Geophysics. — “On the flattening and the constitution of the earth”.
By Prof. W. pE SiTTER.

(Communicated at the meeting of March 29, 1924).

1. The outer potential of any body, which is symmetrical with
reference to an equatorial plane and an axis perpendicular to this
plane, may be developed in a series, which, to the order of accuracy
here required is

f, 2 Jb* . 4 Kb .
V=" l—— — P, (stn d) + — P, (sind)|, . . (1)
r 3 »* 15 »

M, being the total mass, /' the constant of gravitation, and b.the
equatorial radius. P, and P, are spherical harmonics of the declina-
tion d above the equatorial plane and o/ and KX are constants characteri-
stic of the body. We have
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C en A being the moments of inertia with respect to the polar and
an equatorial diameter respectively. If we introduce the ratio

C—A
H=""",
(&
we have .
J=¢qH . . . . . . . . .0
with
3 3
q_él_vﬂ-b_,.........()

If the surface of the body is an equipotential surface, its equation,
may be written as that of a spheroid

r::blil—sain’«p'—(%é"—i—x)sin’!q':l, N 03]

¢’ being the geocentric latitude and & the flattening.
This spheroid deviates from an ellipsoid of rotation by a depression
—bxsin® 2¢’ reaching its maximum at the latitude 45°.
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If the body rotates with a constant angular velocity , so that
at its surface the potential is (7, being the value of V for the
surface, ¢’ = d):

1
V, + r r* w? cos’ ¢/,

then the conditions that the surface shall be an equipotential surface are

1 1 1 - 4 .
E—‘J=§0|+—2‘5 —750—75!:'0017287- . » (5)
24 15
K=7u+ 3:'——759:-0000109.
where
. o'r?
0, 7N,
is determined by
2, o'
e, + § 0, = '

r, being the mean radins, and ¢, the acceleration of gravity at the
latitude of this mean radius. This gives '

@, = 00344992 3+ 00000002,

In the small terms in (3) and (6) 1 have omitted the index of ¢,
and I have adopted

 £="'/296-5—=-003373
» = +00000050.

The value of x is, of course, entirely unknown. If the earth were

homogeneous, it would be zero, on the other hand it cannot exceed
1% €0 -——} & = 00000080, so that the adopted value appears plausible.
It corresponds to 3.2 meters, and is thus entirely irrelevant.

The equation (5) is independent of any assumption regarding the
distribution of mass inside the earth. For ¢ on the other hand we
have no rigorous equation of this kind, but the theory of Crairavur
on the constitution of the earth enables us to derive a very approximate
value of gq.

If we wish to go beyond an accuracy of the order of a unit in
the denominator of &, corresponding to the fifth decimal place in & itself,
it is necessary to include the second order. On the other hand, if
the third order is neglected, all figures beyond the seventh decimal
are meaningless. The theory of CrairauT has been developed to the
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second order by Darwin'), and others. By taking as independent
variable the mean, instead of the equatorial, radius, the. formulas
become somewhat simpler, and at the same time the range of un-
certainty of ¢ is considerably narrowed. As this change of independent
variable does not affect the essential parts of the theory, which -are
well known, I will only state the principal steps and formulas
very succinctly, without going into the details of their derivation.
As we require only one term beyond the one of the lowest order
in any equation, we can choose at random any one of the several
definitions of the mean radius, which are equivalent to the first
order. We 1may suppose it to be the radius of the sphere of equal
volume.

2. On the theory of Crairaur the surfaces of equal density are
equipotential surfaces. Let 8 be the mean radius of any such surface,
expressed in that of the outer surface as unit, then the equation of
this surface becomes ‘

2 2 _
r:ﬁ[l— ?(5’—}—?5’)1’,(311:9)')-}— ..:I, .- (DY
P, being again the spherical harmonic. The harmonic of the fourth

order is not needed for our immediate purpose, and has been omitted
from the formulas. We have put

e’=s—is‘+iu (-]
42 7
In the terms of the second order it is not necessary to distinguish
between # and &, and the accent is dropped.
The potential V' at any point within the earth, of which the
coordinates are » and ¢’, is given by '

i‘d 1 2r. g r?
—.r=D|1+ —p—cos’¢p' | ——|S— '— mg' + ...
W r [ b3 ()B' cos (p:l 5 [Sr’ + 13.]P.azn(p + ... (9)
where

_w’ﬁ'_&

0'— fM —.D,

W being the volume, and M the mass within the surface of which
the mean radius in 3, and

1) Scientific papers Ill, p. 78 = M.N. 60, p. 82 (1900).
2) The numbering of the formulas is the same as in the somewhat more extended
publication in B. A. N. 55, which explains why some numbers are missing here.
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p=2> [Zﬁ'dg
=5 :

= il
_fd?[ B

In these formulas d is the density, expressed in the mean density
as a unit, and consequently D is the mean density within the
surface B, expressed in the same unit'). For the outer surface we
have of course

5
D=1 4 SIZ?J y T,=0.

1

The comparison of (7) and (9) gives for the condition that (7)
shall be an equipotential surface:
D¢ 2 ! 8 S+ 7)) = 4 3 10
e+ e —5e —*5—( t+ 1) =520, —31). . (10)
The right hand member of (10), which is of the second order, has
been simplified by means of the left hand member equated to zero.
Putting further

BdD g de

G = —

Ddg ¢ d3

d
g=3(1~3). A T

This equation is now rigorous in consequence of the introduction
of the mean, i_nstea.d of the equatorial radius as argument.
Differentiating (10), and putting
g de
¢ dg’

we have

N =

we find, after reduction

"1 Df 1 4 4 4T =3D|(1 2 38 13
A7) g i r|=o0 (4 gr) —ope o

e 4
1'rls.D1 = 7.

4
1) It should be remarked that, adopting these units, we have ¥; = 3 3
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and differentiating again, we find the differential equation for x:

pEE+nu+5n_2;(1+ )——CQ——O. .. (14)

where
Q=T0(l+%)—3e(1 +7) —4e. . . . . (1)

Omitting ‘the term with Q (14) is the well known differential
equation correcl to the first order. The introduction of & for & has
removed from (14) a term of the form &y, thus having all small
terms multiplied by §. DarwiN, using the equatorial instead of the
mean radius, finds the same equation, but in his value of @ the
numerical coefficients of the second and third term are larger than here.

From (14) we derive, as was first done by Rapau:

8
D VIt =5|DgtF()ds, . . . . . (16)
0
where

1 1}
142 n——n+j&§0

F()= L))

Vit

The value of F'(y’) is always very near to unity. If by 1 4 2 we
denote a certain average value of it over the range of integration,
we have

s g Dp]l/l-l—n'
fDﬁ = 5(1-}—2) R 0 1))

Now we have, to the required order of accuracy

0—8 1; (1420) | ag=8 ld‘d 24
— f(d—‘g{ﬂ( +§8)] F}—g-”fﬁ 34—5( — 4),
0

n(l —|—% ), we have by (3)

and since in our units M,b* — 3

1

. L
_ = “gg L 2
q_3(1 3s)fdﬁdﬂ +—§J. ... (19)
0

Replacing in the integral d by its value from (12), then
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integrating by parts, and using (5), of which only the terms of the
lowest order are here needed, we find

1
1 2
g=1—§p,—2(1—§a)fpﬂ ag, . . . . (20)
0

or by (18)
1 2 2 \Vitq,
r=1-ge— (1) T @

From the equation (13) we find for the outer surface

. 5 , 10 4 6
an":?p,—%-{—ﬁp’—{—Te’—Tw,_ . . (22)

from which, with &=1/y9¢50 = ‘0033727, corresponding to & =
= 1/296'60 + De—1 we find
7, =-55898 4 -00863 A1,
Therefore

A
L (23)

g = 50053—-00140 A ¢—1 4 [-4983 + *0014 A e—1] 5
1

3. To derive a probable value for 2,, and to ascertain the limits
within which this value may be considered as trustworthy, we
must discuss the function /' (n’) given by (17). The first part of this
function is the same as discussed by Rapau, PoiNcARE and others,
viz.:

1 1
_ SR TR
F,(p)= Vir’i]

For convenience I drop the accent, which is of no importance
here. The function F, (q)—1 is zero for 5 =0, rises to a maximum
1
of + .00074 for =3
n =528 (= 5—/5). For the surface u, =56 itis —.00029. It is
thus positive for practically the whole range, and is larger than
-+ .00050 from n —-19 to 3 — -44. Since 7 increases continually
from zero at the centre to 7, — ‘56 at the surface, we can take as a
plausible value

and then decreases again, becoming zero for

F, () = 100050 £ -00015 . . . . . . (24)
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The ‘probable error” attached to this value is meant to express
the belief that there is an even chance that the true average value of
F,(n) is included within a range of .00030, the adopted value
1.00050 being somewhere inside this range, and probably not far
from the middle.

To discuss the value of  we put

e=o(l—v) . . . . . . . . (25
We then have

Q=0Q + Qu

Q=@—3%")e

Q= (7 + 6n+ v7) ov.
Consider first the first part Q,. This varies between the limits

1 i
+ 08 ¢, for n =z and —36 ¢ at the surface. At the centre it is

zero. The value of ¢ is always smaller than ¢,,V'1 4 is always
larger than 1, and it is probable that { never considerably exceeds
its surface value §, — 1.5. We can thus take

2 2
280 2 g =00010,
105715 105

2 .
Consequently the value o m‘%i_’] is certajnly comprised
between the limits 4 .000008 and —.000036. We can take as a

plausible average

F, (n)=—-000014 = .000010 . . . . . (26)

To discuss the function @, we must consider the possible values
of ». Differentiating (25) we find

d
B _v=§_"|

from which, since { is always larger than v, it follows that » increases
continuously from the centre outwards. For the earth the surface
value is v, = + '02. For », we find upper and lower limits from
the formula (42) given by Tisseranp, Mée. Cél. 11, p. 227, which
depend on the density at the centre d,. These are:
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0 Limits of 220

f1
1.28| —.25 —.25
1.5 | —.26 —.22
2.0 | —.33 0
2.5 | —.39 -.21
3.0 | —.42 —.21

We can thus take with certainty

T L e R -1 |
1
Now put for abbreviation
G —we,
Vit
For the surface we have
w, = + 17,

and for the centre, where v =0, Q, = Tv,¢,, we have

-2 8w, < — 15,

Consequently the product §w, as we proceed from the surface to
the centre, will with some rough approximation follow the diagonal
of the following table, starting from the left hand top corner, and
reaching the bottom somewhere between the last two colums.

Values of the product {.w

N 11 0 -5 | —10 | —15 | —28

15 |+25 | 0o | —715
125 +21 | 0 | —62 | —1.25

100 | +.17 | 0 | —50 | —1.00 | —150

15 0 | —38 | — 75| —112 | 210
50 —25 | — 50 | —0.75 | —1.40
25 — 25| —038 | — .70
.00 .00 .00
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It thus appears probable that the average value of this produect
over the range of integration is included between comparatively
narrow limits, say between —.20 and —1.20. We can take as a
plausible value

fo=—"70 %30,
from which

o ——.

o5 - L@ -0, = — 000046 = - 000020 . . (28)

F,(y) =

u

Adding together the three partial values (24), (26) and (28), we
find . ‘
A, =+ 00044 &= - 00015 . ., . . . . (29)

It will be seen that the effect of the second order term with Q
is only about one tenth of the whole.
Substituting this value of 4, in (23) we find

g — - 50075 == - 00008 — - 00140 A1 + - 499 AA, . . (30)

4. We must now consider the question whether these results,
which have been derived from the theory of Crairaur, are applicable
to the actual earth.

The actual surface of the earth is, of course, neither a surface
of equal density nor an equipotential surface. We can however
safely assume that up to a certain distance from the centre the
material out of which the earth is made up is — so far as secular
forces are concerned — in hydrostatic equilibrium, and consequently
satisfies the conditions of the theory of Crairavr. The last surface
for which this theory is applicable is called the isostatic surface,
and will be denoted by S,. Above this there exist, of course, further
equipotential surfaces, but these are not as a rule surfaces of equal"
density, and not necessarily spheroids. The actual land surface is,
of course, not such a surface, but the undisturbed surfaces of the
different oceans can be assumed to form parts of one and the same
equipotential surface, which is called the geoid. This geoid is deter-
mined from geodetic measures on the continents, and from deter-
minations of the intensity of gravity on the continents and on the
oceans. It is found that it deviates only very little from an ellipsoid
of revolution. The ellipsoid of revolution, or rather the spheroid,
best fitting the geoid is called the normal surface, and is denoted
by S. The differences between the geoid and the normal surface
never amount to more than a few tens of meters. This fact has led
to the well known theory of isostasy, which asserts that within
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any cylinder erected over a (not too small) surface element @ of
the isostatic surface there is the same mass as there would be with
a certain ideal distribution, which we can take to be in accordance
with the theory of Crairaur. The upper surface that would result
if the conditions of this theory were satisfied throughout will be
called the ideal surface, and will be denoted by S,.

To this surface S, the equations (5) and (2), with the value (21)
of g, are applicable. The normal surface S on the other hand is
not an equipotential surface, but it is the spheroid best fitting the
geoid, which is an equipotential surface. For the condition of the
‘“best fitting” we can take that in the developments of both surfaces
in series of spherical harmonics the coefficients of the harmonics of
the orders zero, two and four are the same. Then the equation (5)
is applicable if for ¢ we take the compression of the normal surface,
and for J its actual value for the real earth. We can, of course,
again write down the equation (2), taking for H also its actual
value, but now ¢ is determined by (3) and not by (21) and the
problem before us is to find the difference between these two
values of g.

If the earth were entirely constituted according to the theory of
Craravur, it would be covered by an ocean of an average depth of
about 2.4 km., of which the upper surface would be the ideal
surface S,, and the bottom would also be an equipotential surface,
which we will call S;. The true distribution of mass differs from
this ideal one on the one hand by an excess of mass in the continents
and the shallow seas, and a defect in the deep oceans, and on the
other hand by the isostatic compensations of these excesses and
defects.

This compensation is assumed to be equally distributed over the
layer between the surfaces S, and S, or, in the case of the deep
oceans, between S, and the bottom of the ocean.

The formulas have been worked out by me in 19151%).

Correcting a mistake in the formulas, and treating the layer
between S, and S, somewhat more carefully than was done there,
we find in units of the seventh decimal place: (see table p.243).

If there were no isostatic compensation, these numbers would be
increased about 55 times. The approximation of the computations
is such that each of the partial numbers is correct to a few percents
of its amount. The sums may thus easily be a unit or more in error.

We have thus as the result of this computation that the difference

) These Proceedings, XVil, p. 1295.
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C—C, is entirely negligible, and consequently
=4
Consequently we can use the value (21) or (30) of ¢ to derive

Parts of the world H—H, 7 9%9

1. North Polar regions +1.17 + .2
2. Europe — .1 + 2.4
3. Asia + .8 +14.5
4. North-America —1.0 + 5.2
5. Northern Atlantic Ocean —1.2 — 4.3
6. South-America +2.3 + 9.4
7. Southern Atlantic Ocean -+1.2 —10.7
8. Africa +2.9 +14.3
9. Indian Ocean +1.2 - 9.2
10. Indian Archipelago — .1 + 2.0
11, Australia and New Guinea| - .5 + 3.7
12. Pacific Ocean —9.5 —31.5
13. South Polar regions —6.6 + .6
Total —8.5 — 3.4

¢ from H for the actual earth. The difference ¢—¢q, would still be
negligible, if there were no isostatic compensation.
For H we find:

H—H = —-0000008,

1
from which

e—¢g —°0000004 . . . . . . . (32

This of course is entirely negligible. It means that the polar semi-

diameter of the ideal surface is 1.8 meters shorter, and the equatorial

radius 0.9 meters longer, than of the normal surface. If there werd

no isostatic compensation however, the difference between & and s,
would be of the order of two units in the denominator.

5. We have from (5) and (2)
e=-00172874q¢H . . . . . . . (3]
The value of H can be derived with great accuracy from the
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constant of precession. Adopting for the reciprocal of the mass of
the moon
p—1 = 8150 £ -07 + A u—1,

[ find

H ="-0032774 + - 0000270 A u—1, |
_The probable error of H is made up of = 19 in the seventh
decimal place due to the uncertainty of u, and = 0.6 due to the
constant . of precession. Since it has been shown that the value of
g derived from the theory of Crairaur may be used for the actual
earth, we can substitute (32) into (31). Then taking

e = "0033727 + A,

we find?'): :
597 A e= — 0000029 - - 0000135 A u—1 4 - 00163 A4, .*(33)
from which
% — 20692 £ 136 —199 A —152A2. . . (34)

The probable error of 1/¢ is made up as follows:
from the precessional constant == -004,
from p + -132,
from 4, , =+ -035.

The remaining uncertainty of & is thus due almost entirely to
that of the mass of the moon.

The most important and trustworthy determinations of & by other
methods have already been quoted in my paper of 1915. Shortly
after the publication of that paper HEeLMErr®) has published a new
determination of & from 'the intensity of gravity, which is

§1=2967 = 0-6
The most reliable geodetic determination is that by Haryrorp:
§1—=2970 & 1-2

Both agree with (34), but both are very much less accurate. When
by the Eros campaign of 1930 the mass of the moon will be better
known than it is now, the determination of the compression from
the precessional constant will become still more accurate.

1) In my paper of 1915 the equation for Ae was not derived independently,
but adopted from DARwIN. There is however exactly at this point a numerical
mistake in DARWIN’s work, in consequence of which the value of ¢ derived from
his formula is erroneous. Moreover DARWIN's computations are based on RocHE's
hypothesis, which gives an incorrect value for g. The formula (33) in the text
must thus be used. '

%) Neue Formeln fiir den Verlauf der Schwerkraft im Meeresniveau beim Fest-
lande, Sitzungsberichte Berlin, 1915, p. 676.
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8. The actual distribution of density within the earth is unknown.
We can make hypotheses regarding that distribution, and by their
aid compute the different integrals occurring in the theory of CLaIRAUT,
and thus arrive at values of the different quantities, which can be
determined by observation, such as &, J, H and the surface density d,.
The equation (5) is independent of the inner constitution. Consequently
any hypothesis, which will reproduce any one of the two quantities
¢ and J will also give the correct value for the other. There are
thus three conditions to be satisfied by any hypothesis on the
distribution of mass.

RocHE’s hypothesis

d=d, (1 —kp"
contains only two constants, and can thus not be expected to satisfy
the conditions. This expectation is confirmed by DARWIN’s compu-
tations, which are based on this hypothesis. If we interpolate in his
table (Scient. Papers, 111, p. 112) for the correct value d, = ‘495,
we find ¢—1=2881 and ¢=-5132, which are entirely outside the
limits of possibility. ‘

WiecnerT’s hypothesis, according to which the earth consists of a
core and a crust, each of constant density, separated by a surface of
discontinuity at which the density changes abruptly, contains three
parameters, viz. the two densities and the radius of the surface of
discontinuity. It is thus theoretically possible by this hypothesis to
satisfy the three conditions, but it remains to be seen whether the
values of the parameters, by which this is effected, are otherwise
acceptable.

In order to test this and other hypotheses we must, as has been
already said, compute the different integrals occurring in the theory
of Crairaur. As this theory is only applicable below the isostatic
surface, we must take the radius of this surface as upper limit of
the integrals. For the layers above it we can however replace the
actual distribution of mass by an ideal one according to the theory
of Crairautr. The parts contributed to the integrals by the masses
above the isostatic surface are then the integrals from S, to S,.
These have been computed taking for the density between S, and
Sy: d'=.186 and below S,: d, = .495, increasing regularly to d, at
S,. For the mean radii of S, and .S,, which are called s and b,
I take s—=.98200, & —.99962. The three conditions can then be
enounced as follows

8
D, 233* d* df — 1:04214—-02724 4, . . . (35)

0
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1 d

o fdéﬁ(ﬁi ¢') 8 = '87189—-05008d, , . . (36)
LAY

0

where we have put

' —=¢§ + 3 &
z 2
and for the isostatic surface we take the value corresponding to the
adopted value of &1), viz.:
8”3 == l/nn‘u’

finally

s
A
SIDB‘ dg—=1161424--00077 d, —1-250 ——. . . (87)
L2,
0

As an example I have applied these formulas to the theory of
Wiechert. The density above the surface of discontinuity thus is
d; and below it d, = d, 4+ A. The radius is taken 8, = ps. The first

two conditions give
p* A =1"04214 — 1-027240,, . . . . (38)

p*A(1—§) —=-87189 — 1-05008d,,. . . (39)
where we have put
¢, =&, (1—§).
For the determination of § 1 use the equation (10) for the surface
of discontinuity B, = ps. This gives, using (38) and (39),

A (1—§) — [—:—ds——' 00162]§+ + 0024 d; §* =1-29750 —- 99296 d, , (41)

From the equations (38), (39) and (41) we can determine p, A, §,
if d, is assumed. The computations have been carried out with two
values of d, and the result is

for d,=05: p=-8325, A=—-9160, §=— 0531,
06: 7841, 8881, -0762.

!) The computation was first carried out for the approximate value e’s = 1/gqq.

This led to:
for ds=05: A =+ —.0007,
0.6: —.0006.

The computation was then repeated with the exact value of &¢”s. In the original
Dutch communication only the first approximate computation was included in the
text, and the final one mentioned in a footnote. For more details regarding these
computations the reader is referred to B. 4. N. 55.
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Finally we .have
. 5 3
5fDﬂ‘ dg —s* l:d_., 4+ EAp' — §Ap‘],
0

from which we find by (37)

A
dg =0-5: —1_—_}.0008,
for ‘ Y +

0°6: +.0004.

Both these values agree with the adopted value i, = 4 .00044
within the limits of the uncertainty of the data on which the
computation is based. We must thus conclude that WIECHERT’S
hypothesis even in its simplest form, with only one surface of
discontinuity and constant densities below it and between it and the
surface of discontinuity, represents a possible constitution of the earth.





