω^{3} in $3 n-m$ points that are not singular for S_{z} and meets $5 n-2 m$ generatrices of ϱ^{6} outside k^{6}. Hence:

The lines l associated in S_{3} to the points P of a curve of the $n^{\text {th }}$ order that cuts $k^{5} m$ times, form a scroll of the order $3 n-m$ which has $5 n-2 m$ generatrices in common with @ ${ }^{6}$.

If inversely we consider a scroll of the order v that has μ generatrices in common with ϱ^{6}, we get by making v and μ resp. equal to $3 n-m$ and $5 n-2 m$ and by solving n and m out of these equations:

The points P corresponding in S_{s} to the lines l forming a surface of the order \boldsymbol{v} which has μ generatrices in common with $\boldsymbol{\rho}^{\mathbf{5}}$, form a curve of the order $2 v-\mu$ which cuts k^{6} in $5 v-3 \mu$ points.

A surface of the order p containing k^{c} as a q-fold curve, is cut by a conic k^{2} and a generatrix of ϱ^{6} resp. in $2 p-5 q$ and $p-3 q$ points that are not singular for S_{8}.

To the points P of a surface of the order p with k^{5} as a q-fold curve, there correspond accordingly in S_{3} the lines l of a congruence $(2 p-5 q, 2 p-5 q)$, of which the generatrices of $\varrho^{\text {a }}$ are $(p-3 q)$-fold lines.

Inversely it is easily seen that
To a congruence $(\boldsymbol{\pi}, \pi)$ of lines l containing the generatrices of $\mathrm{\rho}^{5}$ as x-fold lines, a surface of points P is associated which is of the order $3 \boldsymbol{\pi}-5 x$ and has k^{5} as a $(\boldsymbol{\pi}-2 x)$-fold curve.

Several applications can be made of the representation defined by S_{1} of the rays of C on the points of space. Let us for instance try to find the number of the conics which cut k^{6} five times and which meet besides three given straight lines r. These conics are the representations of the plane pencils of C which contain one straight line of each of the three surfaces ρ^{2} corresponding to the lines r and which have accordingly their vertices in the 27 points of intersection of these three surfaces.

There are 27 conics intersecting five times a twisted quintic of the genus one and cutting besides three given straight lines.
\$8. Finally we determine the scrolls belonging to C that are associated to the straight lines of a cubic surface Ω^{\prime} which is the locus of the points P of the lines l intersecting an arbitrary straight line r, hence also the line r^{\prime} associated to r relative to C.

[^1]The straight lines r and r^{\prime}, which both lie on $\Omega \Omega^{2}$, are the images of the surfaces ρ^{2} and $\varrho^{\prime 3}$ corresponding resp. to these lines.

Further the five lines t of ϱ^{6} that are singular for S_{3} which cut r, belong to \int^{2} as to each of these lines all its points are associated as points P. Besides r these lines also cut r^{\prime}, and they are trisecants of k^{6}.

As the line t belonging to the plane pencil of C which has the point of intersection of r with a line t as vertex and of which the plane passes therefore through r^{\prime}, splits off from the associated conic, this plane pencil contains a straight line of points P cutting k^{6} twice and cutting r^{\prime}. Accordingly five bisecants of $k^{\mathbf{s}}$ intersecting r^{\prime}, lie on Ω^{2}. In the same way we find on Ω^{3} five bisecants of $k^{\text {b }}$ which cut r and which are associated to the plane pencils of C that have the points of intersection of r^{\prime} and ρ^{6} as vertices.

Finally for a scroll with r and r^{\prime} as directrices containing three generatrices of ρ^{5}, and belonging therefore to C, three trisecants of k^{5} split off from the associated quartic. Such a scroll is represented on a straight line which cuts k^{5} once, but has no point in common with r and r^{\prime}. On Ω^{2} there lie ten lines of this kind.

In this way the images of the 27 straight lines of Ω^{8} are found.
If the straight line r belongs to C and is accordingly a line l, we have to do with a monoid $S^{2} P$ that has the point P of l as vertex. In this case r and r^{\prime} coincide with l. Also the straight lines that were associated to the ten plane pencils of C which had their vertices in the points of intersection of r and r^{\prime} with ρ^{5}, coincide in pairs in five lines through P, as all these plane pencils contain l. These five lines are the bisecants of k^{5} through P. Further there lie on $\Omega \Omega^{2} P$ the five trisecants of k^{5} cutting l, and the ten straight lines belonging to scrolls of C which cut k^{6} once and which have no point in common with l.

[^0]: 1) "Zur Theorie algebraischer Functionen", Gött, Nachrichten 1869.
[^1]: ${ }^{1}$) Stura: "Geometrische Verwandtschaften", IV p. 371.

