Mathematics. - "A Representation of the Line Elements of a Plane on the Points of Space". By Prof. Jan de Vries.
(Communicated at the meeting of January 29, 1924).

1. In the first chapter of his thesis for the doctorate ${ }^{1}$) Dr. G. Schafic has communicated a method to represent the line elements of a plane φ by the points of space. In order to reach this aim by another way I assume a straight line b in φ, a straight line a and a point M outside p. The point P of the line element $e(P, l)$ defines the straight line $m=P M$, the line l the point $B=l b$. If α is the plane through B and a, I consider the point $S=m a$ as the image of e. Inversely a point S generally defines an element e. For $S M$ cuts φ in $P, a=S a$ cuts b in B, and $l=P B$.
2. There are three systems of singular line elements. For $e=(B, b)$ the point of intersection $l b$ is indefinite, so that also the plane a becomes indefinite; hence any point of the ray $B M$ may be considered as the image S. The singular elements (B, b) form a system $(0,1)$, their images are the ranges of points (S) on the rays of the plane pencil (M, β) where $\beta=M b$.

Let μ be the plane through M and a, c the straight line $\mu \varphi, C$ some point of $c, A_{0}=a c, D=b c$. For the element $e=(C, c)$ $m=C M$ lies in the plane $\alpha=\mu$, so that any point of m may be considered as image S. Also the singular elements (C, c) form a $(0,1)$; their images are the point ranges (S) on the rays of the plane pencil (M, μ).

For the element $e=(D, l)$ we have $B=D, \alpha=D a=\mu, m=D M$; any point of the straight line $d=D M$ may therefore be considered as an image. The singular elements (D, l) form a system (1,0).

For the inverse representation M is a cardinal point, for each point of p may be considered as a point P. As $\alpha=\mu, B=D, l$ always passes through $D ; M$ is therefore the image of each element of a null system $N(1,0)$.

Every point A of a is singular, for if $S=A, \alpha$ is indefinite and

[^0]$P=(A M, p)$; hence A is the image of each element ((C, l). Accordingly the line elements of an $N(0,1)$ correspond to the singular points A; only the points of c are null points.

Also the points $S=B$ are singular, for in this case l is indefinite, hence B is the image of each element (B, l).

The image S of any line element of which $l=P A_{\bullet}$, coincides with the point P. The point A_{0} is the image of all the elements $\left(A_{0}, l\right)$, hence a singular point S.
3. The straight lines l of a system $(1,0)$ form a plane pencil round a point P_{1}. The image of this $(1,0)$ is the point range (S) on $P M$.

The points P of a $(0,1)$ lie on a line l_{1}. The image of $(0,1)$ is the point range (S) on the intersection of the plane $a=B_{1} a$ with the plane $M l_{1}$; this line rests accordingly on a.

In a system (1,1) the points P lie on a straight line g and the corresponding lines l pass through a point G. The ranges (P) and (B) are projective, hence the plane pencil (m) is projective with the pencil of planes (α). The image of a (1,1) is therefore a conic σ^{*} through M which cuts a. It cuts of in the point $b y$ and in the point $\left(A_{0} G, q\right)$.

If G lies on c, σ^{2} degenerates into the straight line joining M and the point $c g$ and another straight line of the plane $M g$. Also if G lies on b, σ^{2} degenerates.

In a system (i, k) the locus of the lines l is a curve of the class i and the points l lie on a curve of the order k. Accordingly k poins $B=S$ of the image lie on b, and this curve cuts f besides in the i points P of which the corresponding lines l pass through A. (\$ 2). The i elements e of which the lines l pass through D, have their images in M, the k elements for which P lies on c, are represented by points A.

The image of a system (i, k) is therefore a curve of the order $(i+k)$ which passes i times through M, and which has the line a as a k-ford line of intersection.
4. In order to determine the image of a bilinear null system $N(1,1)$ I consider the elements e that are represented by points of φ. The points P the null rays of which pass through A_{0}, form a conic $\alpha_{0}{ }^{\text {a }}$ through A_{0}; this "null curve" forms together with the straight line b the intersection of the image Σ^{3} with r.

The points of the null curve δ^{2} corresponding to D, define together with D line elements that have their images in M; hence $\Sigma^{\mathfrak{y}}$ has
in M a node of which the cone of tangent lines cuts the plane φ along d^{2}. This surface is accordingly a cubic monoid with vertex M.

The elements e that have their null points on c, are represented by points A; hence Σ^{2} contains the line a.

The null point C_{0} of c defines the straight line $C_{0} M$ lying on Σ^{3}. Analogonsly the straight line $B_{0} M$ passes through the null point B. of b, and $D M$ is the image of the element ecorresponding to D. On $\Sigma^{\text {s }}$ there lie three more straight lines m; they are the images of three plane pencils belonging to $N(1,1)$. The null system $(1,1)$ has therefore three singular null points ${ }^{1}$). In each plane through two of the lines m there lies another straight line of Σ^{3}; it is the image of a singular straight line of $N(1,1)$, hence a straight line that has each of its points as a null point.

The remaining 10 straight lines are the images of elements e of the monoid that have their null points on a straight line of f. The null rays of an arbitrary straight line g envelop a conic touching g. The image of the system (2,1) defined in this way is a nodal cubic with double point M which cuts if in $B=b g$ and in two other points of g.

For the 10 straight lines mentioned the image degenerates into three straight lines; the line r which Σ^{3} also has in common with the plane $B_{0} C_{0} M$, forms, together with $B_{0} M$ and $C_{0} M$, the image of a $(2,1)$ the null points of which are projected out of M on r. To the null curves of $N(1,1)$ there correspond twisted cubics of Σ^{3} which pass through M and have a as a chord.
5. The image of a null system $N(1, k)$ is a monoid \sum^{k+2} with a $(k+1)$-fold point M. On this monoid lie the straight lines a, b and d besides k straight lines $B_{0} M$ and k lines $C_{0} M$. The remaining $(k+1)(k+2)-2(k+1)$ straight lines m are images of plane pencils; hence the null system has ($k^{2}+k+1$) singular points ${ }^{2}$).

As the plane through two of these lines m generally cuts the monoid along a curve of the order k, as a rule an $N(1, k)$ has no singular straight lines. As for $n>3$ a monoid Σ^{n} generally does not contain any straight lines that do not pass through the vertex, Σ^{k+2} is not the most general monoid of the order $(k+2)$.

The image of a null system $N(i, k)$ where a point P is the null point of i rays l and a straight line l is the null ray of k points,

[^1]is a surface Σ of the order $(2 i+k)$ with an $(i+k)$-fold point M of which the cone of tangent lines has an i-fold generatrix d.
Σ further contains the i-fold lines a, b and d.
The intersection with p consists of the i-fold straight line b, and the null curve $\alpha_{0}{ }^{i+k}$ corresponding to A_{0}. Each of the null points of c defines a straight line on Σ; hence the intersection with the plane μ consists of k lines $C M$ and the i-fold lines a and d. Analogously Σ has the i-fold lines b and d and k lines $B M$ in common with the plane β.

Especially the image of an $N(1,0)$ of which the ∞^{2} elements e lie on the rays l of a plane pencil, is a quadratic scroll through the lines a, b, and d. The regulus containing d consists of the images of the elements on the singular null rays.

The null system $N(0,1)$ where any point of a fixed straight line g is the null point of a plane pencil, has apparently for image the points of the plane $\boldsymbol{M g}$.
6. If the point S describes a straight line r, the pencil of planes round a becomes projective with the range of points on b and with the range of points on the straight line $g=(M r, \varphi)$. Hence the straight line l envelops a conic λ^{2} touching b and g.

The point $S=r \mu$ is the image of an e formed by $C=c g$ and the line c; accordingly λ^{2} is inscribed, in the triangle bcg. The other tangent line out of A_{0} cuts g in the point $P=g r$.

Together with b the point $B=b g$ defines an element e that is represented by $B M$. Analogously $C=c g$ defines an element that has $C M$ for image. The complete image of the system $(2,1)$ defined by g and λ^{2}. consequently consists of the three straight lines r, $B M$ and $C M$.

If S describes a twisted curve σ^{n} resting on a in k points A and passing i times through M, the locus of P is a curve of the order ($n-i$). As a plane a contains ($n-k$) points S, a point B is associated to ($n-k$) points P. By the correspondence between the points B and P a correspondence ($n-i, n-k$) is established between the rays of a plane pencil chosen arbitrarily in φ. Consequently the lines l envelop a curve (l) of the class ($2 n-i-k$).

The plane μ contains $(n-i-k)$ points S each of which is the image of an element (C^{\prime}, c); hence c is an ($n-i-k$)-fold tangent of (l). Analogously (l) has the (n - i)-fold tangent b. The complete image of the system ($2 n-i-k, n-i$) consists apparently of the curve σ^{n}, ($n-i$) straight lines $B M$, and ($n-i-k$) straight lines $C M$.
7. A surface Σ^{n} with an i-fold point in M and a k-fold straight line in a is the image of a null system in φ.

A straight line $m=M P$ contains ($n-i$) points S; hence P is the null point of ($n-i$) null rays. The element e of a straight line l are represented by a straight line cutting $a ; l$ has accordingly $(n-k)$ null points. Consequently a null system $N(n-i, n-k)$ corresponds to Σ^{n}.

Evidently b and c are singular null rays; any point B or C may be considered ($n-i$) times as the null point of b or c. If Σ^{n} contains a straight line m (through M) this line is the image of a singular plane pencil.

An arbitrary plane Σ is in particular the image of an $N(1,1)$ for which b and c are singular null rays; the third singular null ray passes through the points $b \Sigma$ and A_{0}. The complete image of this null system consists of the planes Σ, μ and 3 .

The plane p is the image of the two null systems $N(1,0)$ and $N(0,1)$, which have resp. A_{0} as a singular point and b as a singular line.

[^0]: ${ }^{1}$) Afbeeldingen van figuren op de punten eener lineaire ruimte. P. Noordhoff, Groningen, 1922.

[^1]: ${ }^{1}$) See my communication on plane linear null systems. These Proceedings, Vol. XV, p. 1165.
 ${ }^{2}$) l. C.

