Chemistry. — “In-, mono- and plurivariant equilthria”. XXVI.
By Prof. F. A. H. SCHREINEMAKERS.

(Communicated at the megting of March 29, 1924).
Equilibria of n components in r phases.

We take into consideration an equilibrium E and other equilibria,
the phases of which differ unfinitely little from those of Z. When
we express the compositions of the phases in composants, then we
may choose them arbitrarily, so that we ay take for this also
one or more of the phases of the equilibrium Zitself. As, therefore,
those composants are really also phases of the equilibrium E, we
shall call them ‘real” composants; the other composants, which
consequently still rest arbitrary, we call the “free” ones.

We now assume that at a temperature 7', and under a pressure
P, an equilibrium

E,n.=L+M+N...+R . . . . . (1)

exists of n components in » phases. In order to represent the phases
of an equilibrium :

Em.)=F, +F,...+F,. . . . . . (

which. differ from E, (n.r), we must choose n composants. For this
we take the r phases L M ... of the equilibrium E, (n.r), conse-
quently real composants; further we take the n—r free composants
X Y...; of course one or more of those may also be components.
When we represent an arbitrary phase ¥ of the equilibrium E (n.7) by :

F=aX+4yY...4+IL+mM...+qQ+eR. . . (3)

wherein ¢ =1—z—y...—/...—¢q, then we may represent F,
by giving to all variables in (3) the index 1; F, by giving them
the index 2, ete.

We now assume that the phases of E(n.r) differ infinitely little
from those of K, (n.r), viz. F, from L, F, from M...and F, from
R. Then it appears from (1) and (3) that all variables in (3)should
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become infinitely small, excepted /,, m,,n,... g,—; which approach
to zero.

When we call the thermodynamical potentials of F| F, etc. §§,
etc. and when we represent by A the form:
0; 05 14

l=—m— ..—qg=
al mam qaq

of o

g—.'va—z—-yé;...— (4)

then we find for an arbitrary temperature 7' and pressure P the
r—1 equations of equilibrium :

A=A, =...=4 , « ., . = = » (b)

We obtain A, 4, etc. from A by giving in (4) the indices 1, 2
etc. to all variables (5 also). Of course those equations are valid
as well for finite as for unfinitely small values of the variables.
Further we still get the (r—1)(n—1) conditions for equilibrium :

oL, %,
dw, 0z,  Oa,
o0, o, o ©)

‘az——r‘y’—-l.—@

and the other ones, which follow herefrom, by substituting 2 or y
by zu... Im... and gq.

When we include in the calculation 7' and P, then consequently
we have (n—1)r+42 variables and n(r—1) equations; therefore the
equilibrium E(n.r) has n—r-+2 freedoms. When we put in (5)
and (6) /, =1, m;=1, n,—=1 and ¢,_; =1 and further all other
variables equal to zero, then we find the conditions for equilibrium
for the equilibrium £E,(n.r); when we put [, =14 Al, m,=
=1+44m,...¢o1=1+ A ¢, and when we take for the other
variables infinitely small values, then we find the equations for
equilibrinm for the equilibrium E(n.7) at 7, + AT and P, 4 AP.
From (5) follow the r—1 equations:

LA, =bA=wi.=lhBAr « » + + = = (D
Further follow from (6) the (r—1)(n—1) equations:

(9 0§ 05,
A=A "=...=L0=. . . . . . (8
0z, 0z, 0, ®
etc. Herein the sign A means that we must take all increases, if
necessary those of higher order also. It now follows from (4) that

(7) may be satisfied by :
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0 1
AA,:—n,AT—}—leP—Aag—?KI
0 1
AA, = — 4y, AT + v, AP. — A—g———K,
om 2
e e . )
, o5 1
AAr__1=—’Y],-__1 AT + Vyp—1 AP— A= — — Kr——l
dg 2
AA, = —m AT + o, AP_%K, |

0
wherein we may give to Aa_zg’ A d_; etc. in accordance with (8) each
m

of the indices from 1 to ». Further is
05 o5 )
K.__(.'va—t—+ yé—;—i—...) .

We now shall mean by the region of an equilibrium: the col-
lection of all complexes, which arise when we add to one another
the phases of that equilibrium in all possible ratio’s. In a graphical
representation we may imagine such a region to be represented by
a collection of points. The region of an equilibrium E(n.2) is,
therefore, a straight line, which unites the two phases, namely the
part, which is situated between both phases. The region of the
equilibrium E (n . 3) is the triangle, which has as angle-points those
three phases, etc.

We now may put the question: the regions of two equilibria
E,(n.r) and E(n.r) may they have common points at the same
temperature and pressure?

In order to represent the region of the equilibrium:

Em.r)=F, 4+ F,+...+ F,,
we must take in the complex

a.F,+a, F,+...4+0a F,. . . . . . (10)
a, a, etc. positive and we must give to their ratio’s all possible
values. In the complex (10) none of the free composants X V... W
may occur, in order that this region has one or more points in
common with the region of E, (n.r). It now follows from (10) that
it must be possible that is satisfied :

2(@r)=a,z, +a,2,+...+a 2, =0
2‘(ay)=alyl”{balyl *—"-+a7'y" =0 (11)
2(aw)=aw, }a,w, ... .+ a w, =0
19
Proceedings Royal Acad. Amsterdam. Vol. XXVIIL
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As we take under consideration the equilibria E,(n.r)and E(n.r)
at the same P and 7, we must put in (9) A7=0 and A P=0.
Hence it follows:

o5 05 14
A—=0 A~ = — = s
o om0 By =0 - 09

The stability requires that the magnitudes K, K, etc. from (9) are
positive. As the terms, wich are equal to zero, in accordance with
(12), disappear herefrom, we may write:

.vAg-}—Ag—{- WA g
aw

When we add K, K, etc., after having multiplied them successively
with @, a, etc., then follows:

E(aw).Ag—g—ﬁ»E(ay).Aa—g...—FE(aw).Ab—g .. (14)
0 0y Ow

which form must be positive. Consequently it is impossible to satisfy
the equations (11), as (14) should then be equal to zero. Consequently
we find:

the regions of the stable equilibria E, (n.r)and E(n.r) may never
have points in common at the same temperature and under the
same pressure.

The conjugation-line of the two phases of an equilibrium %, (n.2),
therefore, never intersects the conjugation-line of the equilibrium
E(n.2); the three-phases-triangle of an equilibrium E,(n.3), there-
fore, never intersects the three-phases-triangle of the equilibrium
En.3), etc. In the previous communication we have deduced this
property for a special case, viz. for an equilibrium £ (3.2) in quite
another way. We also easily find this property in the following way.
Suppose the regions of the equilibria E,(n.r) and E(n.r) have
a point in common; then this point may represent either a complex
of the phases of the equilibrium £, or one of the phases of the
equilibrium E. As T and P are, however, the same for both com-
plexes, the complex with the largest thermodynamical potential shall
be converted into that with the smallest one. Consequently both
complexes cannot exist at the same time or in other words, the
two regions cannot have a point in common.

The deductions above are no more valid when we keep no more
constant either the temperature or the pressure, or both. Then

we find:
the regions of the equilibrium F,(n.7) atT, and of the equilibrium
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En.r) at T, 4 AT have points in common, also when the pressure
for both is the same.

We shall represent an equilibrinm of n components in r phases,
when a phases-reaction is possible between those » phases, by
E(n.r)(r). We now assume that at 7', and P, an equilibrium

E,(nr)()=L+ M+ N...4 Q+R. . . . (15)
exists; we represent the phases-reaction by
AL+ aM... +2,_3Q4+AR=0 . . . . (16)

As, in accordance with (16) those phases are dependent on one
another, we may take only »—1 of them as composants; for this
we take MN...R. We now represent an arbitrary phase [ in
stead of by (3) by

F=aX4yY...+mM+nN...qQ+0R . . (17)
viz. by r—1 real and n—»+41 free composants. The phases of an
arbitrary equilibrium :

E(n.vy=F, + F,...+F, . . . . . (18)
we represent again by giving in (17) the indices 1,2,...r to the
variables. When we represent again by A

of of s oF

Y —M—.. —g=— . . . (19
7YYy ™ om 734 (19)
then for the equilibrium E(n.r) at arbitrary P and T the r—1
equations

§—

A=A =,..=4 ., + , « = = « (20

are following again and (r—1) (n—1) equations like in (6).

We now assume again that the phases of the equilibrium E(n.r)
differ infinitely little from those of E, (n.r)(r). When the composi-
tion of I, must approach to L, then it appears from (17) that we
must give to the quantities =z, y, etc. of the free composants the
infinitely small values Az, Ay, etc. In connection with the compo-
sition of L, which is following from (16) it is apparent that we
must put: '

)-r—— 1
2

2, A
ml=—-2.—-{-Aml nlz—l—"Jr‘A"x-"%:'—

1 1

+ Ag,

wherein Am, etc. are infinitely small.

When the composition of F, approaches to M, then we must put
m,=1 -4 Am, and further we must replace all other variables
z,y, etc. by the infinitely small values Az, Ay, etc. For the other
19*
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phases F, ... F, we find that all variables must be infinitely small,
excepted

na=14+A0n,...q,1=1+4+ Agy.
In order to satisfy (20) we now have, as follows from (19):

d \
AIAAI:_"'"71A'T_i"lxvlAP‘*'A,A'£‘|")-.Ai§-..-
om on
o 1
...'*‘)'r—lA‘a—q——EJ.‘I(1
AA = AT AP A6§ 1K
i e (21)
0 1
AAr_lz—T],_lA]'+v,-_1AP——A—E——K,-~_1
d0¢ 2
1
AA,-:-——'D],-AT+'U,-AP—§K,.

wherein again

(2
K= Am.?—é—’-}—Ay.é—g—{—... .
o0z oy

0
Further we may give, as it shall appear at once, to & 5’% etc. all
indices from 1 to ». We yet have viz. the (r—1)(n—1) equations
(6) from which follows:

95, oz, L,

e I S D g g T A 22

0z, 0z, 0.z, @2)
and the other ones, which we get herefrom by substituting = by
yz...m...q. '

When we add the equations (21) after having multiplied AA,
with 2,, AA, with 2, etc., then we get,as A, =LA, = ... =LA,
and as X(4) must be zero in accordance with (16):

1
—Z(m).AT+Z (). AP=23(K) . . . (23)
Further from (21) still the »—2 equations follow:
0§
(=) AT + (o,—v) AP=A >
om
: (24)

9
r—nr—=) D T + Vr—1 — ) AP— Aa—g

'l
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wherein K, etc. have been omitted, as they are infinitely small with
respect to the terms, which are already written down.

Consequently we have in (22), (23) and (24) rn—n equations
between the rn—r 4 2 variables for definition of the equilibrium
Emn.r)at T,4+ AT and under P,+ AP.

Firstly we now put the question: when an equilibrium E,(nr) (r)
exists at 7, and under P,, still other equilibria E(n.r) may they
exist at the same temperature and under the same pressure?

As the equilibrium now has still n—7r freedoms only, and as »
must be 2 at least, this case may, therefore, occur only with systems
with 3 or more components. As further we must put A7 =0 and
AP =0, it follows from (23):

5 r
2, (Aw, 6—9’1+Ay,.E...)(ﬂ_z,(m,.aiJrAy,ﬁ...)(‘1...=o.(25)
0z, 0y, 0w, 0y,

The stability requires that each of the forms in parenthesis is
positive. Of course the increases in (35) are not independent on one
another, but they are united by the equations (22) and (24), wherein
AT=0 and AP =0. Hence it appears, therefore, that it shall
depend on many conditions whether (25) may be satisfied or not.
When this is not the case, then at 7°, and under P, only the
equilibrium E, (n r)(r) exists; when it is really the case then still
also other equilibria K (n.r) exist, which then have n—r freedoms.
Later we shall illustrate this by treating an example.

Let us assume that (22), (24) and (25) may be satisfied by definite
values of the increments Ax, Ay, etc. Then a definite equilibrium
E (n. r) exists. However, the equations may be satisfied also by giving
the opposite sign to all increments; consequently also an other
equilibrium E*(n.r) exists. We shall call two equilibria, which
satisfy this condition the reflected images of one another, because,
in a graphical representation, they are looking somewhat alike.
Consequently ‘'we may say, also in connection with the previous:

when at 7', and under P, besides the equilibrium E, (n r) (r) still
other equilibria E (n .r) exist, then they are two by two the reflected
image of one another; the regions of those equilibria have no points
in common.

We now may also answer the question: when an equilibrium
E, (nr) (r) exists at T, and under P,, which other equilibria E (n.r)
are existing then under the same pressure but at the temperature

T, + AT?
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In order to answer this question we put A P=0; (23) becomes
then :

1 0§ 0% @
E(ZW).ATz—z—El(Am.ﬂ—l—Ay.@...) . . (26)

The equations (22) and (24) are homogeneous and of the first
degree with respect to AT and the other increments. We may satisfy
those equations by taking all increments of the same order, but A T’
of the order (A z)'. In the equations (22) and (24) at first approxi-
mation &ll terms with A7 may disappear. Then it follows from (24):

0§ 05 0§

A= Ls-= Aa_q 0 . . . . @D
with the indices 1 to ». We may use those equations in order to
simplify (26).

2 (am) in (26) is the increase of entropy when in the equilibrium
E,(n.7)(r) the phases-reaction (16) occurs. We imagine that the
reaction proceeds in that direction, at which the entropy increases;
then = (A ) is positive and the signs of A, A, etc. are defined.

We now distinguish three cases.

1. the second part of (26) is always positive.

Then (26) can only be satisfied by giving a positive value to
AT. Hence follows:

equilibria E (n.7) exist only at temperatures higher than T',; or
also: the temperature 7', of the equilibrium £, (n7)(r) is a minimum-
temperature for the equilibria E (n . r).

2. The second part of (26) is always negative.

We find: equilibria E (n.r) exist only at temperatures lower than
T,; or also: the temperature T, of E,(nr)(r) is a maximumtem-
perature for the equilibria £ (n . r).

3. The second part of (26) may be positive, negative and zero.

We find: equilibria £'(n.7) exist as well at 7', as at higher and
lower temperatures; the temperature 7', of the equilibrium E, (n.r)(r)
is nor maximum- nor minimum-temperature for the equilibria & (n.r).

Just as above we find that the equilibria existing at 7', 4 AT
(AT positive, negative or zero) are two by two the reflected image
of one another and that their regions have no points in common.

As the question: when at 7, and under P, an equilibrium
E, (nr)(r) exists, which equilibria K (n.r) exist then at the same
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temperature but under a pressure P, + A P, leads to the same
results, we shall not discuss this question.

We now shall put the question: when at 7, and under P,
exists an equilibrium F, (n ) (r), another equilibrium E (n») (r) can it
exist at 7', 4+ AT and under P, 4+ AP and under which conditions?

As in the equilibrium E, (n7)(r) the phases-reaction (16) occurs,
must be:

SW=MA+h+...42=0. . . . . @0

In accordance with our assumplion, also a phases-reaction may
occur in the equilibrium E(nr)(r); we represent this by :

ANF A, F,... + 2. F,=0. . . . . (28)

In accordance with (17) and (18) it must be possible to satisfy :

SMNa)y=0 S2@y)=0...2 @m=0...ZAqg=0 (29

As the phases of E(nr)(r) and E, (nr)(r) differ infinitely little
in composition, they pass into: '

SWN.Lx)y=0 TA.Ly)=0... 3

E(A'm):—l'l;:—’—{—l',—l— SWAam=0
' (30)

[

. ';‘+A',_,+2(1'Aq)=o \

SWg=—2
From this we find that at first approximation the n—r -1 equa-
tions must be satisfied:

E(l Aa:)._l Azl-|-2. Dz, . —}—l,-A.z,._O
1w
E(A Aw)._l Aw,—l—l Aw +).,.Aw,._0

wherein 4, 2, etc. have the values from (16). Those n—r-+1 con-
ditions contain only increments, which refer to the quantities of the
free composants. We now have for the definition of the equilibrium
Ennr(@r) at T,4+ AT and under P,+ A P the rn—n equations
(22), (23) and (24) and further the n—r 4 1 equations (31), con-
sequently rn —r 4 1 equations between the nr — r -4 2 variables.
The equilibrium & (nr)(r) has, therefore, one freedom.

We cannot satisfy those equations by taking AT or AP or both
of higher order than the other increases, but we may satisfy them
by taking all increments of the same order.
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Then it follows from (23):
AP = (M)

AT 3 (Av) (32)

Consequently to each change of temperature A 7' belongs a change
in pressure A P, defined by (32). We find, therefore: when an
equilibrium E, (nr) () exists at 7', and under P,, then at 7, 4+ AT
also an equilibrium X (nr)(») exists, of which the composition of
the phases and the pressure are completely defined (viz. A P by
32); also at 7,— A 7' a similar equilibrium exists; both are the
* reflected image of one another.

We also may prove that the regions of the equilibria E, (nr) (r)
and E (n7)(r) have no points in common. When this should be the
case, then, as we have seen previously, we must be able to satisfy

2@.be)y=0 Z@.Ly)y=0...2(@.lw)y=0. . (33)

wherein @, a, etc. are positive. However, A z, A z, etc. satisfy the
equation (31) in which the coefficients 2,4, etc. have different signs;
consequently they never can satisfy (33).

This is, however, only true for equilibria £ (n ») () in which » < n.
At the deduction is viz. supposed that there is one free composant
at least, consequently n—»+12>21 or »r<n. When r—=n 41 then
the two regions have really points in common.

Consequently we may represent in a P7-diagram by a curve an
equilibrium E(nr)(r). Further we shall divide those equilibria into
“transformables” and ‘‘intransformables”. We shall viz. call the
equilibrium transformable when we can proceed a finite part of the
PT-curve with a definite complex of the r phases; we call it
intransformable when we cannot convert the equilibrium of a tempe-
rature 7' in one of the temperature 7'+A7', unless we add one or
more of the components.

It appears from our previous considerations that for r —=n 4 1
the equilibria are transformable and for » <<n 4 1intransformable.

A binary equilibrium £ (2.3)(3) f.i. solid 4 liquid 4 vapour is,
therefore, transformable; we can realise a finite part of its P7-
curve with a complex of definite composition.

The binary equilibrium £(2.2)(2) or in general the equilibrium
En.2)(2) of n components f.i. liquid 4 vapour is intransformable;
when we will bring it from a temperature 7T of its PT-curve
towards a temperature 7'+ A 7, then we must add or remove a
little of one or more of the components.
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In accordance with our considerations an equilibrium E (n . 2)(2)
= solid 4 liquid ought to be intransformable, also when the solid
substance has an invariable composition. This is, however, not the
case; here the P7T-curve is viz. the melting-line of the solid
substance and it is clear that we can realise it without it is necessary
to change the composition of the complex. Yet this contradiction is
only apparent. Solid substance and liquid have viz. the same
composition and although they are built up out of n different other
substances, yet there is one composant only. Consequently it is not an
equilibrium & (n.2)(2) but an equilibrium £ (1.2)(2) and it must,
therefore, be transformable.

In general an equilibrium E (n.7)(») in which »—1 of the phases
have a constant composition and only one of the phasesis variable,
is an equilibrium E (r—1.7)(») and consequently transformable.

When an equilibrium E (2 ) (r) goes along its PT-curve, then
the values of = (1) and =(Av) change from point to point. When
=(An) becomes zero in a point, then, as is apparent from (32), the
tangent in this point is parallel to the 7-axis; consequently the
pressure in this point is maximum or minimum. In order to examine
this further, we must take now into the equations (21) also terms
with AT? Instead of (23) we then find an equation of the form:
AP—=a AT*. The pressure in this point is, therefore, maximum
when ¢ < 0 and minimum when a > 0.

When in another point = (2v) becomes — 0, then the tangent in
this point is parallel to the P-axis. Instead of (23) we now find:
AT =p.AP* Consequently the temperature is maximum when
8 <0 and minimum when 3> 0.

Therefore, we find: the temperature of an equilibrium E£'(n.r)(r)
is maximuom or minimum, when the volume does not change at the
phases-reaction; the pressure is maximum or minimum, when the
entropy does not change, consequently when at the phases-reaction
no heat is absorbed or given away.

When we apply this to a binary equilibrium: solid substance
~+ liguid 4 vapour, consequently to an equilibrium £(2, 3) (3), then
follows at once the known property, which defines in this system
the position of the point of maximum temperature and pressure.

When an equilibrium E (n.7)(r) goes along its P7-curve, then
the ratio’s of the reaction-coefficients change from point to point;
in definite points then one or more of those coefficients may become
zero. When in a point a, consequently at the temp. 7, and under
the pressure P, f.i. 4, becomes zero, then reaction (16) passes into:
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A M+ 23,N...+4_1Q+ AL R=0,

so that the phase L does not take partinto the reaction. The tangent
in point a to the PT-curve is defined then by (32) in which,
however, the terms 2,7, and i,v, disappear. We now take away
from the equilibrium E(n.r)(r) the phase L, while we let unchanged
temperature and pressure; then a new equilibrium E(n.r—1)r—1)
arises. This equilibrium is also represented in a P7-diagram by a
curve, which goes of course through the point a. The direction of
the PT-curve E(n.r—1)(—1) in point @ is, however, defined also
by an equation of the form of (32); herein now also the terms
Am, and A,v, are wanted, while the other terms have the same
values as for the equilibrium E(n.r) (r). Consequently the two curves
touch one another in the point a. As the same discussion is valid
also when more coefficients become zero, we get, therefore:

when at 7, and under P, some phases (f.i. ") of the equilibrium
E(n.r)(r) do not participate in the phases-reaction, then the PT-
curve of E(n.r)(r) and that of E(n.r—r’) (r—r’) touch one another
in the point a.

In general we may imagine, therefore, —1 equilibria E(n.r-1)(»-1),
further } »(r—1) equilibria E(n .r—2)(r—2) etc., the P7T-curves of
which come in contact with that of the equilibrium E(n.7)(r).

When we apply this f.i. to the binary equilibrium E (2.3)(3)=
solid substance -} liquid 4 vapour, then herefrom at once the known
property follows, that the PT-curve of this equilibrium touches that
of the equilibrium E(2.2) (2) = liquid 4 vapour; that of the equi-
librium E (2.2) (2) = solid substance 4 vapour, consequently the
sublimation-line of the solid substance, and that of the equilibrium
E (2.2) (2) = solid substance + liquid, consequently the melting-line
of the solid substance.

Leiden, Lab. of Inorg. Chemistry. (To be continued.)





