
Geophysics. - "On the flattening and t!te constitution (I f the earth". 
By Prof. W. DE SITTER. 

(Communicated at the meeting of March 29, 1924). 

1. The outel' potentialof any body, which is 8'ymmetrical with 
I'efel'énceto an equat.ol'ial plalle and an axis pel'pendiclliar to t.his 
plane, may be developed in a sel'Ïes, which, 10 Ihe order of accllrary 
here I'equired is 

v= - 1--;- - P.(~tnó)+ - - I~(8!ntl), . lil/I [ 2 Jb' . 4 Kb
4

") • ] 

r 3 r' 15 r 4 
(1) 

MI being the total mass, f the constant of gravitation, and b.the 
equatorial mdills, P, and p. al'e 8phel'ieal harrnolli('sof Ihe declina
tion (J above the equatorial plane and J and f( are consIanIs chamctel'i
stic of Ihe body. We have 

3'C-A 
J= ---

2 1I1 1b' ' 

C en A being the moments of inertia with respect 10 the (.Iolar and 
an eqllatorial diametel' l'espectively . If we introdl.H'e the ratio 

we have 

with 

C-A 
H= - C- ' 

3 e 
q = 2: Mlb' 

(2) 

(3) 

If the sUl'face of the body is an equi~otential sUloface, its eqllation . 
may be wl'itten as that of a sphel'Oid 

r = b [ 1 - f ,in' (I" - (~f" + x) "in' ~ (r' J. 
ql being the geocentric latitude and E the flattening. 

(4) 

This spheroid deviates from &11 ellipsoid of I'otatioll by a depression 
- bxsin' 2q/ reaching its maximum at the latitude 45°. 

16 
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If the body rotales with a constant angulal' velocity w, 80 th at 
at Hs snrface the potential is (VI beillg the value of V fOl' the 
surface, (P' = d): 

1 
V + - ,.' w' co,' m' 

I 2 T' 

then the conditions th at the surface shall be an equipotential surface are 

1 1 1 4. 
,-- J=2" ()I + 2"" -'j'() -"1 Je =' 0017287. . (5) 

24 15 
K = - Je + 3,· - -, () =' 0000109. 

7 7 
where 

is deteJ'lnined by 
2 Wl,. 

+ . 1 
()I -8 ()I = --, 

91 

r l beilIg the mean I'adius, alld 91 . the acceleration of gravity at the 
latitude of this mean radius, This gives 

()I = '00344992 ± '00000002. 

In the small terms in (5) and (6) I have omitted Ihe index of ()\> 

and I have adopted 

E = 1/296'5 = '003373 

Je = '00000050, 

The value of x is, of coul'se. entirely Ilnknown, lf the earth were 
homogeneons, it wou Id be zero, on the othel' hand it cannot exceed 
5 1 
16 E(>-4 E' = '00000080, so thai the adopted value appears plausible, 

It conesponds to 3,2 meters, and is thus elltirely irrelevant. 
The equation (5) is illdependent of any assumptioTl regarding the 

dislribution of mass inside tlle eart IJ. For q on the other hand we 
have no rigol'ous equation of tllis kind, but the theol'Y of CLAIRAUT 

011 the constitution of the earlh enables us 10 der,ive a very approximate 
vaille of q, 

If we wish to go beyond an aecuracy of the order of a unit in 
the denominalol' of f, eorresponding 10 the fifth decimal plaee in , itself, 
it is necessal'y to include the second ordei', On Ihe othel' hand, if 
the third order is negleeted, all figures beyond the seventh decimal 
are meaningless. The theo,'y of CLAIRAUT has been developed to the 
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second order by DARWIN I), and others. By taking as independent 
variabie the rneart, instead of the equatorial, radius, the. formulas 
beeome somewhat simpier, and at tlle same time the range of un
certainty of q is eonsiderably narrowed. As this change of independent 
variabie does not affect tlle essential parts of the theol·Y, whiehare 
welt knowIl, I will only state the principal steps and formulas 
very suceinetly, wilhout going into the details of their derivation . 
As we l·equit·e only one term beyond the one of Ihe lowest order 
in any equation, we can choose at l·andom any one of the sevet·al 
definitions of the mean l·adil1s. which are equivalent to the firat 
order. We may suppose it to be the radius of the sphere of equal 
volume. 

2. On the theory of CLAIRAUT the sllrfaces of equal density a,·e 
equipotential surfaces. Let fJ be the mean radius of any sueh slll·f~ce, 

expressed in that of the outer sllrface as unit, then the eql1ation of 
this sUl·face becomes -

Pi being again tha spheriral harmonic. The harmonie of the fourth 
order is not needed for our immediate purvose, and has been omitted 
from the formulas. We have put 

Er = E - ~ EI + ~ X (8) 
42 7 

In the terms of the second order it is not necessary to distinguish 
between E and E', and the accent is dropped. 

The potential V at any point within the earth,of whieh the 
eoordinates are rand (p', is given by 

- • r = n 1 -1- - Q - C08 (tl ~ - S - + 1 - P 8tn ffl +. . (9) v [1 ra i'J 2 [fJ2 , ra ] . , 
jW . I 2 fJa T {) r' {la' -r • 

where 

ro' (J' QI 

Q= jM =n' 
W being the volume, and M the mass within the sllrface of whieh 
the mean J·adius in fJ, and 

I) Scientific papers 111, p. 78 = M.N. 60, p. 82 (1900). 
2) The numbering of the Cormulas is the same as in the somewhat more extended 

publication in B. A. N. 55, which explains why some numbers are missing here. 
16* 
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ft 

8 = ~}d ~ [tJl (,/ + ~ Et)] dtJ, 
{ll dil 7 

o 
1 

T = rl- E' + - Et d{t. f d [ 16 ] 
,dij 21 
ft 

In these formulas d is the density, expressed in the mean density 
as a unit, /ind consequently D is the mean density within the 
surface f), expressed in the same unit '). For the outer surface we 
have of course 

DI=l 
5 

, 8 1 = 3 J , TI = O. 

'rhe comparison of (7) and (9) gives for the condition that (7) 
siJall be an equipotential sUl'face: 

( 2 1) 3 .( 
iJ ,/ + 7!-' -2 Q -5(8 + T) = lH E«()1- 3T). (10) 

'rhe right hand member of (10), which is of the second order, has 
been simplified by means of tbe left hand member equated to zero. 

Putting furthol' 

we have 

. . . (12) 

'rhis equation is now rigorous in consequence of the introduction 
of the mean, instead of the equatorial radius as argument. 

Diffel'entiatiilg (10), and putting 

we find, af ter reduction 

(J de' 
1/'--

- E' dfJ' 

71' [ n( 1 + ~ E) - 2
4
1 (>, + ~ T ] = 3 IJ (1 + ~ E) - 3 ~" (13) 

4: 4: 
1) It should be remarked that, adopting these units, we have MI = alf'T}SD} = alf'. 
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and ditferentiating again, we find the ditferential equation for 1]: 

d' 4 
~-.!! + 1]'1 + 51]'- 2 Ç(I+1]') -- C Q = o. . . (14) 

djj 21 . 

where 

Q=7(>{I+1]')-3e(1+1]')1 - 41! ..... (15) 

Omitting ,the term with Q (14) is the well known ditferential 
equation correct 10 lhe first order. The introduction of Ii' for Ii has 
removed from (14) a term of the t'm'm 1i1]1,\ thus having all small 
terms muItiplied by ~. DARWIN, using the equatorial instead of the 
mean radius, finds the same equation, but in his value of Q the 
numerical coefficients of the second and third term are larger than here, 

FJ'om l14) we derive, as was first done by RADAU: 

where 

IJ 

Djj' VI + 1]' = 5J'D~4. P (lj') d~, 
o 

1 1 2 
1 + - ' '1 + )' Q 

. . . (16) 

2lj-l01] lOS!:> 
F(1]') = . . . . (17) 

Vl+lj' 

The yalue of F ('I') is al ways very near to unity. If by 1 + ). we 
denote a certain average value of it over the range of integration, 
we have 

IJ 

J DlVI+1J' 
D~4d~----_ 

I-' I-' - 5 (1+),) . , . , . (18) 

o 

Now we have, to the required order of accuracy 

1 1 

C = ~3I'fd~ [tJ' (I + ~B)J dp=' ~ 3I'fdfJ4dtJ+ ~(C- A), 
15 dtJ _ 3 3 3 

o 0 

and since in our units M,b' = : .7t (1 + ~ ). we have by (3) 

1 

q = 3 (1 - ~ e ) J dfJ4 d~ + ~ J, (19) 

o 

Replacing in the integral rf by its vaille from (12), then 
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integrating by pads, and using (5), of which only Ihe tel'Ins of the 
Iowest Ol'der al'e hel'e needed, we find 

(20) 

or by (18) 

1 2 ( 2) V 1 + "I' , 
q = 1- S (>, - r; 1 - S· l+l~' , , (21) 

From ths equation (13) we find for the outer surface 

fl'om which, with E = 1/29650 = '0033727 , cOl'l'esponding 10 " = 
= 1/296'60 + 6E-1 we find 

"I', = '55898 + ·00868 6,-1. 

Therefore 

11 q = ,50053-'00140 6 E- 1 + ['4988 + '00146,-1] -- . (28) 
l+l, 

3. To deri ve a probabie value fOl' ),1' and to ascertain the limits 
within which this value rnay be considered as trustworthy, we 
must discuss the function F ("I') given by (17). The first part of Ihis 
function is the same as discussed by RADAU, POlNCARÉ and others. 
viz. : 

1 1 
1 + -"I -- "1 1 

2 10 

For convenience I drop the accent, which is of no importance 
here. The function FI (11)-1 is zel'o for 11 = 0, daes to a maximum 

J . 
of + .00074 rOl' 11 = 3"' and then deereases again, becoming zero for 

11 = '528 (= 5-2V5). For the sUl'face 'til = '56 it is - ,00029. It is 
th us positive fOl' pl'actieally the whole ran'ge, and is larger than 
+ ,00050 from 11 = '19 to 'I = '44. Sinee 'tI increases continllally 
from zel'o at the centre to 11 1 = ·56 at the surface, we can take as a 
plausible value 

PI ('tl) = 1'00050 ± '00015 . . (24) 
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The "proba.ble errOl'" atla.ehed to this vaille is meallt to express 
the belief that thel'e is an even chance that the true avel'age value of 
F, (1/) is incillded withilI a mnge of ,00030, the adopted vaiue 
1.00050 being somewhere illside this range, and pl'Obably not far 
fl'Om the middle, 

To discuss the value of Q we put 

We then have 

,= ('(I-v) 

Q= Q, + QI' 

Q, = (1)-81)1) (I. 

QI = (7 + 61) + 1)1) (Iv. 

. (25) 

Considel' first t"e first part Q" This varies between the Iimits 
·1 + '08 (), for 11 = 6" and -'36'1 at the sUl'face. At the centre it is 

zero. The value of () is always smaller than ()I' V 1 + 1) is always 
larger than 1, and it is pl'obable that ç never considerably exceeds 
its surface value S 1 = 1.5. We can th us take 

~ ~(I <~~ ,) ='00010 
lOS VI +1) lOS lon • 

C I h I f 2 S QI. . 1 . d 
OIlsequenl y t e "a ue 0 105 Vl +1) IS cerlam y comprIse 

between Ihe limils + .000008 and -.000036, We can take as a 
plausible average 

F 2 (1) = - '000014 ± .000010 . . (26) 

To discuss the function Qs we must considel' the possible values 
of v. Differentiating (25) we find 

(J dv 
1-vd{J = ,-1). 

from wflich, since S is always Jal'gel' than ,/. it follows Ihat v increases 
continuously from Ihe eenll'e outwards. Fot' the eal'th the surface 
vaille is VI = + '02. For I'. we find upper and lower limits from 
tlle formula (42) given by TISSERAND, Mie. Cél. 11, p. 227, which 
depend on the density at the centre óo. These are: 
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1.28 

1.5 

2.0 

2.5 

3.0 
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Limits of IIOPO 

PI 

-.25 -.25 

-.26 -.22 

-;33 -.22 

- .39 --- .21 

-.42 - .21 

We can titus take with certainty 

Now put fOl" abbreviation 

For the surface we have 

W I = + ·17, 

and for the centre, where 'I = 0, Q. = 7vo(Jn' we have 

- 2 . 8 < Wo < -- 1 . 5, 

. (27) 

Consequently the product ~w, as we proceed from the 8U1-face to 
the centre, will with some rough approximation follow the diagonal 
of the following tabIe, starting fl'om the left hand top COl'ner, alld 

reaching the bottom somewhere between Ihe last two colums. 

Va lues of the product ~ . w 

KI .17 I 0 I - .5 
I --1.0 I --1.5 I -2.8 

1.5 +.25 0 -.75 

1.25 +.21 0 - .62 -1.25 

1.00 +.17 0 -.50 -1.00 -1.50 

.75 0 -.38 - .75 -1.12 2.10 

.50 -.25 - .50 -0.75 -1.40 

.25 - .25 -0.38 - .70 

.00 .00 .00 
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It thus appeal's probahie. thai Ihe a\'erage value of th is product 
over the range of integl'ation is illcluded between comparatively 
nalTOW limits, say betw~en -' ,20 and -1.20, We ('an take as a 
plallsible value 

sw = - . 70 ± . 30, 

from which 

2 -
F. (1) = - . ~w, <'1 = -' 000046 ± . 000020 (28) 

105 

Adding together tlre three padial values (24), (26) and (28), we 
filld 

À1 = '+ '00044 ± . 00015 . (29) 

It will be seen that the effeet of the second order term with Q 
is only about one tenth of the whoie, 

Substituting this value of À1 in (23) we find 

q := . 50075 ± . 00008 - . 00140 I:::.E-1 + . 499 I:::.À1 (30) 

4. We must IlOW eonsider the qnestion whether theRe results, 
which have been derived from the theory of CJ.AIHAUT, are applicable 
to the actual earth. 

The adllal surface of the eal'lh is, of course, neither a sllrfaee 
of equal density nOl' an equipotential sllloface. We can however 
safely assnme that up to a cel'tain distanee from the centre the 
matel'Ïal ont of which the eal'!h is made up is - 80 fal' as seclliar 
fOl'ces a/'e coneerneli - in hydl'ostatie eqnilibl'ium, and conseqllently 
satisfies the eonditions of the theol'y of CLAIHAUT. The last sUl'faee 
fOl' whieh this theol'y is applieable is called the isostatie surface, 
and will be deuoted by S., Above this tlH~re exist, of course, fUl·ther 
eqnipotential snl'faees, but these al:e not as a l'llie surfaees of equal 
density, and not neeessal'ily spheroids. The actual land surface is, 
of COUI'se, IlOt slleh a snrfaee, but the undisturbed slll'faces of the 
different oeeans eRn be assullled to form parts of one and the same 
eq llipotell tial s Illofa ce , w hidt is ealled the ,qeoid, This geoid is deter
lIIined from g~odetic meaSUl'es on the continents, and from deter
minations of the intenslty of gl'Rvity on the cOlltineuts and on the 
oeeans, It is found that it deviates only very little fl'om an ellipsoid 
of revolu tioll. The elli psoid of revolu tion, Ol' rather the sphel'oid, 
best fitting the geoid is t'alled the 1w1"mal surfaee, aml is denoted 
by S. The differenees bet ween the geoid and the normal surfaee 
nevel' amollnt 1.0 more than a few .lens of meters. This fact has led 
to the weil kIlowIl theory of isostasy, whieh asserts that within 
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any ey linder erected ovel' a (not to.o smal!) slIrface element. Cl) o.f 
the isostatie surface there is tbe same maas as there would be with 
a cel'tain ideal distriblltion, which we ean take to be in aceol'dance 
with Ihe theo.ry of CLAIRAUT. The upper su..race that would result 
if the ronditio.ns of this theol'Y wel'a salisfied thl'ougbout will be 
called the ideal surface, and will be denoted by SI' 

To this surface SI the equatio.ns (5) and (2), with the value (21) 
of q, are applicable. The normal surface S on the othel' hand is 
not an equipotential sUl'face, but it is the sphel'oid best fitting the 
geoid, which is an eqllipo.tential sllrface. Fo.r lhe co.nditio.n of the 
"best fitting" we can take that in Ihe develo.pments o.f bo.th surfaces 
in sel'ies o.f spherical hal'monics the co.efficients o.f the harmo.nirs o.f 
the Ol'del's zero., two. and fo.Ul' are the same. Then the equatio.n (5) 
is applicable if fo.r E we take the co.mpressio.n o.f the normal sUl'face, 
and for J its actual value fo.r the real earth. We can, o.f Co.urse, 
again write do.wn the eqllatio.Il (2), taking fo.r H also its actIlal 
value, but no.w q is determined by (3) and no.t by (21) and the 
pro.blem bero.re uS is to. find the ditference between these two. 
values o.f q. 

If the earth were entil'ely cOllstitllted acco.rding 10. Ihe theo.ry of 
CI.AIHAUT, it wo.uld be covel'ed by an o.eean o.f an avel'age depth of 
about 2.4 km., o.f which the llpper surface would be the ideal 
surface SI' and Ihe botto.m Wo.llid also be an equipotential surface, 
which we will call Sb. The true distribulio.n of llIass ditfers from 
this ideal o.ne o.n Ihe o.ne hand by an excess of mass in the co.ntinents 
and Ihe shal!o.w seas, and a defect in I he deep o.ceans, and 0.1\ Ihe 
o.thel' hand by the isostatic compensatio.ns o.f these excesses and 
defecls. 

This co.mpensatio.n is assumed to. be equally distribllted o.\'el' the 
layer bet ween the surfaces S. and Sb 0.1', in the case of Ihe deep 
o.eeans, bel ween S. and the bo.ttom o.f the ocean, 

The fo.l'mulas have been wo.rked out by me in 1915 1
), 

Co.l'l'eclillg a mistake in Ihe fo.rmlllas, and tl'eating Ihe layer 
bet ween SI and Sb so.mewhat 1II00'e carefully than was done thel'e, 
we find in units of Ihe seventh decimal place: (see table p.243). 

lf there wel'e no. iso.static co.mpensation, these numbers wo.uld be 
increased about 55 times. The appl'oximatio.lI of t.he .co.mputatio.ns 
is sueh that each o.f the partial numbel's is COl'l'ect to. a few percents 
o.f its amo.unt. The sums may thus easily be a unit 0.1' mo.re in erro.l'. 

We have thu8 as the l'esult of this co.mputatio.n that Ihe ditference 

1) These Proceedings, XVll, p. 1295. 
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C-Cl is entirely negligible, and r.oIlsequently 

q=ql 

Consequently we can use the value (21) or (30) of q to derive 

Parts of the world H-H, 
C-C, 
-C-

l. North Polar regions +1.1 + .2 

2. Europe . 1 +2.4 

3. A.ia + .8 +14.5 

4. North-America -1 .0 + 5.2 

5. Northern Atlantic Ocean -1.2 - 4.3 

6. South-America +2 .3 + 9.4 

7. Southern Atlantic Ocean +1.2 -10.1 

8. Africa +2 .9 +14.3 

9. Indian Ocean +1.2 -- 9.2 

10. lndian Archipelago .1 + 2.0 

11. Australia and New Guinea + .5 + 3.1 

12. Pacific Ocean -9.5 -31.5 

13. South Polar region. -6.6 + .6 

Total -8.5 - 3.4 

E from H .fOI' the actual eal't11. The ditference q-ql would still be 
negligible, if Ihere were 110 isostatic compensation. 

For H we find: 

H - Hl = - . 0000008, 
from which 

E - EI - • 0000004 . (82) 

This of course is entil'ely negligihle. It llleaJlS thai Ihe polal' semi
diameter of the ideal surface is 1 .8 meters shorter, and the equatorial 
radius 0 .9 met.el·S IO/lger, than of the normal surface. If there wer~ 
no isostatie compensation however, the ditference between E and El 

would be of the order of two units iJl Ihe denominator. 

5. We have fl'om (5) and (2) 

f = . 0017287 + q H (31) 

The value of H can be derived with great accuracy from the 



244 

constant of precession. Adopting for the reciprocal of the mass of 
the moon 

tl-I = 81 . 50 ± . 07 + I:::.. tl-I, 

I find 
H = . 0032774 + . 0000270 I:::.. tl-1 . 

. The Pl'obable eITOI' of H is made up of ± 19 in the seventb 
decimal place due to the uncertainty of tl, and ± 0.6 due to tbe 
constant . of precession. Since it bas been shown that the value of 
q derived from the theory of CUIRAUT may be \Ised for the actual 
earth, we can substitl1te (32) into (31). Then taking 

E = . 0033727 + I:::.. E, 

we find 1): 

. 597 I:::.. E = - . 0000029 + . 0000135 I:::.. tl-I + . 00163 I:::.. À11 .'(S8) 
from which 

! = 296'92 ± '136 -1'99 I:::..tl-1 -152 I:::.. ).1' (84) 
E 

The probable error of 1/E is made up as 

from the precessional constant 
from 'tl 

from )'1 

follows: 

± '004, 
± '132, 
± '035. 

The remaining uncertainty of E is thus due almost entirely to 
that, of the mass of the moon. 
~he most important and trustwol,thy determinations of E by other 

methods have already been qlloted in my paper of 1915. Shortly 
aftel' the publication of that paper HELMERT') has published a new 
detel'mination of ,; from ' the intensity of gra\'ity, which is 

,;-1 = 296·7 ± 0'6 

The most reliable geodetic determination is that by HAYFORD: 

,; --1 = 297'0 ± 1'2 

Both agree with (34), but both are very much leas accurate. When 
by the EI'OS campaign of 1930 the lIIass of the moon will be bette I' 
known than it is now, the determinatioJl of the compression from 
the precessional cOJlstant will become still more accurate. 

I) In my paper of 1915 HH~ equation ror D. ~ was not derived indep~ndently. 
but adopted from DARWIN. There is however exactly at this point a numerical 
mistake in DARWIN'S work, in consequenee of whieh the valne of ~ derived from 
his formuia is erroneous. Moreovet· DARWIN'S eomputations are based on ROCHE's 
hypothesis, whieh gives an incorrect value for q. The formula (33) in the texl 
must thus be used. 

') Neue Formeln für den Verlauf der Schwerkran im Meeresniveau beim Fest
lande, Sitzungsberichte Berlin, UHó, p. 676. 
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6. The actual distribution of density within the earth is unknown. 
We can make hypotheses regarding that distt'ibution, and by their 
aid compute the different integrals occurring in the theory of CLAIRAUT, 
and thus alTive at \'alues ot' the different quantities, which can be 
determined Dy observation, such as E, J, Hand Ihe surface density dl' 

.The equation (5) is independent of the innel' constitution. Consequently 
any hypothesis, which will repl'Oduce any one of the two quantities 
E and J will 80180 give the coneel value for the othel·. Thel'e are 
thus three conditions to be s~tisfied by any hypothesis on the 
distribution of mass. 

ROCHE'S hypothesis 
d=d.(l-kW) 

contains only two constanis, and can thus not be expected to satisfy 
the condilions. This expectalion is confirmed by DARWIN'S compu
talions, which are based on this hYPolhesis. IC we interpolate in his 
table (Scient. Papers, III, p. 112) fOl' theconect value dl = '495, 
we findE-1 -.:.. 288'1 and q . '5J 32, which are entil'ely outside the 
limits of possibility. 

WIECHERT'S hypothesis, accol'ding 10 which the earlh consisls of a 
core and a Cl'USt, each of constant density, separated by a surface of 
discontinuity at which the density changes abl'Uptly, contain8 Ihl'ee 
pal'ameters, viz. the two densities and the radius of the surface of 
discontinllity. lt is thus theoretically possible hy this hypothesis to 
satisfy the three conditions, but it remains to be seen whether the 
values of the parameters, by which this is effected, are otherwise 
acceptable. 

In order to test this and olhel' hypotheses we must, as has been 
ah'eady said, compllte the different integrals occurring in the theory 
of CLAIRAUT. As this theol'J is only applicable below the isostatic 
surface, we must take the radius of this surface ai llpper limit of 
the integrals. For the layers above it we can howevel' replace the 
actual distribution of mass by an ideal olie accol'lling to the theory 
of CLAIRAUT. The parts contl'ibllted to the integrals by the masses 
above the isostatic surface are then the iritegrals from So 10 SI' 
These have been computed taking fOl' the density between SI and 
Sb: d' = .186 and below Sb: d'l = .495, increasing regulal'ly to d. at 
Su' Fo)' the mean radii of S. and Sb, which are called ., and b, 
I lake s = .98200, b = .99962. The thl'ee conditions can then be 
enounced as follows 

• 
D. = 3~ Jd~' dfJ = l'04214-'O~7::!4 Ós, 

o 

(3S) 



246 

, 
1 f d -- d - ({Ji E") rl{J = '87189-'05008 d 
." d{J " , E,. 

(86) 

o 

where we have put 

2 
~/I = E' + - E' 

7 

and fOl' the isostatie sUJ'face we take the vaJue cOl'fesponding to the 
adopted vaJue of Ei 1), viz.: 

" 1/ Ei s = 'H'U' 

finally 

• 
Sj.DWd{J=1'16142+'00077 Ós -1'250~, (87) 

1 +).1 
o 

As an exampJe I have applitld these formulas to .the theol'y of 
WIECHERT. The density above the snrfaçe of discontinuity Ihus is 
d, and below it do = d, + 1:::.. The radius is taken {J, = ps. The tirst 
two conditiolls gi ve 

pi I:::. = l' 04214 - 1 ' 02724 (J, , (38) 

pi I:::. (1-~) = ' 87189 - l' 05008 da , ' (39) 

where we have put 
Eli. =E", (l-g), 

For the determination of 6 I use the eqnation (10) for the surface 
of discontinuity (J, = ps. This gives, using (38) and (39), 

I:::. (1-6) - [~ds-' 00162 J~+' 0024 dB C' = 1'29750 -,99296 d, ,(41) 

From the eqnations (38), (39) and (41) we can determine p, 1:::., S, 
if d, is assumed. The computations have been cal'l'ied out with two . 
values of d, and the result is 

for da = 0'5: 

06: 

p = '8325, 

'7841, 

1:::.='9160, 

'88S1, 

s = '05SI, 

'0762, 

1) The computation was fh-st carried out for the approximate value e"s ..:.. '/S09' 

This led to: 
for às = 0.5: 

0.6: 
À1 = + -,0007, 

-.0006. 
The computatioD was then repeated with the exact value of e"s. In the original 

Dutch communication only the flrst approximate computation was included in the 
text, and the final one mentioned in a footnote. For more details regarding these 
computations the reader is referred to B. A. N . 55, 
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Finally we .have 

S 

5fDji4d~="[d8+ ~~pl- ~~P'J. 
o 

from which we find by (37) 

for 

·0' 6: 

Àl 
--1 = +. 0008, 
1+"'1 

+ .0004. 

Both these values ag ree with tlle adopted value Àl = + .00044 
within the limits of the uncertainty of the data on which the 
romputation is based. We must thus cOllclude that WIECHERT'S 
hypothesis even in its simplest form, with only one sUl'fare of 
discolltinuity and constánt densities below it and between it and the 
sul'face of discontinuity, l'epresents a possible constitlltion of the eal,th. 




