Chemistry. — “Equilibria in systems in which phases, separated by
a semipermeable membrane.” 1. By F. A. H. SCHREINEMAKERS.

(Communicated at the meeting of September 27, 1924).

We take a liquid L of the composition:

s Mol X -y Mol Y+ 2 Mol Z + ...+ (1 —x—y—z...) Mol W . (1)
and a liquid L,, which only contains the simple substance W (f.i. water).
We imagine both liquids, separated from one another by a semi-
permeable membrane, which allows to pass freely the substance W
only. We call W the diffusing substance, X V' 7Z... the not-diffusing
substances. Further we assume that /. and L, have the same tem-
perature, but that L is under an external pressure /> and L, under
an external pressure /F,. The osmotic pressure x of the liquid L
with respect to L, is then x = P—P,.

When we allow dn quantities of the diffusing substance W to be
transported from the liquid L, towards the liquid L, then we find
the equation for equilibrium :

(;~x%—yg;—zg§ i .);:(g.)p.. B ¢
in which £ and {, represent the thermodynamical potentials of the
unity of quantity of the liquids L and L,. Cousequently { is a
function of Puxy... and {, a function of P,. »

When L is a binary liquid, which contains besides the diffusing
substance W still only the substance X, then (2) passes into:
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When we change z P and P, then follows:
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When we keep constant the external pressure P, of the liquid
L,, then dP, =0 and dP =dn; then it follows from (4):
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Hereby is defined the relation between the change dz of the
concentration of the not-diffusing subsiance and the change dx of
the osmotic pressure. In (5) is:

0*§ RT
r= —=

0z (l—a)

in which « has ga finite value. For very small values of z, as

+ea. . . . . . . (6)

ov :
x— approaches then to zero, (5) passes into:

0z
RT RT
dx = —.dz or *=—.2 . . . . . (7)
v v

the well-known law of van ’r Horr. When the concentration x of
the not-diffusing substance becomes larger, then deviations of this
law may occur; (5) remains valid, however.

When «, viz. the concentration of the not-diffusing substance X
approaches to 1, then, as is apparent from (6) the numerator of (5)
becomes very large. A small change of the concentration shall cause,
therefore a very large change of the osmotic pressure.

We now distinguish two principal cases.

I. All liquids under consideration rest homogeneous; consequently
no dimixtion into two liquids occurs.

As » is, therefore, always positive, the numerator of (5) is, therefore,
also always positive.

In ovder to find the meaning of the denominator, we mix dn
quantities W with one quantity L; the total new volume »’ becomes then:

O
In general shall be v’ >> v, unless with the mixing a contraction of
volume occurs which is still larger than the volume of the added

quantity of W. In general the denominator is positive, therefore;

i i , ov .
this is surely the case for small values of z, as v—a $0nly differs

ov
v':v-}-(v—m )an N )

little then from w». As:

4 ov) 0%y i g
(vxaw)_——m(w. x . . . . . . (9

it appears that the denominator may become negative only then,
when the v, z-curve turns its convex side towards the concentration-
axis. We now distinguish two cases.

a. The denominator of (5) is always positive.

From (5) follows: with increasing concentration of the not-diffusing
substance, the osmotic pressure grows.

We draw in fig. 1 on the horizontal line WX the concentrations
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and on the vertical axis the pressures P=— P, 4 « of the osmotic
equilibrium L 4+ W. When we take Wa,=P,, then we get the
osmotic pressure-curve a,bcd. Consequently in a, the osmotic
pressure is zero; in b,c, etc., it is represented by the length of the
perpendiculars fallen on the line a, a',.
The direction of this curve in its beginning-point a, is defined by (7)
viz. the law of van ’r Horr; in the
P P vicinity of the line XP, it shows a
straight ascension. The osmotic
pressure-curve a,bcd divides the
diagram into two fields, which we
shall call the (4) field and the (—)
field; the first one is indicated in
the figure by an encircled -+, the
second one by an encircled —.
+ An arbitrary point A in the (4)
field represents a liquid, which,
under the pressure £, is not in
X osmotic equilibrium with the diffusing
substance W, but contains too much
of this substance. When we keep the pressure constant, then it
passes, depositing the substance W in the liquid ¢, which is in
osmotic equilibrium under this pressure.

A point K in the (—) field represents a liquid, which contains
too little of the substance W. Consequently it passes dissolving the
diffusing substance W into the liquid ¢ also.

We are able to deduce the osmotic pressure-curve also by other
considerations.

We imagine viz. the diffusing substance W to be substituted by
an imaginary state of this substance, which we shall call (W). We
define this imaginary state in such a way that the thermodynamical
potential of (W) under all pressures is equal to (&,)p, viz. to that
of the diffusing substance W under the pressure P,.

When in (2) zy... approach to zero, then the first part becomes
equal to the thermodynamical potential of the substance W under
the pressure /°; when we call this (Sy)p then we have:

r

Ew)r =G, —i—jvdP R ¢ 1))
Ps

Fig. 1.

When we take P> P, then is, therefore ({y)p > (5,)p,; When

PP, then is Cw)p < (o)A,
46
Proceedings Royal Acad. Amsterdam. Vol. XXVII.
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Instead of the osmotic equilibrium L 4+ W we now take the
equilibrinm L 4 (W): as L vepresents herein the liquids, which are
saturated with the imaginary substance (W) we shall call this the
“saturation-equilibrium”’.

For this saturation-equilibrinm we find the condition for equili-
brinm

0§ 0§ 05
(5——.2:5; '—y‘a; =B 25; .. ');(GO)PO i « . . (1])

cousequently the same as (2). Hence it follows, therefore:

we can replace an osmotic equilibrium L 4+ W with the osmotic
pressure & = P — P, by the saturation-equilibrium L - ( W) under
the pressure P — P, 4 =x.

When a liquid L has an osmotic pressure = = P — P, then this
lignid is in equilibrium under the pressure P = P, 4+ & with the
imaginary substance (W); and reversally.

The osmotic pressure-curve a, bc d of fig. 1 represents, therefore,
also the liguids, which are saturated under the different pressures
P with the substance (W); points in the (4) field represent super-
saturated solutions, points in the (—) field unsaturated solutions.

Reversally we can also find this osmotic pressure-curve, when
we deduce the saturation-curve of the substance ( W) under variable
pressure.

b. When we assume that the denominator of (5) may become
also negative, then the osmotic pressure-curve may have a form as
f.i.: the curve a,be fg (fig. 1); on part fe then the osmotic pres-
sure decreases at increasing concentration of the not-diffusing substance.
Then there are liguids which have three different osmotic pressures.

When we consider, instead of the osmotic equilibrium L 4 W
the saturation-equilibrinm L 4 (W), then along curve a,befg
with increase of pressure the solubility of the substance (W) decreases
firstly as far as e, further it increases as far as f and afterwards
it decreases again.

[I. Now we shall assume that there are also liquids L, which are
dimixed into two other liquids.

When we wish to deduce the shape of the osmotic curve also
now with the aid of (5) and other relations, then we have to take
into consideration that » can also become negative.

However, we shall replace now the osmotic equilibrium L4 W
by the saturation-equilibrium L + (W). Consequently we have only
to seek for the saturation-curve of the substance (W) when liquids
occur, which are dimixed.
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Although those saturation-curves are known, yet we will for a
moment indicate the way to deduce them graphically.

For this reason we draw on the horizontal axis (fig. 2) the con-
centrations and on the vertical axis the thermodynamical potentials
¥ of the liguids. We represent (§,)p,

viz. the thermodynamical potential

of the imaginary substance (W) by
point &,. Under a pressure £, > P, the

L-curve has a form like /, m, n, 0, ¢, s,;

the point /, is situated, as formerly

is deduced from (10), above the
point §,. As we assume that dimixion
may occur, in this §-curve two points
of inflexion n, and o, occur. We
can, therefore, also draw a double-

w X tangent with the two points of contact

Fig. 2. m, and ¢,. Liquids, represented by
points of [m, and ¢,s, rest, therefore, homogeneous; the other
liquids are dimixed in & complex of the two liquids m, and ¢,.
The liquids, situated between m, and », and those between o, and
¢, are metastable, the liquids between n, and o, are unstable ones.

We now imagine the tangents to be drawn in the points of in-
flexion n, and o,; their points of intersection with the axis W
are called n', and o',. We now ll;a)r distinguish several cases.

1. The point £, is sitnated below the point of intersection »',.
Only one tangent to the s-curve can be drawn from &, ; consequently
under the pressure P, there is only one liquid, which is saturated
with the substance (W); consequently also: there is only one liquid
with the osmotic pressure = — P,—P,. This liquid is stable and is
sitnated between ¢, and s,.

2. The point §, is situated between n', and o',.

Now we can draw from §, three tangents to the &-curve; conse-
quently there are three liquids with the same osmotic pressure
x = P,—P,; one of these liquids is stable, one metastable and one
unstable. When the point &, is situated above the double-tangent
m,q, then the stable liquid is situated between /, and m,; when
§, is situated below the double-tangent, then the stable liquid is
situated between g, and s,.

When accidentally the point & is sitnated on the double-tangent
then there are two stable liquids viz. m, and ¢,, which have the
same osmotic pressure; the third one is unstable.

3. The point §, is situated above the point o'.

46*
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As §, is situated below [, &, is situated, therefore, between o',
and [,. Only one tangent can be drawn from §, now; consequently
there is only one solution saturated with the substance (W), con-
sequently also only one liquid with the osmotic pressure # —=P,—P,
This liquid is stable and is situated between [, and m,.

On decrease of pressure all points of the § curve shift downwards;
its form changes therewith at the same time. Under a pressure
P= P, it goes through the point §, which rests on its place at
change of pressure; under a pressure P?, < P, it may be represented
fi. by curve [,m,n,o0,q,, As x = P,—P, is negative now, the
osmotic pressure is negative, therefore. We now may distinguish
two cases.

4. The point &, is situated above the point of intersection o',.

Consequently no tangent can be drawn from & to the § curve;
consequently there is also no liquid with the considered negative
osmotic pressure.

5. The point §, is situated below the point of intersection o,.

Consequently from §, two tangents can be drawn to the§curve;
therefore there are under the pressure P, two liquids, both saturated
with the substance (W), consequently also two liquids with the
negative osmotic pressure & = /’,—P,. One of these liquids is
metastable, the other one is unstable.

Firstly we imagine a very low pressure, so that the § curve is
sitnated far below the point § ; on increase of P it then shifts
upwards, under a pressure P>— P, it goes through the point §, and
on further increase of pressure it comes above the point §,. As the
§ curve changes also its form with this change of pressure, there
may be also pressures, under which its concave part is disappearing,
so that it gets downwardly totally a convex shape. When we
consider at each stand of the § curve the tangents from the point
§, drawn to the § curve, at which several of the cases mentioned
sub 1—5 and their transition-forms may occur, then we find the
following.

A. The saturation-curve of the substance (W) and consequently
also the osmotic pressure-curve consists of one single branch.

Then we may get a diagram as in fig. 3, in which the osmotic
pressure-curve is represented by a, b, wvw b, c; the curves d, b, e,
and d, b, e, are the limit-curves of the region of dimixtion. Starting
from a,, the osmotic curve comes in b, under the pressure P in
the region of dimixtion, it reaches in w a maximum- and afterwards
in w a minimnm-pressure and in b, under a pressure P, — P, it
leaves the region of dimixtion. The parts a, b6, and b, ¢ represent
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stable states, the parts b, u and w b, represent metastable states and
part wvw unstable states. When the point w is situated below the
line a, a',, as is drawn in fig. 3, then there are also liguids (unstable
and metastable) with negative osmotic pressure.

When we limit ourselves to stable states alone, then only one
liquid belongs to each osmotic pressure # — P—P,. However the
two liquids b, and b, belong to the osmotic pressure & — Py —
— P, = Py,— P,; those liquids are also in equilibrinm with one
another under the pressure P, — P,,.

B. The saturation-curve of the substance (W) and consequently
also the osmotic pressure-curve consists of two parts, separated from
one another.

P p=}3+17' P P P

Fig. 8. Fig. 4.

Then we may obtain a diagram as in fig. 4, in which the one
part of the osmotic pressure-curve is represented by a,bc, the
other part by the closed curve ww. The latter is situated within
the region of dimixtion with the limit-curves ke, 2 and %e, A, of which
k and A represent the critical points. The part of curve u w, directed
towards point e,, represents unstable states, the part of this curve
directed towards point e,, represents metastable states.

The region of dimixtion can be situated also above the curve
a,bc; this case is represented in fig.4 by curve d,/d,. The dotted
line within this region of dimixtion then represents the second
branch of the osmotic pressure-curve.

When we limit ourselves to stable states, then to each definite
osmotic pressure « = P—P, belongs one liquid only.

In general the osmotic pressure-curve a,bc shall ascend only
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slowly in the vicinity of the critical point £ (or /) with increasing
concentration of the not-diffusing substance X. In the point £ (or /)
itself is viz. »=0; oun curve a, b¢, in the vicinity of this point £
(or I) » is positive, but it may be still very small. When this is
the case, then the above-mentioned follows at once from (5).

Between the figures 3 and 4 a transition-form exists. This occurs
when the osmotic pressure-curve a, b ¢ comes in contact with one
of the regions of dimixtion f.i. £/A in the critical point £ Then
point u coincides with £. Curve a, b ¢ then shows in £ a point of
inflexion with a horizontal tangent.

Till now we have assnmed that the diffusing liquid W, with
respect to which we define the osmotic pressure n = P—P, of a
liquid L, has a constant external pressure P,. Now we shall examine
which influence has a change of P, on the osmotic pressure .
We take a liquid of constant composition; consequently x in (3) is
constant. From (3) now follows:

v

dP= "0 dP, . . . . . . . (1)
U—xa—m
As now da = dP—dP,, we find:
ov
V—U + & —
o
dn — e dpP, . (18)
’l)—ms;

When we bring the pressure of the diffusing lignid W from P,
to P, 4+ dP,, then the change dP of the pressure and the change
dx of the osmotic pressure of the liquid L are defined by (12) and (13).
Consequently in figs. 1, 3 and 4 the straight line a, a', shifts up-
wards a part dP,, each point of the osmotic pressure-curve a part
dP (defined by 12). As, however, dP depends also on z, all points
of the osmotic pressure-curve don’t shift upwards in the same extent;
consequently also this curve changes its form, so that the osmotic
pressure changes also. This follows at once also from (13) from
which it appears at the same time that the change da of the
osmotic pressure depends also on the composition of the liquid.

In the figs. 3 and 4 on change of the pressure P, the osmotic
curves shift, therefore, while the regions of dimixtion rest on their
places of course. In fig. 3 the points b, and b, shift, therefore, along
the curves d, ¢, and d,e,; in fig. 4 the osmotic pressure-curve either
approaches more or moves further from the critical point £ or /.



709

On further change of /°, the osmotic curve may go now through
the point /; on still more change fig. 4 passes then into fig. 3.

Consequently we find: the osmotic pressure of a liquid L with
respect to the diffusing substance W depends on:

1. the concentration of the liquid L.

2. the external pressure P, of the diffusing liquid W. It may
depend also on this pressure P,, whether the osmotic pressure-curve
consists of one branch (fig. 3) or of more branches (fig. 4).

As the coeffivient of dI’, in (13) may be as well positive as
negative, the osmotic pressure may either grow or diminish. How-
ever the osmotic pressure shall grow at increase of P, with liquids
which contain only little of the not-diffusing substance X.

From (13) and also from (7) it follows viz.:

dr 1 dv __ kT dv 14
Ip;——-; bﬁ.ﬂ——?-afgo.-’v - . 3 s ( )
‘ . O . ov .
in Whmht)l’ is negative of course. ASW is only very small, the
(]

change of the osmotic pressure is also very small. With small changes
of P, the osmotic pressure practically does not change.

Van 't Horr has compared the osmotic pressure of a liguid L
with the pressure which the not-diffusing substance X should exert,
when in gas-state this should occupy the volume v of the liquid L.

Following this comparison in large lines we might say that in
fig. 1 the substance X behaves like a gas, far above its critical
temperature 7%, in fig. 4 as a gas, in the vicinity of this temperature
and in fig. 3 as below 7%. On branch a,b, the substance X should
be then in gaseous state, on branch b,c in liquid state. Further we
should have to assume that this critical temperature, and, therefore,
also the behaviour of the substance X depends on the pressure P,
of the diffusing substance.

Leiden. Laboratory of Inerg. Chemistry.

(To be continued).





